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 In this paper, numerical study on natural convection heat transfer for confined thermo-

dependent power-law fluids is conducted. The geometry of interest is a fluid-filled square 

enclosure where a uniform flux heating element embedded on its lower wall is cooled from 

the vertical walls while the remaining parts of the cavity are insulated, without slipping 

conditions at all the solid boundaries. The governing partial differential equations written 

in terms of non-dimensional velocities, pressure and temperature formulation with the 

corresponding boundary conditions are discretized using a finite volume method in a 

staggered grid system. Coupled equations of conservation are solved through iterative Semi 

Implicit Method for Pressure Linked Equation (SIMPLE) algorithm. The effects of 

pertinent parameters, which are Rayleigh number (103 ≤ Ra ≤ 106), power-law index  

(0.6 ≤ n ≤ 1.4), Pearson number (0 ≤ m ≤ 20) and length of the heat source (0.2 ≤ W ≤ 0.8) 

on the cooling performance are investigated. The results indicate that the cooling 

performance of the enclosure is improved with increasing Pearson and Rayleigh numbers 

as well as with decreasing power-law index and heat source length. 
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1. INTRODUCTION 

 

Natural convection flows arise from density variations with 

temperature or concentration within a non-isothermal-fluid 

under the influence of gravity. This is frequently encountered 

in many industrial and practical engineering areas that include 

heat exchangers, nuclear reactors, geothermal systems, 

metallurgical processes, crystal growth, cooling of electronic 

components and others. 

Among different types of problem configurations, natural 

convection in closed rectangular or square enclosures has 

received a special interest of researchers because of its 

presence in a wide range of applications. One of the 

characteristics of this heat transfer problem is that, different 

shapes of flows may take place within the cavity depending on 

different imposed thermal conditions, which may be presented 

by either Newmann (imposed heat flux) or Dirichlet (imposed 

temperature difference) types at the vertical or horizontal walls. 

Many studies concerning the differentially heated vertical 

walls case have been investigated for both Newtonian [1, 2] 

and non-Newtonian fluids [3-11], where the momentum and 

thermal transports initiate inside the enclosure once a finite 

temperature difference is occurred between the side walls. 

When the lower wall of the enclosure is maintained at a higher 

temperature than the top wall while the sidewalls are adiabatic, 

the classical Rayleigh-Bénard convection is observed within 

the cavity which starts only when a critical Rayleigh number 

is exceeded. The classical Rayleigh-Bénard convection has 

also been studied for both Newtonian [12] and different types 

of non-Newtonian fluids such as viscoelastic [13], power law 

[14-16] and viscoelastic [17-19] fluids. 

Additionally to the classical Rayleigh-Bénard convection 

problem when the entire bottom wall is heated, considerable 

numerical and experimental studies have been performed for 

natural convection of confined Newtonian fluids in enclosures 

with a partially heated bottom wall. The problem is frequently 

encountered in many engineering applications such as cooling 

of electronic equipment and others, where the discrete heat 

source can simulate chips [20]. It is evident that the heating 

element length controls the total heat transferred inside the 

enclosure and this is strongly dependent on the nature of 

thermal conditions of the heat source. In general, the 

configurations with discrete heat source are divided into two 

main categories depending on the type of thermal conditions 

of heat source, heat source producing a constant temperature 

or a uniform heat flux where the temperature is not constant at 

the heated part. For the case where the heating element 

provides a constant temperature, Aydin and Yang [20] have 

numerically investigated natural convection of air confined in 

a square cavity with localized heating from below, which is 
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considered to be isothermally heated at a constant temperature, 

and symmetrical cooling from the vertical walls, while the 

upper one and the rest of the bottom wall are adiabatic. Finite 

difference procedure has been used to solve the governing 

equations. It has been found that an increase in Rayleigh 

number and heat source length enhances the heat transfer 

inside the enclosure. Thereafter, further studies have been 

conducted to analyze different effects such as heat source 

position, aspect ratio, inclination of the enclosure and others 

may be found in [21-29]. For the second category when the 

heat source produces a uniform heat flux, Sharif and 

Mohammad [30] have numerically studied the same 

configuration as [20], where the heat source at the lower wall 

has been replaced with a uniform heat flux source. They have 

also analyzed the effects of inclination and aspect ratio of the 

enclosure. It has been noticed that the heat transfer decreases 

with increasing heat source length, as well as the inclination of 

the cavity has a significant effect only for higher aspect ratios. 

Additional relevant papers, which have also treated natural 

convection with localized uniform heat flux source at the 

bottom wall, considering different thermal conditions and 

supplemental effects for Newtonian fluids may be found in 

[31-34]. 

Cooling heat source problem has also been dealt with non-

Newtonian fluids because many situations require cooling 

efficiency improvement, and thus an amelioration of heat 

transfer is needed, in order to maintain the adequate working 

conditions and not to surpass certain permitted temperatures. 

For the heat source producing a constant temperature, Hassan 

et al. [35] have numerically investigated natural convection 

problem in a square cavity whose vertical walls are maintained 

at a cold temperature and the top wall is adiabatic, while a 

heating element is located at the lower wall. The cavity is filled 

with viscoplastic fluids modeled by Bingham fluids. It has 

been found that the increase in Bingham number causes the 

convection effect and the fluid circulation to decrease inside 

the cavity due to the augmentation of flow resistance. This last 

configuration has also been studied by Yigit et al. [36] by 

using power-law fluids. It has been noticed that the enclosure 

performs better with shear-thinning fluids (n < 1) from the 

perspective of enhancing heat transfer performance. For the 

heat source providing a uniform heat flux, Aminosadati and 

Ghasemi [37] have numerically analyzed natural convection 

for nanofluids confined in a square enclosure with localized 

heat source embedded on the bottom wall, producing a 

uniform heat flux, while the top and vertical walls are 

maintained at a relatively low temperature. They have 

investigated the effects of the type of nanofluid and solid 

volume fraction of nanoparticles. It has been found that adding 

nanoparticles into the base fluid causes the Nusselt number to 

increase and the heat source maximum temperature to 

decrease, which means an improvement in the cooling power 

of the enclosure. Raisi [38] has numerically studied the same 

configuration treated in [37] where the nanofluid has been 

replaced with power-law fluids. The effects of power-law 

index and Rayleigh number have been examined. It has been 

found that the decrease in power-law index and increase in 

Rayleigh number improve the cooling efficiency through the 

increase and decrease in the average Nusselt number and heat 

element maximum temperature, respectively. Recently, 

Hassan et al. [39] have computationally and experimentally 

studied the problem treated in [30] by using Bingham fluids. 

It has been noticed that the convective transport drops 

gradually with the increase in fluid yield stress, as well as the 

convection process is stronger in the case of constant 

temperature lower wall heating compared to the uniform heat 

flux bottom wall heating case. 

Majority of the published studies dealing with natural 

convection cooling of a localized heat source are customarily 

based on the common assumption that the fluid properties are 

constant with respect to the temperature except for the fluid 

density in the buoyancy force term, which obeys the 

Boussinesq approximation. However, for many real fluids, the 

viscosity is effectively dependent upon temperature. Natural 

convection inside horizontally heated enclosures, considering 

thermo-dependent physical parameters, has been studied for 

both Newtonian [40, 41] and non-Newtonian [42-45] fluids. It 

has been noticed that an increase in the thermo-dependency 

parameter leads to an augmentation of the convection current 

and heat transfer inside the cavity. However, only few 

investigations on Buoyancy-driven convection for thermo-

dependent non-Newtonian fluids confined in enclosures 

heated from bellow have been performed. Abu-Nada [46] has 

analyzed Rayleigh-Bénard convection for nanofluids with 

temperature-dependent physical parameters, which are the 

viscosity and thermal conductivity. The problem has been 

numerically studied using a finite volume technique. Kaddiri 

et al. [47] have numerically investigated Rayleigh-Bénard 

convection of power-law fluids with temperature-dependent 

viscosity. The governing equations have been numerically 

solved using a finite difference approach. It has been reported 

that the flow loses its centro-symmetry due to the temperature-

dependent parameter, and the streamline core moves toward 

the region where the effective viscosity is lower. It has also 

been noted that the thermo-dependency parameter tends to 

make precocious the convection because of the drop in the 

value of critical Rayleigh number with increasing Pearson 

number. 

From the above mentioned literature survey, it has been 

noticed that, there is no study on natural convection cooling of 

a localized heat source placed on the lower wall of an 

enclosure containing thermo-dependent non-Newtonian 

power-law fluids. Since the viscosity of thermo-dependent 

fluids decreases with increasing thermo-dependency 

parameter, the enclosure is expected to perform better with 

these fluids from the perspective of heat transfer efficiency 

enhancement. Consequently, this lack has been treated in the 

present study by numerical simulations for natural convection 

of power-law fluids with thermo-dependent viscosity in a 

square enclosure with a partial localized heating, which is 

achieved by a heat source producing a uniform heat flux and 

placed at the center of the bottom wall, and symmetrical 

cooling from the sidewalls. Thus, the main purpose of the 

present work is to examine the effects of several pertinent 

parameters such as power-law index, Rayleigh number, 

Pearson number and heat source length on the fluid flow and 

the resulting heat transfer. 

 

 

2. PROBLEM DESCRIPTION 

 

The physical model under consideration is depicted in 

Figure 1. It consists of a two-dimensional square cavity of size 

L x L, whose vertical walls are maintained at a cold 

temperature 𝑇𝑐
′ . A heat source of variable length l producing a 

constant heat flux is located in the center of the bottom wall, 

while the remaining parts of the lower wall and the top wall 

are adiabatic, without slipping conditions at all the solid 
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boundaries. The cavity contains non-Newtonian fluid, whose 

rheological behavior can be expressed by the power-law 

model, proposed by Ostwald-de Waele, which, in terms of 

viscous stress tensor, can be presented as:  

 

 
 

Figure 1. Sketch of the cavity and boundary conditions 
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Here Dij stands for the rate of strain tensor for the two-

dimensional Cartesian coordinate and 𝜇𝑎′ is the apparent 

viscosity, which is defined as: 
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where the two empirical parameters, n and KT, denote the flow 

behavior and consistency indices, respectively. In general, 

they are functions of the temperature, but often the 

temperature dependence of n is very weak compared to that of 

KT [47], which can be expressed by the following exponential 

law [48]: 

 

( )exp
T rK k b(T T ) = − −  (3) 

 

where, b is the thermo-dependency parameter and k is the 

consistency index at the reference temperature 𝑇𝑟
′ . Moreover, 

for n < 1 the apparent viscosity decreases with increasing the 

shear rate and thus the behavior is shear-thinning. Inversely, 

for n > 1 the apparent viscosity increases with increasing the 

shear rate and the fluid is referred to as shear-thickening. For 

n = 1 a Newtonian fluid is obtained and the consistency is just 

the viscosity. 

 

 

3. GOVERNING EQUATIONS 

 

It is considered that the cavity is filled with thermo-

dependent power law fluids, the flow is assumed to be laminar 

and steady, the fluid density obeys the Boussinesq 

approximation, and the viscous dissipation effects are 

negligible.  

Under the aforementioned assumptions, and by using the 

following characteristic scales, in which 𝑈′, 𝑉 ′ are the velocity 

components in x,y-direction, 𝑇 ′  represents the dimensional 

temperature, and  is the thermal diffusivity: 

 

and
T Tx y U L V L qcX ,Y ,U ,V ,T ΔT*

L L α α ΔT * λL
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= = = = = =  

 

The dimensionless governing equations written in terms of 

velocity vector components, (U, V), pressure, P, and 

temperature, T, in Cartesian coordinate system (X, Y), are: 
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The corresponding boundary conditions are:  
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The dimensionless parameters appearing now in the present 

problem are:  

 

( )
( )

2 2
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( )heater dimensionless length
l

W
L

=  (17) 

 

The steady solution has been used to measure the heat 

transfer rate of the cavity by calculating the local Nusselt 

number on the heat source element defined as follow:  

 

( )
S c

hL q''L
Nu

k T (x) T k
= =
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 (18) 

 

where, h is the convection heat transfer coefficient. By using 

the dimensionless parameters, the Eq. (18) becomes:  

 

1
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Here, Ts(X) is the dimensionless temperature of heating 

element. The average Nusselt is obtained by integrating Eq. 

(19) along the heat source. 
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4. NUMERICAL METHOD 

 

All of the governing differential Eqns. (4)-(7) can be written 

in the following form of the general transport Eq. [49]: 

 

Φ

Φ Φ
UΦ Γ VΦ Γ S

X X Y Y

      
− + − =   
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 (21) 

 

where, Φ is the working variable which represents U, V or T, 

𝛤 is 𝑃𝑟 𝜇𝑎 for the momentum equations and 1 for the energy 

equation, and SΦ is the source term which includes all the terms 

that cannot be accommodated in the convective and diffusion 

terms. 

The Eq. (21) has to be converted into a linear algebraic 

equation in order to obtain a numerical solution. Consequently, 

a finite volume approach is considered for the spatial 

discretization [50]. The finite volume method can be 

advantageous in terms of computer space and time 

requirements as well as in terms of numerical stability. For this 

method, the computational field is divided into a set of control 

volumes ΔV = ΔX x ΔY around nodes P (Figure 2), where ΔX 

and ΔY are the length-step of both X and Y directions.  

By integrating Eq. (21) over a control volume and using the 

divergence theorem [50], the final form of the discretized 

equations relating the variable Φp to its neighboring grid point 

values can be written in each control volume as: 

 

P P W W E E S S N N φA Φ A Φ A Φ A Φ A Φ S= + + + +  (22) 

 

 

 

Table 1. Average Nusselt number at the heat source and maximum stream function inside the enclosure for different meshes 

 

Number of 

grids Nu  
x 150x150

1

150x150

x100
i j

Nu Nu
Δ %

Nu

−
=  Ψmax 

) )

)
x 150x150

2

150x150

max max

max

x100
i j

Ψ Ψ
Δ %

Ψ

−
=  

150 x 150 26.6764 --- 37.6630 --- 

200 x 200 26.6298 0.17 37.6873 0.06 

250 x 250 26.6058 0.26 37.6878 0.06 

300 x 300 26.5905 0.32 37.6754 0.03 

 

Table 2. Comparison of our simulation results with previous studies for different values of Gr and W 

 

  
Grashof number 

103 104 105 106 

W=0.2 

𝑵𝒖 

Present study 5.9936  6.0037 7.2051 11.4249 

Sharif et al. [30] 5.9266 5.9463 7.1241 11.3415 

Error (%) 1.1 0.9 1.1 0.7 

Tmax 

Present study 0.1818 0.1819 0.1564 0.1086 

Sharif et al. [30] 0.1819 0.1818 0.1568 0.1092 

Error (%) 0.05 0.05 0.2 0.5 

W=0.8 

𝑵𝒖 

Present study 3.5934 3.7276 5.9055 9.2785 

Sharif et al. [30] 3.5562 3.6919 5.8644 9.2880 

Error (%) 1 0.9 0.7 0.1 

Tmax 

Present study 0.3612 0.3653 0.2628 0.1775 

Sharif et al. [30] 0.3637 0.3674 0.2651 0.1792 

Error (%) 0.6 0.5 0.8 0.9 
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Figure 2. Control volume 

 

4.1 Solution method 
 

The obtained discretized equations for every control volume 

in the computational field consist of a set of linear algebraic 

equations, which then can be solved iteratively by means of 

the line by line technique based on the tridiagonal matrix 

algorithm (TDMA) [50, 51]. 

Since the pressure is an unknown in the momentum 

equations, a derivation of pressure equation is evidently 

required to solve the discretized equations for obtaining the 

temperature and kinematic fields. Consequently, Semi-

Implicite method for pressure linked equation (SIMPLE) 

algorithm [49], which allows the transformation of the 

continuity equation to the pressure equation, is used. In order 

to avoid physically unrealistic solutions, such as the 

checkerboard pressure and velocity distribution, the staggered 

grid system is imposed. 

The solution process is reiterated until attaining the 

convergence criterion: 

 

Max(
𝛷𝑛+1−𝛷𝑛

𝛷𝑛+1 )≤10-7 (23) 

 

where, Φ = (U, V, T). 

 

4.2 Mesh independency 

 

To obtain a mesh independent solution, a mesh sensitivity 

study is conducted for the natural convection in the enclosure 

shown in Figure 1. Table 1 exhibits the effects of grid points 

number on Nu  and Tmax at the heated surface for four 

different mesh combinations at the following control 

parameters: Ra = 106, n = 0.6, m = 20 and W = 0.4. A uniform 

grid of 150 x 150 is found to present sufficient precision and 

reasonable computational time.  

 

4.3 Validation of the numerical code 

 

To validate the elaborated numerical code, our results, 

expressed in terms of 𝑁𝑢 (average Nusselt number) and Tmax 

(heat source maximum temperature), are compared with 

previous researches for both Newtonian and power-law fluids. 

Published studies for similar configuration and boundary 

conditions undertaken in the present work are only available 

for Newtonian fluids. Thus, direct validation of the present 

simulation against the results of Sharif et al. [30] was 

performed for Newtonian fluid at various Grashof numbers, 

defined as Gr = Ra / Pr, and two different lengths of the heat 

source. For non-Newtonian fluids, the present numerical code 

was also validated against the investigation of Raisi [38], 

where the top and vertical walls are maintained at a relatively 

low temperature, at W = 0.4 and different values of n and Ra. 

Hence, as can be seen from Table 2 and Figure 3 a good 

agreement is generally obtained. 

 

 
 

Figure 3. Comparison of our simulation results with those of 

Raisi [38] at Pr = 100 and different values of Ra and n 

 

 

5. RESULTS AND DISCUSSION 

 

Numerical simulations have been conducted for the control 

parameters defined earlier, namely, The Rayleigh number, Ra, 

the power-law index, n, the Pearson number, m, and the heat 

source length, W, that vary in the following ranges:  

103 ≤ Ra ≤ 106, 0.6 ≤ n ≤ 1.4, 0 ≤ m ≤ 20 and 0.2 ≤ W ≤ 0.8, 

respectively. The effect of the Prandtl number is still ignored 

since the Pr number for the non-Newtonian fluids considered 

in the present work is sufficiently large, and a rise of this 

parameter in such condition makes the influence of the inertia 

terms negligible and the heat transfer and fluid flow 

unchanged, as has been demonstrated by Lamsaadi et al. [14], 

Yigit et al. [36] and many others. Thus, the Pr number was 

kept constant and equal 100 for the rest of this study. 
 

5.1 Effects of power-law index, Rayleigh and Pearson 

numbers 
 

In this section of the study, the effects of the power law 

index, n, the Rayleigh number, Ra, and the Pearson number, 

m, are examined on the fluid flow and the resulting heat 

transfer. However, the heat source length was kept at a 

constant value W = 0.4. 

Figures 4 and 5 present the streamlines and isotherms 

respectively for multifarious power law indexes, Rayleigh and 

Pearson numbers. Since the heat source is placed in the middle 

of the lower wall, two symmetrical counter-rotating cells are 

created inside the enclosure regardless of the considered 

control parameters. It is clear from Figure 4 that the increase 

in Rayleigh number causes the magnitude of Ψ to decrease 

because of the strengthening of buoyancy forces in 

comparison to viscous forces. Moreover, Figure 4 also 

illustrates that the decrease in n gives rise to the weakening of 

viscous flow resistance in comparison to convective transport, 

which is reflected in the increase in the circulating cells 

intensity for smaller power law indexes. Therefore, the 

greatest flow intensity occurs at the lowest and highest values 

of n and Ra, respectively. However, a poor convection is 

formed inside the enclosure at Ra = 103. As a consequence, 

0
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the flow does not undergo significant qualitative and 

quantitative changes when n is varied in its range due to the 

fact that the buoyancy forces are not yet sufficient to promote 

the flow intensity indicating that the pseudo-conductive 

regime is still dominant. Nevertheless, the effect of n is well 

visible with increasing Ra. Furthermore, Figure 4 also exhibits 

the explicit impact of the temperature-dependent viscosity on 

the flow structure. Figure 4 shows that the strength of the 

rotating cells increases with the enhancement of Pearson 

number due to the weakening of apparent viscosity as m 

increases. In addition, the convective cells cores move closer 

to the middle of the heat source -in which the temperature 

takes its maximum value inside the enclosure (see Sharif et al. 

[30])- as a consequence of the apparent viscosity decrease in 

this region. At the same time, the effect of Pearson number 

becomes less pronounced for high and low values of Ra and n, 

respectively, indicating that the influence of m is strongly 

dependent on transport regime. 
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Ra = 106 

ІΨІmax(m = 0) = 36.3806 

ІΨІmax(m = 20) = 37.6613 
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Figure 4. Streamlines for different values of Rayleigh number, power law index, m = 0 (━━) and m = 20 (- - -) 

 

According to Figure 5, the isotherms also have symmetrical 

forms for all cases. At Ra = 103, a weak convection is created 

inside the enclosure as indicated by parabolic isotherms. By 

increasing Rayleigh number and decreasing n, the thermal and 

dynamic forces are enhanced, which clearly modifies the 

shape of isotherms and gives rise to the creation of a thermal 

plume. Consequently, the heat transfer within the enclosure is 

improved, thereby decreasing the temperature of the heat 

source and inside the cavity. Besides, it is clear that the 

increase in m alters the form of the isotherms as they traverse 

more distance, and an augmentation of m leads to a distortion 

of isotherms toward the strong convection region where the 

apparent viscosity is smaller. Moreover, as the m parameter is 

increased, the maximum temperature inside the enclosure is 

decreased. Therefore, this indicates the enhancement of heat 

transfer by the Pearson number augmentation. 

Figure 6 shows the dimensionless vertical velocity along the 

enclosure’s mid-section at Ra = 105. It is observed 

symmetrical velocity profiles indicating the direction of the 

flow inside the cavity. The flow rises in the middle and 

descends downwards near the sidewalls. It is also clear that an 

increase in m and a decrease in n result in the enhancement of 

the vertical velocity intensity as a result of the decrease in the 

apparent viscosity. Moreover, for the highest value of n and  

m = 0, the velocity tends to be feeble due to the high apparent 

viscosity. 
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Figure 5. Isotherms for different values of Rayleigh number, power law index, m = 0 (━━) and m = 20 (- - -) 

 

 
 

Figure 6. Vertical velocity profiles along the mid-length of 

the cavity for various values of power-law index, Pearson 

number and Ra = 105 

The temperature of the heating element with a constant heat 

flux, such as electronic components, is not uniform along this 

element and contains a maximum value. This maximum 

temperature of electronic components is a critical factor since 

it may be detrimental to their life and performance. It is 

therefore useful to investigate the heat source maximum 

temperature closely. Figure 7(a) displays the maximum 

temperature inside the enclosure, for different power-law 

indexes, Rayleigh and Pearson numbers. Since a poor 

convection is formed inside the enclosure at Ra = 103, the 

Pearson number and the power-law index have only a 

negligible effect on the heat source maximum temperature. 

However, at higher Rayleigh numbers, a decreased n and 

increased m lead to the strengthening of convection process 

inside the enclosure, and thus, the fluid takes more heat away 

from the heating element which results in decreasing the heat 

source maximum temperature. These statements are also 

supported by Figure 7(b) which shows that the average Nusselt 

number is not affected by the variations of power-law index 
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and Pearson number when conduction is the dominant mode 

of heat transfer (Ra=103), whereas, at higher Rayleigh 

numbers, 𝑁𝑢  increases with increasing m and decreasing n 

due to the weakening of the fluid apparent viscosity, and thus, 

the effects of natural convection become stronger. According 

to Figures 7(a) and (b), the effect of thermo-dependency 

parameter on the heat source maximum temperature and the 

average Nusselt number become less pronounced at the 

highest and smallest values of Ra and n, respectively, which is 

quite obvious since strong convection inhibits such an effect. 

 

 

Figure 7. Variations of heat source maximum temperature Tmax (a) and average Nusselt number 𝑁𝑢 (b) for different values of 

Rayleigh number, power-law index and Pearson number 
 

 (a) (b) 

W=0.2 

ІΨІmax(m = 0) = 0.7762 
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Tmax(m = 0) = 0.1775 
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W=0.4 

ІΨІmax(m = 0) = 1.2228 

ІΨІmax(m = 20) = 2.3990 

  

Tmax(m = 0) = 0.2585 
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Figure 8. Streamlines (a) and Isotherms (b) for various heat source lengths, m = 0 (━━) and m = 20 (- - -) (Ra = 105 and n = 1.4) 
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5.2 Effects of heat source length 

 

In this section, the effects of the lengths of heat source 

placed in the center of the lower wall, on the fluid flow and the 

cooling efficiency inside the enclosure are evaluated for 

different values of the fluid parameters, where Ra was kept at 

a constant value Ra = 105. 

 

 
 

Figure 9. Variations of heat source temperature for different 

values of heat source length. (m = 0, n = 1.4 and Ra = 105) 

 

Figure 8 presents the effects of heat source lengths on the 

streamlines (a) and corresponding isotherms (b) at Ra = 105,  

n = 1.4 and various Pearson numbers. It can be seen from 

Figure 8 that an increase in the heat source length leads to an 

intensification of the rotating cells intensity because of the rise 

of the heat generation as the length of heat source increases. 

Moreover, at W = 0.2 and m = 0, parabolic isotherms are 

formed within the cavity indicating that the heat transfer 

principally takes place by conduction. The isotherms start to 

be more curved with increasing W as a result of the 

strengthening of convective transport in spite of the increase 

in the maximum temperature inside the enclosure. 

Furthermore, a visual examination of isotherms shows that the 

effect of Pearson number is phenomenally more visible for 

higher lengths, and also, at W = 0.8, a growth of m from 0 up 

to 20 leads to an augmentation of ІΨІmax and diminution of Tmax 

at 138% and 38%, respectively, this variation is more 

important compared to the case when W = 0.2, where a raise 

of m from 0 to 20 results in the rise of ІΨІmax at 63% while Tmax 

reduces at 6.2%.  

It is useful to inspect the non-dimensional temperature of 

the heat source in order to have a better understanding of the 

influence of heat source lengths on the heat transfer rate. The 

distribution of dimensionless temperature T along the heating 

element at n = 1.4 and m = 0 is shown in Figure 9 for various 

values of W ranging from 0.2 to 0.8. It is apparent from Figure 

9 that the heat source temperature increases with the rise of the 

length of heating element due to higher total heat transferred 

as the heat source length increases. This trend confirms that 

the rise of heat source length reduces the cavity cooling 

performance despite the enhanced convective transport 

(Figure 8). 

Figure 10 exhibits the effects of heat source lengths, power 

law index and Pearson number on the heat source maximum 

temperature and average Nusselt number. It is evident that the 

decrease in n leads to an enhancement of heat transfer inside 

the enclosure which is reflected in the reduction of the 

maximum temperature of the heat source and augmentation of 

the average Nusselt number. Figure 10 also shows that the 

maximum temperature increases with increasing heat source 

length, which is evident since the heat source temperature is 

upgraded as the heat source length increases (Figure 9) due to 

the greater heat generation rates. Consequently, the average 

Nusselt number decreases slightly with the increase in the 

length of the heat source in spite of the enhanced convection. 

Moreover, the increase in m enhances the cooling power of the 

fluid, which is indicated by the decrease in the maximum 

temperature inside the enclosure as a result of the decrease in 

the viscous forces. Furthermore, the effect of m is more 

pronounced for higher heat source lengths, which is evident 

since the thermo-dependency impact manifests itself when the 

temperatures inside the enclosure are more important and the 

conduction regime is surpassed. 

 

 

 
 

Figure 10. Variations of heat source maximum temperature 

Tmax (a) and average Nusselt number 𝑁𝑢 (b) for different 

values of heat source length, power-law index and Pearson 

number. (Ra = 105) 

 

 

6. CONCLUSION 

 

In the current investigation, a numerical study has been 

performed to investigate the steady state, natural convection 

for temperature-dependent power-law fluids in a square 

enclosure partially heated from the lower wall and 
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different control parameters, which are Rayleigh number, 

Power-law index, Pearson number and heated source length, 

on heat transfer performance and fluid flow inside the cavity 

have been analyzed. It has been noticed that the average 

Nusselt number increases and the heat source maximum 

temperature decreases with increasing Rayleigh number due 

to the strengthening of convective transport. Decreasing the 

power-law index and increasing the Pearson number reduces 

the apparent viscosity of the fluid, which leads to the 

enhancement of convection transport due to weakening of 

resistance to the fluid motion offered by the fluid viscosity. 

Moreover, the effects of m and n are more pronounced when 

the conduction-regime is exceeded and a strong convection 

inhibits the effect of m. Furthermore, increasing the heat 

source length enhances the convective transport inside the 

enclosure, but simultaneously increases the maximum 

temperature of the heat source. The present results have also 

demonstrated that the usage of Newtonian or non-Newtonian 

fluids with high Pearson number can be an efficient option to 

enhance the cooling performance for the configuration 

considered in the present work. 
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NOMENCLATURE 

b thermo-dependency coefficient, Eq. (3) 

g gravitational acceleration (m/s2) 

k consistency index for a power-law fluid, Eq. (3) 

l heat source length (m)

L height or width of the enclosure (m) 

m Pearson number, Eq. (16) 

n power law index, Eq. (2) 

Nu local Nusselt number, Eq. (18) and (19) 

𝑁𝑢̅̅ ̅̅ mean Nusselt number, Eq. (20) 

P dimensionless pressure 

Pr generalized Prandtl number, Eq. (14) 

q'' constant heat flux (W.m-2) 

Ra generalized Rayleigh number, Eq. (15) 

T dimensionless temperature 

T' dimensional temperature (K) 

W dimensionless heat source length, Eq. (17) 

(U,V) dimensionless horizontal and vertical velocities 

(U',V') horizontal and vertical velocities (m/s) 

(X,Y)  dimensionless horizontal and vertical 

coordinates 

(X',Y') horizontal and vertical coordinates (m) 

Greek symbols 

 thermal diffusivity (m2/s) 

 thermal expansion coefficient (K-1) 

𝜇′𝑎 apparent viscosity of fluid, Eq. (2) (kg/(m.s)) 

𝜇𝑎 dimensionless apparent viscosity of fluid, Eq. (8) 

λ thermal conductivity (W/(m.K)) 

 density of fluid (kg/m3) 

Ψ dimensionless stream function 

𝛤 diffusion coefficient, Eq. (21) 

 working variable, Eq. (21) 

Subscripts 

a apparent variable 

max maximum value 

Superscripts 

' dimensional variables 
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