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Analytical solution to the buckling problems of stiffened panels subjected to in-plane 

compressive loads is presented. The total potential energy functional of stiffened panel is 

obtained by the summation of that of a line continuum and stiffened panel derived from 

elastic principles of mechanics. Minimizing the resulting equation with respect to 

deflection coefficient and rearranging gives the expression for obtaining the buckling 

load of stiffened panel. Exact deflection functions were substituted directly in the new 

solution and various edge conditions were considered in this analysis. Obtained results 

were compared with analytical results of previous works. The method is computationally 

efficient for complex edge conditions and gives high numerical accuracy. 
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1. INTRODUCTION

Stiffened panels are widely used in many engineering 

structures due to enhancement in strength and reduction in 

weight of the overall structure. As a result, stiffened panels are 

important structural elements for analysis and design of thin-

walled structures. Often times, these thin structural elements 

are prone to buckling due to the action of high compressive 

forces. Their buckling and dynamic behaviour has attracted 

great attention from numerous researchers as in [1, 2]. 

Relevant codes have given specifications for buckling 

analysis and design of stiffened panels based on the available 

literature. Galéa and Martin [3] presented buckling of stiffened 

panels in accordance to Eurocode 3 Part 1.5 and developed a 

general calculation method for critical buckling stress with the 

help of EBPlate software. Various approaches have been used 

recently to solve the elastic buckling problems of stiffened 

panels [4-13]. In the numerical approach, FEM is widely used 

for buckling analysis problem irrespective of the boundary 

conditions and loading type. However, convergence of the 

result depends on the number of finite units created which is 

time consuming and requires details. In addition, during the 

preliminary design stage it is not efficient to use FEM, as the 

dimensions are not in their final configuration [10, 11, 13]. 

Consequently, some researchers adopted analytical approach 

in their work. 

The two main analytical approaches generally employed for 

solving buckling behaviour of structures are based on 

equilibrium theory and the energy theory. Equilibrium 

approach uses governing equation of equilibrium of forces 

acting on the plate as its characteristic equation. On the other 

hand, the characteristic equation for energy approach is the 

total potential energy functional. Governing equation of 

equilibrium of forces acting on the plate can be regarded as the 

resultant force acting on the plate whereas the total potential 

energy functional is the algebraic sum of the internal (strain) 

energy of the plate and the external work on the plate.  

Exact displacement function is used in equilibrium 

approach whereas both exact and approximate displacement 

functions can be used in energy approach. Using exact 

displacement function in energy approach gives excellent 

result whereas using approximate displacement function in 

energy approach gives approximate result. The better the 

approximate displacement function used in energy approach 

the better the result. However, approximate displacement 

function cannot be used in equilibrium approach as the result 

will be far from exact solution. 

Exact displacement function can only be obtained by direct 

integration of the governing equation. Sometimes 

displacement functions are assumed and in some cases, exact 

functions are assumed. When the assumed function is exact, it 

can be used either in equilibrium approach or in energy 

approach to get excellent results. However, if the assumed 

displacement function does not coincide with exact function, 

applying it in equilibrium approach will give poor result. 

Applying it in energy approach will give a better result. 

Governing equation can be obtained by extremizing total 

potential energy functional with respect to displacement 

function. The integrand of the extremized functional is the 

governing equilibrium. 

The analytical approach effectively gives exact solutions for 

buckling problems of stiffened panels. However, despite the 

fact that several theoretical and experimental studies have 

been conducted in the past decades to obtain the critical 

buckling loads of stiffened panels in both uniaxial and biaxial 

range, some aspects of theories of buckling are still 

unaddressed largely because of the assumed shape functions 

and the variation in the number of finite series employed in the 
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analysis [12, 14, 15]. 

Many previous studies on stiffened panel buckling focused 

on using Fourier series or trigonometric series to derive the 

deflection function irrespective of the analytical approach or 

semi-analytical method used. However, the use of 

trigonometric series in formulating deflection functions of 

complex boundary conditions may be very rigorous except for 

a rectangular stiffened plate with four simply supported edges 

and in such situations, a simplified approach that will enable a 

direct substitution of trigonometric shape function may be 

used in the problem formulation. 

This research work presents Modified Ritz Analytical 

Approach (MRAA) for buckling of rectangular stiffened 

panels under uniaxial compressive loads. One of the 

advantages of the present method is the ease in computation 

using the formulas for stiffness coefficients. Another 

advantage is that good results are obtained even though the 

method is of energy approach. More so, since plates would 

naturally be considered to have failed in the first mode, this 

method presents a very simple and easy approach that gives 

excellent results. 

The trigonometric functions were substituted to obtain 

solutions for stiffened panels with all edges simply supported 

(SSSS), all edges clamped (CCCC) and stiffened panel with 

two opposite edges clamped and the other opposite edges 

simply supported (CSCS). Thus, the study is further extended 

in this investigation to take into account the effects of number 

of stiffeners. The present analytical results were validated by 

comparing them with the exact solutions as well as Analytical 

solutions from previous works. Ritz method is based on 

variation principles of mechanics and can be used as an 

approximate method for solutions of mechanics problems [15]. 

Wang and Aung [16] presented p-Ritz method for the 

plastic buckling analysis of thick plates. They adopted Mindlin 

plate theory in their analysis and their result shows good 

convergence. Ritz method employs use of approximate 

deflection functions. By Modified Ritz Analytical Method, 

one implies use of exact deflection function in Ritz method. 

 

 

2. PANEL DEFINITION AND BOUNDARY 

CONDITION 

 

A rectangular stiffened plate with edge numbers was shown 

in Figure 1. There are two conditions considered. They are 

simply supported (S) and clamped (C) boundary conditions. 

SSSS represented a plate with four edges simply supported, 

CCCC represented a plate with 4 edges clamped and CSCS 

represented a plate with edges 1 and 3 clamped edges and 

edges 2 and 4 simply supported. 

 

 
 

Figure 1. Longitudinally rectangular stiffened panel with 

edge numbers 

3. THEORETICAL FORMULATIONS  

 

An isotropic thin rectangular stiffened panel under in-plane 

uniaxial compressive loads is considered in Figure 2. The 

compressive loads, Nx act parallel to both x-axis and stiffeners, 

and three stiffeners divide the panel into four equal parts. In 

the case of one longitudinal stiffener, the panel is divided into 

two equal parts. 

 
Figure 2. Stiffened panel under uniaxial in-plane 

compression in Cartesian coordinates 

 

An isotropic Variation principle is applied to obtain the 

buckling solution. Following the work of Ibearugulem et al., 

[17], total potential energy functional for a classical 

rectangular plate is derived as follow: 
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where: ΠP is the total potential for thin rectangular panels, D 

is the flexural rigidity, w is the deflection function, R and Q 

are the non dimensional coordinates and P is the aspect ratio 

expressed as the ratio of length, a to width, b of the panel 

written as; 

 

𝑃 =  𝑎
𝑏⁄  (2) 

 

Similarly, total potential energy functional for stiffener 

elements is given by [18] as: 
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(3) 

 

where:  Πs  is the total potential for the stiffeners, 𝜂𝑖  is the 

distance of the stiffeners from the edge y = 0. Independent 

coordinates whose lengths in x and y directions are a and b are 

expressed in the form of non-dimensional coordinates R and Q 

as; 

 

𝑦 = 𝑏𝑄;       0 ≤ Q ≤ 1 (4) 

 

𝑥 = 𝑎𝑅       0 ≤ 𝑅 ≤ 1 (5) 
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where;  

 

𝛾𝑖 =
𝐸𝐼𝑖

𝑏𝐷
=  Ratio of bending stiffness rigidity of stiffeners        

to the plate. 

𝛿𝑖 =
𝑃𝑠𝑖

𝑏𝑁𝑥
=

𝐴𝑖

𝑏ℎ
 = Ratio of cross-sectional area of the stiffeners 

to the plate.   

 

The total potential energy functional for the stiffened panel 

is obtained by the summation of Eq. (1) and Eq. (3). 

Minimizing the resulting equation and making 𝑁𝑥 the subject 

gave: 
 

𝑁𝑥(𝑐𝑟𝑖) = 
𝐷

(𝑎)2 [KRR + 2𝑃2KRQ + P4KQQ +  ∑ 𝛾𝑖
𝑛
𝑖=1 (KRR)𝑄=𝜂𝑖]

[KR + ∑ 𝛿𝑖
𝑛
𝑖=1 (KR)𝑄=𝜂𝑖] 

 
(6) 

 

Stiffness coefficients parameters, KRR, KRQ, KQQ KR are 

defined by Eqns. (8)-(10). 

Eq. (6) can be written in terms of length, b as in Eq. (7) 

 
𝑁𝑥(𝑐𝑟𝑖) = 

𝐷
𝑏2 [

1
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1
𝑃2 . ∑ 𝛾𝑖
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𝑛
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(7) 

 

where: 

For 𝑤 = ℎ𝑅 . ℎ𝑄 
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Thus;  
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Thus; 

 

ηηi. Kr  =  (KR)𝑄=𝜂𝑖; Kr = ∫ (
𝜕ℎ𝑅

𝜕R
)

21

0

𝜕𝑅 (13) 

 

Substituting the exact deflection functions into Eqns. (8)-

(13) gives the exact stiffness coefficients presented in Table 1.  

 

Table 1. Stiffness coefficients for plates and stiffeners 

 

Plate 
Plates Stiffness Coefficients 

KRR KRQ KQQ KR 

SSSS ¼(ᴫ4) ¼(ᴫ4) ¼(ᴫ4) ¼(ᴫ2) 

CSCS ¾ (ᴫ4) ᴫ4 4(ᴫ4) ¾ (ᴫ2) 

CCCC 12(ᴫ4) 4(ᴫ4) 12(ᴫ4) 3(ᴫ2) 

Stiffener 
Stiffeners Stiffness Coefficients 

Krr Kr 

S - S ½( ᴫ4) ½( ᴫ2) 

C - C 8(ᴫ4) 8(ᴫ2) 

 

The exact deflection functions for three plates of different 

boundary conditions (SSSS, CCCC and CSCS) are given as 

follows; 

 

SSSS panel: 𝑤 = 𝑆𝑖𝑛 πR. 𝑆𝑖𝑛 πQ; ℎ𝑅 = 𝑆𝑖𝑛 πR;  ℎ𝑄

= 𝑆𝑖𝑛 πQ 

CCCC panel: 𝑤 = (1 − 𝐶𝑜𝑠 2πR). (1 − Cos 2πQ); ℎ𝑅

= 1 − 𝐶𝑜𝑠 2πR;  ℎ𝑄 = 1 − Cos 2πQ 

CSCS d panel: 𝑤 = 𝑆𝑖𝑛 πR. (1 − Cos 2πQ); ℎ𝑅

= 𝑆𝑖𝑛 πR; ℎ𝑄 = 1 − Cos 2πQ 

 

Applying values in Table 1 into Eq. (7) with respect to 

boundary conditions gave buckling solutions for stiffened 

panels under in plane compressive load as given below; 

 

3.1 Stiffened SSSS plates  

 

For one stiffener 

 

𝜂𝑖 = 𝜂1 = 0.5 𝑎𝑛𝑑 ℎ𝑄=𝜂1 = 𝑆𝑖𝑛 π × 0.5 = 𝑆𝑖𝑛 
π

2
= 1 (14) 

 

ηηi =  ∫(ℎ𝑄𝜂𝑖)
2

1

0

𝜕𝑄 = (ℎ𝑄𝜂𝑖)
2
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𝑁𝑥(𝑐𝑟𝑖) = π2
𝐷

𝑏2
×

(1 + 𝑃2)2 + 2𝛾

𝑃2[1 + 2 𝛿] 
 (16) 

 

For two stiffeners 

 

𝜂1 =
1

3
 𝑎𝑛𝑑 ℎ𝑄=𝜂1 = 𝑆𝑖𝑛 π ×

1

3
 = 𝑆𝑖𝑛 

π

3
= 0.866025 (17) 
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2
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2

3
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2

1
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𝜕𝑄 = (ℎ𝑄𝜂𝑖)
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𝑁𝑥(𝑐𝑟𝑖) =
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𝑏2
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(1 + 𝑃2)2 +  3𝛾

𝑃2[1 + 3𝛿] 
 (21) 
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For three stiffeners 

Similarly, for three longitudinal stiffeners dividing the 

stiffened panel into four equal parts; 

 

𝑁𝑥(𝑐𝑟𝑖) =
π2𝐷

𝑏2
×

(1 + 𝑃2)2 + 4 𝛾

𝑃2[1 +  4𝛿] 
 (22) 

 

3.2 Stiffened CSCS plates  

 

One stiffener 

 

𝑁𝑥(𝑐𝑟𝑖) =
π2𝐷

𝑏2
×

[1 +
8
3

𝑃2 +
16
3

P4 +
8
3

𝛾]

𝑃2 [1 +
8
3

 𝛿] 
   (23) 

 

Two stiffeners 

 

𝑁𝑥(𝑐𝑟𝑖) =
π2𝐷

𝑏2 ×
[1 +

8
3

𝑃2 +
16
3

P4 + 3 𝛾]

𝑃2[1 + 3 𝛿] 
 (24) 

 

Three stiffeners 

 

𝑁𝑥(𝑐𝑟𝑖) =
π2𝐷

𝑏2 ×
[1 +

8
3

𝑃2 +
16
3

P4 + 4𝛾]

𝑃2[1 + 4𝛿]
 (25) 

 

 

4. RESULTS AND DISCUSSION 

 

This study presented analytical solution for buckling of 

stiffened panels subjected to in-plane compressive loads. The 

general solution is given as; 

 

𝑁𝑥(𝑐𝑟𝑖)  =
𝜋2𝐷

𝑏2
 𝐾 (26) 

For the case of SSSS plate stiffened by one stiffener, the 

expression for K from the present work is: 

 

K =
(1 + 𝑃2)2 + 2𝛾

𝑃2[1 + 2 𝛿] 
 (27) 

 

For long stiffeners of P > 2, the exact solution expression 

obtained by Ventsel & Krauthammer [15] is the same as Eq. 

(27). Further validation is made by comparing present work 

with analytical solution that made use of polynomial function 

in work principle. Buckling parameters are substituted in the 

buckling solution of the present work as well as past works to 

obtain Table 2. Moreso, for the case of SSSS panel stiffened 

by two stiffeners, the expression for K from the present work 

is: 

 

K =
(1 + 𝑃2)2 +  3𝛾

𝑃2[1 + 3𝛿] 
 (28) 

 

A close solution in Eq. (29) was obtained by the application 

of polynomial function as presented by Ibearugbulem et al. [6]. 

The comparison in Table 3 shows good convergence. 

 

K =
(1 + 𝑃2)2 +  3𝛾

𝑃2[1 + 2.985𝛿] 
 (29) 

 

Table 2. Comparison of buckling coefficient K with previous 

works for one stiffener 

 

P 
γ = 5, δ =0.05 γ = 25, δ =0.2 

Present [14] [6] Present [14] [6] 

2.2 8.28 8.28 8.27 12.4 12.4 12.4 

2.4 8.79 8.79 8.78 11.8 11.9 11.9 

2.8 10.2 8.62 10.2 11.6 11.6 11.7 

3.0 11.1 8.31 11.1 11.9 11.9 11.9 

 

Table 3. Comparison of buckling coefficient K with previous works for two stiffeners 

 

P 

γ = 5, δ =0.10 γ = 15, δ =0.3 

Present 
(Timoshenko & Gere, 

1961) [14] 

(Ibearugbulem et al., 

2014) [6] 
Present 

(Timoshenko & Gere, 

1961) [14] 

(Ibearugbulem et al., 

2014) [6] 

1.0 14.6 14.5 14.6 25.7 25.7 25.9 

1.2 11.2 11.2 11.2 18.6 18.6 18.7 

1.4 9.32 9.32 9.35 14.4 14.4 14.5 

1.6 8.31 8.31 8.33 11.8 11.8 11.9 

1.8 7.83 7.83 7.85 10.2 10.2 10.2 

2.0 7.69 7.69 7.71 9.21 9.21 9.26 

 

In ref. [14], multimodal deflection function was used, while 

the present study used first mode deflection function. This 

multi-mode deflection function can be written as: 

 

𝑤 = ∑ ∑ 𝑎𝑚𝑛  𝑆𝑖𝑛 πR. 𝑆𝑖𝑛 πQ

𝑛=3

𝑛=1

𝑚=1

𝑚=1

 (30) 

 

The deflection function used in this study is: 

 
𝑤 = 𝑆𝑖𝑛 πR. 𝑆𝑖𝑛 πQ (31) 

 

In series form it is expressed as: 

 

𝑤 = ∑ ∑ 𝑎𝑚𝑛  𝑆𝑖𝑛 πR .  𝑆𝑖𝑛 πQ 

𝑛=1

𝑛=1

𝑚=1

𝑚=1

 (32) 

Both Timoshenko and Gere [14] and the present study 

arrived at the same formula for K as in Eq. (27). However, the 

difference in the deflection functions accounts for the disparity 

in their results for aspect ratios of 2.8 and 3.0. 

Based on numerical values from the new solutions, Figures 

3-6 shows coefficients of buckling for rectangular stiffened 

CSCS panels for different aspect ratios, varying stiffness 

properties and varying number of stiffeners. The S1, S2 and 

S3 represents one stiffeners, two stiffeners and three stiffeners 

respectively. Observation shows that for the curves have 

similar sequence as obtainable in plate analysis. However, for 

γ = 25, δ =0.2, stiffened panel has greater values irrespective 

of the number of the stiffener adopted. 

It is observed that the more the stiffness and the area of the 

cross section of the stiffener, the stronger the stiffened plate. 

In addition, the strength of the panel is more towards aspects 
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ratios of 1.0 and 2.0. It tends to decrease from aspect ratio of 

1.0 and gets to minimum around the aspect ratio between 1.3 

and 1.6 and starts again to increase to aspect ratio of 2. The 

strength of the stiffened CSCS panels at aspect ratio of 2.0 is 

the same for plates of different number of stiffeners (1, 2 or 3). 

Finally, it is observed that the more the number of stiffeners 

the stronger the plate.   
 

 
 

Figure 3. CSCS stiffened panels, γ = 25, δ =0.2 
 

 
 

Figure 4. CSCS stiffened panels, γ = 10, δ =0.1 
 

 
 

Figure 5. CSCS stiffened panels, γ = 5, δ =0.05 
 

 
 

Figure 6. CCCC stiffened panels, γ = 5, δ =0.05 

 
 

Figure 7. CCCC stiffened panels, γ = 15, δ =0.2 

 

 
 

Figure 8. CCCC stiffened panels, γ = 20, δ =0.3 

 

Figures 7-8 show the result of CCCC stiffened at varying 

stiffness properties. It can be observed that the Numerical 

values presented for the CCCC and CSCS boundary 

conditions have similar sequence. The charts presented gives 

buckling behavior of isotropic stiffened panels under uni-axial 

loading and can be used to predict buckling resistivity of 

stiffeners with accuracy of exact deflection functions. 

 

 

5. CONCLUSIONS 

 

From the results of this study, the following conclusions can 

be drawn: 

 

(I). The new method presented was used to provide 

analytical solutions for the elastic buckling analysis of 

rectangular stiffened panels subjected to uniform uniaxial in-

plane compression for SSSS, CCCC, and CSCS boundary 

conditions. Exact deflection functions were directly 

substituted into buckling solutions derived to obtain buckling 

coefficients and the results shows high computational 

convergence. 

(II). The stiffeners were equally spaced for the three 

boundary conditions considered. As expected CCCC 

boundary condition gives higher critical buckling coefficients. 

It implies that, buckling coefficients for stiffened panels 

increases when the plate is well supported. 

(III). The main increase in the critical buckling coefficients 

occurs when the number of stiffeners increases and significant 

changes occurs in the buckling confidents when aspect ratio 

and stiffness parameters are increased.  

(IV). The results obtained can serve as data comparison in 

applied research on the mechanics of continuum with stiffened 

panels and it can also provide designers with solutions for 

complex boundary conditions. Hence, the proposed method 

could be extended to elastic buckling of rectangular stiffened 
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panels of free edges boundary conditions under uniform in-

plane compressive loading. 
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NOMENCLATURE 

 

a, b length and width of the plate 

C clamped edge 

CCCC all edges clamped 

CSCS two opposite edges clamped, two opposite 

edge simply supported 

D flexural rigidity 

E Young’s modulus 

h shape function 

K buckling coefficient 

P aspect ratio 

R, Q non dimensional coordinates along the x and 

y directions 

S simply supported edge 

SSSS all edges simply supported 

w deflection function 

x,y Cartesian coordinates in the horizontal and 

vertical direction, respectively 

dx, dy derivative in x and y directions 

Ai cross-sectional area of the stiffeners 

𝚷𝐏 total potential energy functional for plates 

𝚷𝐬 total potential energy functional for stiffener 

𝑵𝒙 compressive loads 

𝜸𝒊 ratio of bending stiffness rigidity of 

stiffeners 

𝜹𝒊 ratio of cross-sectional area of the stiffeners 

to the plate 

Ii moment of inertia of stiffeners 

𝜼𝒊 distance of the stiffeners from the edge y = 0 

 

Subscripts 

 

cri critical 

i number of points on the continuum 
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