
Impact of Activation Energy in Darcy-Forchheimer Flow of Cross Nanofluid over a Radial 

Stretching Surface with Viscous Dissipation and Joule Heating 

Cherlacola Srinivas Reddy1, Besthapu Prabhakar2* 

1 Department of Mathematics, ABV Government College, Janagaon 506167, Telangana, India 
2 Department of Mathematics, Kakatiya Government College, Hanamkonda 506001, Telangana, India 

Corresponding Author Email: prabhakarbesthapu@gmail.com

https://doi.org/10.18280/ijht.390518 ABSTRACT 

Received: 1 June 2020 

Accepted: 17 September 2021 

This framework analyzes the impact of activation energy (AE) and binary chemical 

reaction (BCR) in Darcy-Forchheimer flow of cross fluid with nanoparticles due to radially 

stretched surface. Moreover slip, joule heating and viscous dissipation aspects have been 

considered. Ordinary differential equations acquired from the modelled governing partial 

differential equations with the assistance of suitable transformations. Further the system of 

nonlinear equations is computed numerically by Runge-Kutta-Fehlberg method cum 

shooting technique. Graphical representation has been given to analyze the velocity, 

temperature and concentration fields with the effect of various pertinent parameters. It is 

evident that inertia coefficient declines the velocity. Velocity decays for larger 

Weissenberg number while opposite trend observed in temperature field. Temperature field 

rises for augmented values of Eckert number. Concentration increases with increase of 

energy parameter. 
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1. INTRODUCTION

The study of non-Newtonian liquids flow and their features 

grab the attention of many researchers and scientists due to 

their significant applications in industrial products and 

procedures. Non-Newtonian liquids possess the non-linear 

relation between stress and strain. Depends on high viscosity 

few commonly used non-Newtonian fluids are toothpaste, 

lubricants, ketchup, silly putty, syrup, honey, paint, plastic, 

etc. Investigation of non-Newtonian flow field and its 

characteristics is quite difficult as compared to Newtonian 

liquids. To describe the features of non-Newtonian fluid flow 

by the well known Navier-Stokes equations are inadequate. 

Therefore, various fluid models have been suggested to 

demonstrate the features of non-Newtonian fluids. Cross [1] 

proposed Cross fluid model which is a major subclass of 

generalized Newtonian fluids and it predicts the shear thinning 

effects for both high and low shear rates. This fluid model has 

remarkable applications in engineering calculations due to the 

existence of the time constant. The empirical study of the cross 

fluid model was presented by Escudier et al. [2] by considering 

Cross equation with the non-Newtonian liquids carboxy 

methyl cellulose (CMC), xanthan gum (XG) and illustrated the 

fluid flow data. Xie and Jin [3] analyzed the free surface flow 

of the non-Newtonian fluid by WC-MPS method to find the 

four rheology parameters of Cross fluid model. Khan et al. [4] 

considered Cross fluid flow and heat transfer over a linear 

stretching surface and employed a numerical technique to 

solve boundary layer equations of the problem. From this 

study it is noticed that velocity profile is decreased with 

enlarging the Weissenberg number whereas inverse trend 

identified for the temperature field. Fluid flows through porous 

media have numerous applications corresponding to chemical 

engineering and geophysical systems. Such applications may 

include movement of water in reservoirs fermentation process, 

crude oil production, grain storage, ground water systems, 

ground water pollution and recovery systems etc. The Darcy’s 

law is reasonable under circumstances of low velocity and 

little porosity but it is inadequate whenever inertial and 

boundary features occur at higher velocity. Under such 

conditions it is impossible to neglect the inertia and boundary 

impacts. The non-Darcian porous medium is the revised form 

of Darcy law which includes the inertia and boundary effects. 

For higher velocity flow, the Forchheimer [5] formula is used 

in which squared velocity term has been added in the equation 

to predict the behavior of inertia and boundary effects. Muskat 

[6] termed this as “Forchheimer factor” which always

reasonable for large Reynolds number. Darcy-Forchheimer

flow of non-newtonian fluid was analyzed by Seddeek [7]. Pal

and Mondal [8] studied influence of the Lorentz forces in a

non-Darcy flow by considering variable viscosity. Shehzad et

al. [9] considered Cattaneo-Christov heat flux model and

homogeneous-heterogeneous reactions in Darcy-Forchheimer

flow of Oldroyd-B fluid. Their analysis reveals that

temperature is diminishing for Cattaneo-Christov heat flux

model when compared to classical Fourier's law of heat

conduction. Hayat et al. [10] examined Cattaneo-Christov

model in flow of Maxwell fluid through a non-Darcy porous

medium with temperature-dependent thermal conductivity.

Fluids cooling and heating is the major issue in many

industrial fields such as power manufacturing and

transportation. Efficient cooling techniques are required to

cool any kind of high energy equipment. The working fluids

which are utilized in the industries have poor thermal

conductivity due to this they cannot meet modern cooling

challenges. Therefore, to improve the heat transfer capabilities

of common heat transfer fluids Choi and Eastman [11]

proposed the idea of nanofluids which is mixture of tiny
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metallic particles in the base fluids. Nanoliquids boost the 

thermal performance of the base fluids. Masuda et al. [12] 

noticed that thermal conductivity improvement by mixing the 

nanoparticles in the fluid. Buongiorno [13] established seven 

slip mechanisms in which he identified that Brownian 

diffusion and thermophoresis are two major influential factors 

which enhances thermal conductivity of the fluids. First time 

Khan and Pop [14] studied nanofluid flow over a stretched 

surface and obtained numerical solutions through Keller-box 

method. Makinde and Aziz [15] used convective boundary 

condition instead of constant heat flux and examined the 

boundary layer flow of nanofluid induced by a stretching 

sheet. A revised model is proposed by Kuznetsov and Nield 

[16] in which nanoparticles at the surface are passively 

controlled. Analysis of various thermo physical aspects of few 

non-Newtonian nanofluids given in the studies [17-20]. The 

consideration of mass transport with activation energy is 

attracted the investigators due to its vast usage in prominent 

areas like geothermal engineering, chemical engineering, oil 

emulsions and food processing. Activation energy is suggested 

by Arrhenius in 1889. It is the minimum required energy to be 

acquired by particles to experience a chemical reaction and 

this can be existing in the form of kinetic energy or potential 

energy and without the activation energy, reactants cannot 

produce products. Once the reaction starts activation energy of 

the system becomes zero. Generally, activation energy (AE) is 

denoted by 𝐸𝑎  and writen in Kj/mol or Kcal/mol. The 

applications of AE are very wide in geothermal engineering, 

chemical engineering, oil emulsions and food processing. 

Firstly Bestman [21] analyzed convective flow of binary 

amalgam in porous medium. AE and nth order chemical 

reaction effects on time dependent radiated flat porous plate is 

investigated by Makinde et al. [22]. Alsaadi et al. [23] studied 

nonlinear mixed convective flow of non-Newtonian 

nanoliquid over a porous stretching sheet under the impact of 

nonlinear radiation and activation energy and also, they 

discussed entropy generation rate. In this study they concluded 

that concentration increased with the effect of activation 

energy parameter. Unsteady flow of Carreau nanofluid is 

established by Irfan et al. [24] to acquire the effects of binary 

chemical reaction and activation energy. They reported the 

variations in both shear thinning and shear thickening fluids 

with the impact of reaction rate parameter and it shows the 

declined the concentration whereas it heightened for mounting 

values of activation energy parameter. Few recent 

investigations explore the characteristics of activation energy 

for various fluids [25-29]. In many practical applications the 

stretching sheet may not be linear, exponential because it can 

be stretched radially also in this context axisymmetric flow of 

fluids towards a radially stretched surface has got special 

interest due to its industrial applications like polymer 

extrusion, glass blowing etc. Ariel [30] examined second 

grade fluid due to radially stretching surface and further he 

obtained numerical and analytical solutions. Later slip flow of 

a fluid over a radially stretching sheet was studied by Ariel 

[31]. Investigations revealed that flow and heat transfer 

analysis of liquids [32-36] towards a radially stretching 

surface under various thermo-physical aspects. Khan et al. 

[37] reported Cross fluid past a radially stretching disk and 

they observed that velocity field exhibited the decreasing 

nature with the effect the local Weissenberg number. Most of 

the erstwhile studies reveal that flow geometries are confined 

to linear, nonlinear, exponential. Therefore, prime intention of 

this current study is to examine the aspects of activation 

energy and chemical reaction on MHD flow of cross 

nanoliquid over a radially stretching surface under 

simultaneous effects of viscous dissipation with joule heating, 

slip, convective condition and radiation. In addition to this 

zero normal flux condition is imposed at the sheet to spread 

the particles away from the sheet. Further detailed graphical 

analysis has been deliberated. 

 

 

2. FORMULATION 

 

Consider a steady Darcy Forchheimer flow of Cross 

nanoliquid past a radially stretching surface placed at 𝑧 = 0 

and fluid resides in the region 𝑧 ≥ 0 with velocity 𝑢 = 𝑈𝑤 =
𝑎𝑟 , where a is positive number (see Figure 1). A uniform 

magnetic field B0 imposed normal to the disk. The heat 

transport mechanism is presented in presence of convective 

heating with temperature 𝑇𝑓  which gives a heat transfer 

coefficient hf. Here T is the temperature of the fluid, 𝑇∞is the 

temperature far away from the disk. Furthermore, effects of 

viscous dissipation, joule heating and radiation are assumed in 

heat transfer. Impacts of AE and BCR are taken into 

consideration in mass transfer. 
 

 
 

Figure 1. Geometry of the problem 
 

By employing aforementioned aspects, the fundamental 

equations of mass, momentum, energy as well as 

concentration for Darcy Forchheimer flow of Cross nanoliquid 

with AE and BCR are modeled as: 
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With allied boundary conditions,  

 
𝑢 = 𝑢𝑤(𝑟) + 𝑢𝑠𝑙𝑖𝑝  ,

 𝑤 = 0,−𝑘
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 (5) 

 

Here velocity slip is 𝑈𝑠𝑙𝑖𝑝 = 𝑙
𝜕𝑢

𝜕𝑧

1+(Γ
𝜕𝑢

𝜕𝑧
)
𝑛 . 

Here (u, w) signifies the velocity in radial-𝑟  and axial-z 

directions respectively, 𝐹 =
𝐶𝑏

𝑟√𝐾
, α is thermal diffusivity σ is 

electrical conductivity, v is the kinematic viscosity, ρ is the 

density of the base fluid, DB is the Brownian diffusion 

coefficient an DT is the thermophoresis diffusion 

coefficient, 𝜏 =
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
 is the ratio of nanoparticle heat capacity 

to the base fluid heat capacity. Using Rosseland approximation 

for radiation can write 𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑧
 with σ* is Stefan-

Boltzmann parameter and k* is denoted for mean absorption 

coefficient. Expansion of Taylor’s series about the origin 𝑇∞ 

and by ignoring the highest order expressions we get 𝑞𝑟 =
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 using this Eq. (3) takes the following form. 
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Introducing the similarity variables,  
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𝑎
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 (7) 

 

By using Eq. (7), equation of continuity is trivially satisfied 

while Eqns. (2-4) and (6) are transformed into ODE form. 

 
[1 + (1 − 𝑛)(𝑊𝑒 𝑓′′)𝑛]𝑓′′′

+ [2𝑓𝑓′′ − (1 + 𝐹𝑟)𝑓′
2
− (𝑀

+ 𝐷𝑎)𝑓′]{1 + (𝑊𝑒 𝑓′′)𝑛}2 = 0 

(8) 
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2
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)𝜙
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(10) 

 

Corresponding transformed boundary conditions are: 

 

𝑓 = 0, 𝑓′ = 1 + 𝛿𝑓′′(0) {
1

1 + (𝑊𝑒  𝑓′′(0))
𝑛},   

𝜃′ = −𝛾[1 − 𝜃(0)], 𝑁𝑏𝜙′ + 𝑁𝑡𝜃′ = 0 at 𝜂 = 0, 

𝑓′ → 0,𝜃 → 0, 𝜙 → 0 as 𝜂 → ∞  

(11) 

 

The physical parameters appeared in above equations are 

Weissenberg number 𝑊𝑒 = Γ𝑎𝑅𝑒𝑟
1/2

, inertia coefficient 𝐹𝑟 =
𝐶𝑏

√𝐾
, porosity parameter 𝐷𝑎 =

𝜐

𝐾𝑎
, magnetic parameter 𝑀 =

𝜎𝐵0
2

𝜌𝑎
, 
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16𝜎∗𝑇∞

3
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, 
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2
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Skin friction coefficient 𝐶𝑓𝑟 and the local Nusselt number 

𝑁𝑢𝑟 are: 
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𝑢𝑤(𝑟)𝑟

𝜐
. 

 

 

3. METHODOLOGY 

 

Nonlinear system (8-10) subject to (11) is computed 

numerically by Runge-Kutta-Fehlberg method cum shooting 

technique. To verify the present numerical outcomes, we have 

compared our numerical results of – 𝜃′(0) with Butt and Ali 

[38] in Table 1. 

 

Table 1. Comparison results of – 𝜃′(0) for Newtonian case 

𝑊𝑒 = 0 and 𝐹𝑟 = 0, 𝐷𝑎 = 0 and 𝑃𝑟 = 1 

 
𝑀 𝛾 𝐸𝑐 Butt and Ali [38] Present results 

0 0.5 0.5 0.21914 0.21913627 

0.5   0.16621 0.16620886 

1.0   0.11776 0.11776369 

2.0   0.02992 0.02992232 

1.0 0.1  0.03425 0.03424722 

 0.2  0.06151 0.06151184 

 0.5  0.11776 0.11776369 

 1.0  0.16940 0.16940257 

 

 

4. RESULTS AND DISCUSSION 

 

This segment is presented to analyze the physical 
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implication of various fluid parameters M, Weissenberg 

number (We), porosity parameter (Da), inertia coefficient (Fr), 

Prandtl number (Pr), Eckert number (Ec), thermophoresis 

parameter (Nt), Brownian motion parameter (Nb), Schmidt 

number (Sc), chemical reaction parameter (β), energy (E), Biot 

number (γ), slip parameter (δ) on velocity 𝑓′(𝜂), temperature 

θ(η) and concentration fields ϕ(η). Table 1 is prepared to 

compare the present results with the existing literature. Figure 

2 captured to examine the impact of M on 𝑓′(𝜂)  and it 

elucidate that larger estimation of M decays the velocity field. 

Physically mounted values of M mean Lorentz force generates 

more resistance to the fluid therefore fluid velocity depreciates 

and reduces momentum boundary layer thickness. Effect of M 

on θ(η) is visualized through Figure 3. It is clear from the 

figure that θ(η) is enhanced with the stronger magnetic field. 

As the Lorentz force is resistive force which restricts the fluid 

motion. Therefore, more heat is produced and thus 

temperature raised in the working fluid. From the Figure 4 it 

is clear that ϕ(η) raises with the enlargement of M. Figure 5 

demonstrates the characteristics of Weissenberg number We 

on velocity 𝑓′(𝜂) . It is seen from the figure velocity 

deteriorates by uplifting the values of We for shear thinning 

fluid. Further it is noticeable from the Figure 6 and Figure 7 

that cross nanoliquid temperature and concentration enhances 

for greater We. Physically, enlarging the values of the We 

causes enhancement in the relaxation time which results 

dwindle the velocity and rise in temperature. Figures 8-10 are 

plotted to examine the influence of 𝛿 on 𝑓′(𝜂), θ(η) and ϕ(η). 

Velocity profile exhibits decreasing trend for greater values of 

slip parameter while opposite tendency is noticed for θ(η) and 

ϕ(η). Figures 11-13 illustrates the influence of porosity 

parameter on 𝑓′(𝜂), θ(η) and ϕ(η). It has been observed that 

greater porosity parameter leads to lower velocity, higher 

temperature and concentration for the fluid. 

Physically the existence of porous space enhances the 

resistance to liquid flow which results in increase in 

temperature and concentration. Figure 14 exhibits the behavior 

of velocity profile 𝑓′(𝜂) due to inertia coefficient Fr. It is 

evident that velocity declined for upsurging Fr and 

corresponding momentum layer gets thicker. Variation of 

velocity temperature and concentration field through power-

law index 𝑛 is examined in Figures 15-17. Figure 15 reveals 

that 𝑓′(𝜂)  and momentum layer exhibits a progressive 

tendency for greater values of n but temperature and 

concentration field declined corresponding to uprising n 

(Figure 16 and Figure 17). In physical point of view shear-

thinning liquid experiences low resistive force due to the low 

viscosity which causes for increment in the 𝑓′(𝜂)  and 

declining of θ(η). Figure 18 reports the variation of θ(η) due 

toγ. An enlargement in 𝛾  causes stronger convection, 

consequently temperature increment is noticed. 

Attribute of 𝐸𝑐  displayed in Figure 19. Here greater Ec 

yields higher θ(η). Larger values of 𝐸𝑐 causes to increase 

resistance in fluid motion as a consequence of this much heat 

is produced hence temperature profile increases. Influence of 

Nt on θ(η) and ϕ(η) is disclosed via Figure 20 and Figure 21. 

Clearly a rise in Nt augments temperature and concentration. 

Physically, thermophoresis force increases with enhancement 

of 𝑁𝑡  due to these nanoparticles are being pushed towards 

cold zone from hot zone and hence increase in the Nt 

temperature and ϕ(η) increases. Figure 22 is sketched to 

discuss the variation of ϕ(η) due to Nb. It is detected that ϕ(η) 

exhibited decreasing tendency for greater values of Nb. It is 

happened due the uneven movement of nanoparticles in the 

fluid. Figure 23 interprets the role of 𝑅𝑑 on θ(η). From the 

figure it is described that larger values of radiation parameter 

enhance the temperature profile θ(η). Physically radiation 

process generates much heat in the liquid and corresponding 

thermal layer gets thicker. 

Influence of E on ϕ(η) is discussed through Figure 24. It is 

noticed that concentration is increasing function of E. 

Physically, uplifting the values of 𝐸  reduce the Arrhenius 

energy function which grows the generative chemical reaction, 

consequently ϕ(η) augmented. Figure 25 depicts the effects of 

chemical reaction rate β on ϕ(η). We observed that if we 

upgrade β a plummeting nature is observed in ϕ(η). Table 2 

and Table 3 represents the variation in Skin friction coefficient 

𝐶𝑓𝑟 and the local Nusselt number 𝑁𝑢𝑟 for various parameters. 
 

Table 2. Numerical values of 𝐶𝑓𝑟𝑅𝑒𝑟

1

2 for various parameters 
 

M n We Fr Da δ 𝑪𝒇𝒓𝑹𝒆𝒓

𝟏

𝟐  

0.0 0.5 0.8 0.5 0.5 0.2 0.86428297 

0.4      0.92602313 

0.8      0.98085549 

0.4 0.2     0.94573346 

 0.4     0.93358237 

 0.6     0.91720084 

  0.1    1.20373753 

  0.2    1.17220248 

  0.3    1.13065507 

   0.3   0.91052507 

   0.6   0.93356439 

   0.9   0.95541627 

    0.1  0.86428297 

    0.3  0.89613647 

    0.5  0.92602313 

     0.1 1.03252077 

     0.2 0.92602313 

     0.3 0.84031436 
 

  
Figure 2. Variations of 𝑓′(𝜂) via M 

 

 
Figure 3. Variations of θ via M 
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Figure 4. Variations of ϕ via M 

 

 
 

Figure 5. Variations of 𝑓′(𝜂) via We 

 

 
 

Figure 6. Variations of θ via We 

 

 
 

Figure 7. Variations of ϕ via We 

 
 

Figure 8. Variations of 𝑓′(𝜂) via δ 

 

 
 

Figure 9. Variations of θ via δ 

 

 
 

Figure 10. Variations of ϕ via δ 

 

 
 

Figure 11. Variations of 𝑓′(𝜂) via Da 
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Figure 12. Variations of θ via Da 

 

 
 

Figure 13. Variations of ϕ via Da 

 

 
 

Figure 14. Variations of 𝑓′(𝜂) via Fr 

 

 
 

Figure 15. Variations of 𝑓′(𝜂) via n 

 
 

Figure 16. Variations of θ via n 

 

 
 

Figure 17. Variations of ϕ via n 

 

 
 

Figure 18. Variations of 𝜃 via 𝛾 

 

 
 

Figure 19. Variations of θ via Ec 
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Figure 20. Variations of 𝜃 via Nt 

 

 
 

Figure 21. Variations of ϕ via Nt 

 

 
 

Figure 22. Variations of ϕ via Nb 

 

 
 

Figure 23. Variations of θ via Rd 

 

Table 3. Numerical values of 𝑁𝑢𝑟𝑅𝑒𝑟
−
1

2 for various parameters 

 

M n We Rd Ec Nt Nb E Β γ 𝑵𝒖𝒓𝑹𝒆𝒓
−
𝟏

𝟐 

0.0 0.5 0.8 0.25 0.1 0.3 0.3 1 1 0.6 0.40817062 

0.4          0.38939603 

0.8          0.37210942 

 0.2         0.39024987 

 0.4         0.38973814 

 0.6         0.38897951 

  0.1        0.40122524 

  0.2        0.39821936 

  0.3        0.39610769 

   0.15       0.36689399 

   0.25       0.38939603 

   0.35       0.41094587 

    0.0      0.42448060 

    0.1      0.38939603 

    0.2      0.35401764 

     0.2     0.39368161 

     0.4     0.38497444 

     0.6     0.37570419 

      0.2    0.38939603 

      0.4    0.38939603 

      0.6    0.38939603 

       1   0.38939603 

       2   0.38990527 

       3   0.39003032 

        1.5  0.38889180 

        2.5  0.38799035 

        3.5  0.38726308 

         0.3 0.25066044 

         0.4 0.30522449 

         0.5 0.35081462 
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Figure 24. Variations of ϕ via E 

 

 
 

Figure 25. Variations of ϕ via β 
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NOMENCLATURE 

 

𝐵0 Strength of magnetic field 

C Nanoparticle volume fraction  

𝐶𝑓 Skin friction coefficient 

𝐶𝑝 Specific heat at constant temperature  

𝐷𝑎 Porosity parameter 

𝐷𝐵 Brownian diffusion 

𝐷𝑇  Thermophoretic diffusion coefficient 

𝐸 Activation energy 

𝐸𝑐 Eckert number 

𝑓 Dimensionless stream function 

𝐹𝑟 Inertia coefficient 

𝑘 Thermal conductivity 

𝑀 Magnetic parameter 

𝑁𝑏 Brownian motion parameter 

𝑁𝑡 Thermophoretic parameter 

𝑛 Power law exponent 

𝑃𝑟 Prandtl number  

𝑅𝑑 Radiation parameter 

𝑅𝑒𝑟 Reynolds number 

𝑆𝑐 Schmidt number 

𝑇 Temperature of fluid 

𝑢𝑤 Velocity of the stretching sheet 

𝑊𝑒  Weissenberg number 

𝑢,𝑤 Velocity components in 𝑟 and 𝑧directions 
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Γ Time material constant 

𝛽 Chemical reaction parameter 

𝛾 Biot number 

𝜂 Similarity independent variable 

𝜐 Kinematic viscosity 

𝜙 Dimensionless nanoparticle volume 

fraction 

𝜓 Stream function 

𝜎 Electrical conductivity 

𝜌 Density 

𝛿 Slip parameter 

𝛿1 Temperature difference parameter 

(𝜌𝑐)𝑓 Heat capacities of nanofluid 

(𝜌𝑐)𝑝 Effective heat capacity of the nanoparticle 

 

Subscripts 

 

∞  Ambient condition 

𝑤 Conditions at the wall  
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