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Colon cancer is thought about as the third most regularly identified cancer after Brest and 

lung cancer. Most colon cancers are adenocarcinomas developing from adenomatous 

polyps, grow on the intima of the colon. The standard procedure for polyp detection is 

colonoscopy, where the success of the standard colonoscopy depends on the colonoscopist 

experience and other environmental factors. Nonetheless, throughout colonoscopy 

procedures, a considerable number (8-37%) of polyps are missed due to human mistakes, 

and these missed polyps are the prospective reason for colorectal cancer cells. In the last 

few years, many research groups developed deep learning-based computer-aided (CAD) 

systems that recommended many techniques for automated polyp detection, localization, 

and segmentation. Still, accurate polyp detection, segmentation is required to minimize 

polyp miss out rates. This paper suggested a Super-Resolution Generative Adversarial 

Network (SRGAN) assisted Encoder-Decoder network for fully automated colon polyp 

segmentation from colonoscopic images. The proposed deep learning model incorporates 

the SRGAN in the up-sampling process to achieve more accurate polyp segmentation. We 

examined our model on the publicly available benchmark datasets CVC-ColonDB and 

Warwick- QU. The model accomplished a dice score of 0.948 on the CVC-ColonDB 

dataset, surpassed the recently advanced state-of-the-art (SOTA) techniques. When it is 

evaluated on the Warwick-QU dataset, it attains a Dice Score of 0.936 on part A and 0.895 

on Part B. Our model showed more accurate results for sessile and smaller-sized polyps. 
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1. INTRODUCTION

Colorectal cancer is growing rapidly throughout the world. 

As per the recent survey, colon cancer is diagnosed in 

1,931,590 individuals, which is 10% of the total cancer cases 

[1]. Adenocarcinomas cause approximately 96% of colorectal 

cancers, and intestinal stromal tumors (GISTs). A polyp is a 

tiny development of excess cells, typically expands in the 

rectum or colon. All of the polyps may not turn into cancer 

cells, but it might take several years for a polyp to become 

malignant. The polyps can be detected through the standard 

biomedical imagining procedures such as Virtual 

colonoscopy, colon capsule endoscopy (CCE), and optical 

colonoscopy (OC) [2]. However, the wide variety of sizes and 

shapes of polyps and the minimal vision of the colon make it 

challenging to the endoscopists to maintain continual and 

regular assessments on detection and diagnosis of the polyps. 

In addition, recent scientific research studies have revealed 

that (8-37%) of polyps are missed as a result of high 

background object resemblance.  

Over decades, computer vision-based techniques have been 

proposed for the automatic identification of polyps. Some 

researchers suggested utilizing the shape features and texture 

attributes combined with common classifiers for polyp 

detection. However, these techniques still struggle with a high 

False-positive rate. Recently, Deep CNNs have shown 

stupendous success in clinical image analysis, which can aid 

the colonoscopist to lower their polyp miss-rates in a real-time 

clinical atmosphere. The deep learning-based Encoder-

Decoder network is an inexpensive tool used to segment a 

colorectal polyp effectively from the ubiquitously available 

histological images. However, automatic Polyp segmentation 

is challenging because of high variations in polyp appearance 

(texture, color, high interclass variations in size and shape), the 

presence of other endoluminal scene structures (e.g., colon 

walls and air bubbles), and the small multiple adenomas. 

Hence, developing an automated polyp segmentation system 

is necessary to support the gastroenterologists to identify and 

resect the polyps. The result is GAN-assisted Encoder-

Decoder architecture. The contributions of this work are as 

follows.  

(1) We propose a novel GAN-assisted encoder-decoder

architecture that is effective than compared with SOTA

approaches.

(2) We present an intelligent decoder design to ensure explicit

contour preservation through GAN-assisted up-sampling

processes at each decoder stage.

(3) Our experimental results demonstrate noticeably better

performance compared to current SOTA methods.

The remainder of the paper will be organized as follows. 

Section 2 explains the relevant work and the gap identification. 

Section 3 discusses the overview of CNN architecture, 
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Encoder-Decoder network, and GANs. Section 4 introduces 

the suggested model, and Section 5 discusses the experimental 

results and analysis with SOTA techniques. Finally, the last 

section concludes the study in section 6. 

 

 

2. RELATED WORK 
 

Colon or colorectal cancer cases are increasing rapidly in 

developing countries. It affects the man more than women by 

30 to 40%. A major rise in the frequency of colorectal cancer 

(CRC) was increasing the fatality rate. It is extensively 

approved that early detection and resects of polyps can prevent 

CRC. The well-known traditional method is colonoscopy, 

which consumes a lot of time and highly depends upon the 

colonoscopist experience. Computer system-assisted medical 

diagnosis of polyps helps radiologists to analyze the polyps.  

Akbari et al. [3] proposed the FCNN based Polyp 

Segmentation from Colonoscopy Images. In the training phase, 

they used the patch selection method for the effective 

segmentation of polyps. By evaluating their classifier on the 

CVC-ColonDB dataset, they attain a dice score of 0.810. In 

Ref. [4], Nguyen and Lee proposed a consecutive Deep 

encoder-decoder network for polyp segmentation in the CVC-

ColonDB dataset and attained a dice score of 0.896. Zhang et 

al. [5] used the hand-crafted and machine-learned features for 

polyp segmentation. On CVC-ColonDB, attain a dice score of 

0.70. In Ref. [6], a CVC-ColonDB is used by the researchers 

for the segmentation of polyps using ResUNet++. When they 

evaluated the CVC-ColonDB, it attains a Dice similarity 

coefficient of 0.848.  

Nguyen et al. [7] proposed the Detailed up-sampling based 

Encoder-Decoder Networks for Polyp Segmentations. 

However, when they evaluated the CVC-ColonDB, they 

attained a Dice score of 0.908. In Ref. [8], along with the Deep 

Neural Network, a Combination of Color Spaces are used for 

colon Polyp Segmentations. They trained the model by 80 % 

of the images and tested using 20 % of the images CVC-

ColonDB dataset images and attained a Dice of 0.820. Thanh 

and Long [9] proposed their Segmentation model using the 

Ensembles of U-Nets with EfficientNet, and when they 

evaluated their model over the CVC-ColonDB, 0.891 Dice 

score. Feng et al. [10] proposed a novel network for Polyps 

segmentation in CVC-ColonDB, claimed that their model 

attains high performance with respect to Dice score of 92.97.  

Researchers proposed various deep learning architectures 

for accurate polyp segmentation. They used various 

augmentation methods, features, and network models for 

accurate segmentation of colorectal polyps and reduced the 

poly miss rate. But if the model misses a polyp, it must be 

identified by the endoscopists traditionally. This shows the 

improvement is needed concerning the polyp miss rate. To 

surpass the SOTA methods, we propose a new up-sampling 

method using GAN, can effectively segment the colorectal 

polyps from colonoscopy images. 

 

 

3. CONVOLUTIONAL NEURAL NETWORK 
 

CNN [11] is a conventional deep neural network, basically 

used for object classification problems. The name convolution 

came from the linear mathematical operations between two 

matrices. CNN is composed by number of convolutional, 

pooling, non-linearity layers and is finally attached with a fully 

connected (FC) layer. The convolutional (conv) and FC layers 

have learnable parameters, but non-linearity and pooling 

layers do not have any learnable parameters. Generally, CNN 

concentrates on image classification problems, where input is 

an image (matrix) as well as output is one labeled image. 

 

 
 

Figure 1. CNN architecture [12] 

 

As depicted in Figure 1, in a CNN, a series of convolutional 

procedures are executed to generate the high-level feature 

maps from the given input image. Traditionally, the first Conv-

Layer captures the Low-level features such as contours (edges), 

gradient orientation, color, etc. However, if the network is 

mode deeper, the additional Conv Layers adapt the high-level 

features as well, offering us the wholesome understanding of 

the processed images. After a series of Conv operations, 

pooling is performed, responsible for lowering the spatial size 

of the Convolved features. 

In general, max-pooling is performed for image 

dimensionality reduction of the feature maps for suppressing 

the noise. For the given input feature map (Tensor), max-

pooling gives the optimum value for the portion of the image 

overlapped by the kernel. After repeating the max pooling 

operations number of times, as shown in Figure 1, the design 

succeeds in recognizing the important features. After that, the 

final output is flattening as well as feed to an FCN for 

classification purposes. But in biomedical classification 

problems, along with the identification of disease is there or 

not, yet also to center the location of the abnormality. To 

accomplish this, there is a need for Encoder-Decoder based 

networks. 

 

3.1 Encoder-decoder architecture 

 

 
 

Figure 2. Encoder-Decoder Architecture [13] 

 

Encoder-Decoder network evolved from the traditional 

convolutional neural network and can localize and identify 

contours of the objects by classifying each pixel in the image. 

As shown in Figure 2, in the architecture, the encoder (Left) 

part is also known as the contracting Path, which is comprised 

by the general convolutional procedure, and the Decoder 

(Right) part is also known as expansive Path, performs the 

Deconvolutions (Transposed convolutions), which seem to be 

the reverse of the encoder part. 
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3.2 Generative adversarial networks 
 

Generative Adversarial Networks [14] (GAN) provide a 

path to innovative domain-specific data augmentation. 

Traditionally GAN [15] are a strategy to generative modeling 

making use of deep learning techniques. GANs use two neural 

networks Generator (G) and Discriminator (D). These two 

networks (G, D) play a min-max game where one attempts to 

outsmart the other network. The Generator is remained to be 

idle while the Discriminator is trained. In this phase, only 

forward propagation is done. The Discriminator is trained on 

original data for (n) number of epochs and sees if it can 

properly forecast them as original (real). Also, in this phase, 

the Discriminator is likewise trained on the phony (fake) 

generated data from the Generator (G) and saw if it can 

appropriately classify them as phony. The discriminator 

network (D) target is to determine which outputs it obtains 

have been artificially produced. 

 

 
 

Figure 3. Basic Working model of GAN [16] 

 

The goal of the generator network is to create synthesized 

data artificially and try to fool the Discriminator network. The 

Generator network is trained while the Discriminator remains 

idle. After the Discriminator network is trained by the phony 

data generated by the Generator, we can get its classification 

predictions and again use the outcomes to train the Generator 

network to improve from the previous state (more accurate 

fake data). The generated fake data is given to the 

discriminator network along with the original data. The 

Discriminator needs to classify the input images and returns a 

probability depend upon the loss function, between 0 and 1. 

This value represents the authenticity of each image. One (1) 

associate with original and zero (0) associates with phony 

images. If the loss is more, the output generated by the 

Discriminator (D) is again given back to the Generator (G) as 

input for fine-tuning. This process is repeated until the loss is 

minimized (The Discriminator fails to identify the fake data). 

Figure 3 represents the working functionality of a GAN. 

The Generator G(z) attempts to reduce this loss 

function(min-max) value while the Discriminator tries to 

maximize it, which seems like a min-max game. Thus, Eq. (1) 

represents the min-max loss function, where Eq. (2) represents 

the loss at the Discriminator network D(x). 

 

( ) max ,Min D G  (1) 

 

( )( ) ( )( )( )log log 1-E D x E D G zx z+        (2) 

 

While the Discriminator classifies the original and phony 

images, if the loss is more with respect to the Generator, it 

needs to do back propagation in the Generator network. Both 

the networks are working adversarial to the other to generate 

the synthetic data, which can pass for original input data. 

Initially, GANs are used to generate fake images, which is 

similar to the original image. Researchers proposed that GANs 

can also be used mainly in the process of data augmentation. 

CycleGAN [17] is used to improve the generalizability in CT 

segmentation tasks. In Ref. [18], GANs are used for Semi-

Supervised Semantic Segmentation, and SeGAN was 

proposed by Xue et al. [19] for Medical Image Segmentation. 

In Ref. [20], SRGAN was used for image super-resolution, 

which surpassed the traditional up-sampling methods (nearest 

neighbor, bilinear interpolation, bicubic interpolation). Most 

of the GANs are used to generate the augmented image data 

used in the training phase of a CNN. To the best of our 

knowledge, this is the first study to use SRGAN [20] to 

substitute the traditional Up-sampling process at the decoder 

phase. The accuracy of the polyp segmentation depends upon 

the up-sampling process. Whereas the existing up-sampling 

methods have limitations in generating the accurate high-level 

segmented masks for the polyps. These drawbacks inspired us 

to develop an SRGAN assisted automatic Encoder-Decoder 

based model for accurate polyp detection and diminish the 

polyp miss rate from the colonoscopic images. 

 

 

4. PROPOSED MODEL 

 

In a real-time environment, detection of the predecessor 

polyps is very difficult due to their shape (flat, sessile, sub-

pedunculated, or pedunculated) and small size. Therefore, 

localization and identification of polyps play a crucial role in 

diagnosing colon cancer. Figure 4 depicts the proposed 

architecture consists of Encoder (Shrinking)- Decoder 

(extracting Path) for accurate polyp segmentation. The 

proposed encoder network comprises 11 convolutional layers, 

taken from the VGG16 network [21] and the corresponding 

Decoder network composed of the SRGAN. 

 

4.1 Encoder 

 

The proposed encoder network consists of 11 convolutional 

operations, organized into four levels. In the first level, two 

convolutional operations are performed by using the kernels 

(size 3 × 3, by stride 1) and generate the feature maps, which 

are then Group normalized [22] and element-wise Leaky 

ReLU [23] is applied. ReLU (Gives the value the results from 

max (0, x)) and zero for the negative values, yields to dead 

neuron problem. Leaky ReLU overcomes the dying ReLU 

Problem by additionally a small slope (small value say 0.001 

(α)) for negative values instead of a flat slope. Eqns. (3) and 

(4) represents the functioning of Leaky ReLU. 

 

( ) ( )max 0.001 ,f x x x=  (3) 

 

( ) ( )1( 0) 1( 0)f x x x x=  + =  (4) 

 

At each level, after a set of convolutional operations, the 

generated feature maps [24] are transferred to the 

corresponding Discriminator (D) of the decoder network, used 

for the up-sampling process. Then they are sent into the max 
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pooling [25] layer (2×2 size, stride 2) to diminish the input 

feature maps' size and generate the pooling indices, known as 

down-sampling. After down-sampling, the generated feature 

maps are given as input to the next-level convolutional layers 

for convolutional operations, but the numbers of kernels are 

doubled. The reduction of the spatial resolution of the feature 

maps reduced after every max-pooling operation can affect the 

segmentation process of the objects. To maintain the spatial 

information, need to transfer the obtained feature maps to the 

corresponding Decoder network. 
 

 
 

Figure 4. Proposed architecture for polyp segmentation 

 

4.2 Decoder 

 

In Encoder decoder-based networks up-sampling process is 

performed repeatedly to enlarge the min-sized feature maps. 

All the existing networks use the transposed convolutions, 

Bilinear and Bicubic interpolations. However, when the GANs 

are used for the augmentation process, they generate far better 

results than the traditional interpolations [20]. Therefore, we 

utilized the SRGAN in the process of up-sampling. 

In the proposed model, the decoder network consists of 4 

levels, and at each level, there is an SRGAN used for the up-

sampling process. As shown in Figure 5, the feature maps 

(64X64) obtained from the encoder network (level 4) are given 

as input to the Generator (G) in the decoder network (Level-

4), generates the more accurate feature maps (fake) of doubled 

size(128X128) and given as input to the Discriminator in the 

up-level (Level-3). The feature maps (128X128) of the level- 

3 encoder block are given as input to the Discriminator. Now 

the generated output of the Discriminator network (Level-3) is 

given as input to the Generator network, which generates a 

double-sized fake image (256X256) and is given to the upper 

lever Discriminator network. 

 

 
 

Figure 5. Up-sampling process at the decoder network 
 

The new feature maps (Fake) generated by the Generator 

network and the feature maps from (Level -3) are given as 

input to the Discriminator, which needs to classify the fake and 

real feature maps. We considered the minimax GAN loss (Eq. 

(1)), where min is the generator (G) loss (Minimization), and 

max represents the discriminator (D) loss (maximization). As 

displayed in formula (5), always the Discriminator (D) wants 

to optimize the log probability of original (real) images and the 

log of inverted probabilities of phony images generated by the 

Generator. 

 

( ) ( )( )( )maximize logD x +log 1-D G z  (5) 

 

As shown in Eq. (6), the Generator (G) wants to minimize 

the log of the inverse probability of fake images predicted by 

the Discriminator (D) (Eq. (6)). Thus, after fine-tuning, the 

Generator (G) can generate data with a very low probability of 

being fake. 

 

( )( )( )minimize log 1-D G z  (6) 

 

If the Discriminator returns the value near 0, then the feature 

maps are needed to be fine-tuned by sending back to the 

Generator network. And this process is continued until the 

Discriminator gives the loss function value near to 1. To 

achieve this, we performed the fine-tuning operation (Epochs) 

100 times at each level of the decoder network. Finally, the 

data generated at the level 1 discriminator (512X512) is given 

as input to a multi-class classifier layer (Softmax). The output 

generated from the soft-max classifier is a segmented mask of 

the colorectal polyp. 

 
 

5. EXPERIMENTAL RESULTS AND ANALYSIS 
 

5.1 Dataset 
 

We employ the two basic requirements when taking into 

consideration a dataset. First is the dataset must be publicly 

available and properly annotated. We used the publicly 

available colonoscopy CVC-ColonDB [26] dataset, which 

consists of a total of 380 colonoscopy frames of 574×500 pixel 

resolution has been generated extracted from 15 different 

colonoscopy videos. The sequences are from regular 

colonoscopies and were selected to represent as much 

variation in polyp appearance as possible. The CVC-ColonDB 

dataset is composed of frames from the 15 different video 

sequences containing at least one polyp. The whole dataset 

contains different shapes and sizes of polyps. In addition to 

each polyp image, the appropriate ground truth of the image is 

provided, which consists of a binary mask representing the 

398



 

area covered by the polyp in the image. We Also consider 

another benchmark dataset Warwick–QU [27, 28], to compare 

the efficiency with our previous work with the proposed model. 

The dataset primarily consists of 85 images in the training part 

and 80 images in the testing part. 
 

5.2 Data augmentation 
 

In real-time, due to the lack of medical image data, deep 

learning models face considerable difficulty in medical 

imagining compared to other object detection problems. Image 

Data augmentation plays a decisive role in enhancing the 

number of colon polyp images. This fixes the data deficiency 

problem, boosts the model's efficiency, and helps to diminish 

the under-fitting. The images are taken from the CVC-

ColonDB dataset (380 images) are have a fixed size resolution 

of (574×500). After removing the canvas around each image, 

the complete dataset images are resized into (512 X 512). First, 

we applied the horizontal & vertical flip on the original dataset 

images to generate 760 augmented images. Then we applied 

various data augmentation techniques such as random contrast, 

random brightness, and random rotation (by 90°, 180°, 270°) 

to generate 6840 augmented images. To fit and evaluate the 

proposed deep learning model, the images are divided into 

training dataset consists of 5472 (80%) images and testing 

dataset consists of 1368 images (20%). There is no intersection 

of images between the train and the test dataset. And on the 

Warwick–QU dataset, the training dataset was only 

augmented. 
 

5.3 Results and Discussion 
 

There are some basic metrics to evaluate the performance 

of the proposed model’s implementation on the benchmark 

colorectal polyp datasets. We considered the essential 

statistical validation metric, the Dice similarity coefficient 

(DSC) to evaluate the segmentation accuracy of the model. 

These metric ranges between (0-1), where zero (0) indicates 

no overlap and one (1) indicates perfectly overlapping. Eq. (7) 

describes the dice coefficient at the pixel level. For 

segmentation tasks, we need to measure the dice index at the 

object level described in Eqns. (8) and (9). 
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After establishing the model, it is evaluated on the CVC-

ColonDB and Warwick–QU benchmark datasets. Due to the 

existence of the GAN at each level of the decoder network, the 

proposed model requires high computational power and a huge 

amount of time for training the network. But it generates more 

accurate feature maps in the up-sampling process. Table 1 

describes the performance evaluation of the various SOTA 

models with respect to the Dice score on CVC-ColonDB. 

To review the performance of the suggested model on the 

benchmark Warwick–QU dataset, we considered the object-

level Dice index (Dobj) for segmentation accuracy and the 

Hausdorff distance (Eq. (10)) to measure the shape similarity 

among the ground Truth (G) and segmented images(S). The 

smaller Hausdorff distance represents the maximal similarity 

among the borders of S and G. 

 

Table 1. Comparison of SOTA models with the proposed 

model over CVC-ColonDB 

 
Model Dice Score 

Akbari et al. [3] 0.81 

Nguyen and Lee [4] 0.896 

Zhang et al. [5] 0.701 

Jha et al. [6] 0.848 

Nguyen et al. [7] 0.908 

Bagheri et al. [8] 0.82 

Thanh and Long [9] 0.891 

Feng et al. [10] 0.929 

Proposed model 0.948 

 

( )
( )

( )

sup inf d x, y ,
y Sx G

H G,S max
sup inf d x, y

x Gy s
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Object wise Hausdorff distance (Hobj) is applied as shown 

in Eq (11) to find the object-wise contour-based shape 

similarity. The model achieved a dice score of 0.952 on Part A 

and 0.924 on Part B and Hobj of 76.142 (part A), 81.245(part 

B), which are more accurate than existing SOTA methods. 

 

 

6. CONCLUSION 

 
In this paper, we presented SRGAN-assisted Encoder-

Decoder based deep convolutional model is discussed and 

evaluated for effective colorectal polyp semantic segmentation. 

The main motivation behind our proposed model was the need 

to design an efficient deep learning architecture for semantic 

segmentation of polyps from colonoscopy images. We 

analyzed the proposed model and compared with other bench 

mark model to reveal the practical trade-offs involved in 

designing architectures for semantic segmentation, 

particularly segmentation accuracy. Existed architectures uses 

the deconvoluted feature maps or max pooling indices or the 

encoder network feature maps in the decoder network, may 

consume less memory but the segmentation accuracy is less. 

The proposed model uses the Generative Adversarial 

Networks are used in up sampling process produces the dense 

feature maps, which increases the segmentation accuracy of 

the model. Our approach revealed good results in the 

segmentation of flat (sessile) and tiny polyps in a fully 

automatic manner from colonoscopic images, which are the 
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significant factors for high polyp miss-rates. The model is 

well-acquainted with the benchmark colorectal datasets, 

consists of different dimensionalities of optical colonoscopy 

images. The implementation results of the suggested model are 

promising in terms of both illustrative contributions and 

experimental evaluations. The GANs in the model may 

consume huge time for training, but produce the most accurate 

results suggests that our method should be explored further for 

usage in medical image analysis.  

 

 

REFERENCES  

 

[1] PRESS RELEASE N° 292. (2020). https://gco.iarc.fr/, 

accessed on Jun. 29, 2021.  

[2] Misawa, M., Kudo, S.E., Mori, Y., Hotta, K., Ohtsuka, 

K., Matsuda, T., Mori, K. (2021). Development of a 

computer-aided detection system for colonoscopy and a 

publicly accessible large colonoscopy video database 

(with video). Gastrointestinal Endoscopy, 93(4): 960-

967. http://dx.doi.org/10.1016/j.gie.2020.07.060 

[3] Akbari, M., Mohrekesh, M., Nasr-Esfahani, E., 

Soroushmehr, S.R., Karimi, N., Samavi, S., Najarian, K. 

(2018). Polyp segmentation in colonoscopy images using 

fully convolutional network. In 2018 40th Annual 

International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC), pp. 69-72. 

http://dx.doi.org/10.1109/EMBC.2018.8512197 

[4] Nguyen, N.Q., Lee, S.W. (2019). Robust boundary 

segmentation in medical images using a consecutive 

deep encoder-decoder network. IEEE Access, 7: 33795-

33808. 

http://dx.doi.org/10.1109/ACCESS.2019.2904094 

[5] Zhang, L., Dolwani, S., Ye, X. (2017). Automated polyp 

segmentation in colonoscopy frames using fully 

convolutional neural network and textons. In Annual 

Conference on Medical Image Understanding and 

Analysis, pp. 707-717. http://dx.doi.org/10.1007/978-3-

319-60964-5_62 

[6] Jha, D., Smedsrud, P.H., Johansen, D., de Lange, T., 

Johansen, H.D., Halvorsen, P., Riegler, M.A. (2021). A 

comprehensive study on colorectal polyp segmentation 

with ResUNet++, conditional random field and test-time 

augmentation. IEEE Journal of Biomedical and Health 

Informatics, 25(6): 2029-2040. 

http://dx.doi.org/10.1109/JBHI.2021.3049304 

[7] Nguyen, N.Q., Vo, D.M., Lee, S.W. (2020). Contour-

aware polyp segmentation in colonoscopy images using 

detailed upsamling encoder-decoder networks. IEEE 

Access, 8: 99495-99508. 

http://dx.doi.org/10.1109/10.1109/ACCESS.2020.29956

30 

[8] Bagheri, M., Mohrekesh, M., Tehrani, M., Najarian, K., 

Karimi, N., Samavi, S., Soroushmehr, S.R. (2019). Deep 

neural network based polyp segmentation in colonoscopy 

images using a combination of color spaces. In 2019 41st 

Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society (EMBC), 

pp. 6742-6745. 

http://dx.doi.org/10.1109/EMBC.2019.8856793 

[9] Thanh, N.C., Long, T.Q. (2020). Polyp segmentation in 

colonoscopy images using ensembles of U-nets with 

efficientnet and asymmetric similarity loss function. In 

2020 RIVF International Conference on Computing and 

Communication Technologies (RIVF), pp. 1-6. 

http://dx.doi.org/10.1109/RIVF48685.2020.9140793 

[10] Feng, R., Lei, B., Wang, W., Chen, T., Chen, J., Chen, D. 

Z., Wu, J. (2020). SSN: A stair-shape network for real-

time polyp segmentation in colonoscopy images. In 2020 

IEEE 17th International Symposium on Biomedical 

Imaging (ISBI), pp. 225-229. 

http://dx.doi.org/10.1109/ISBI45749.2020.9098492 

[11] Albawi, S., Mohammed, T.A., Al-Zawi, S. (2017). 

Understanding of a convolutional neural network. In 

2017 International Conference on Engineering and 

Technology (ICET), pp. 1-6. 

http://dx.doi.org/10.1109/ICENGTECHNOL.2017.8308

186 

[12] Albelwi, S., Mahmood, A. (2017). A framework for 

designing the architectures of deep convolutional neural 

networks. Entropy, 19(6): 242. 

http://dx.doi.org/10.3390/E19060242 

[13] Image segmentation with Deep learning - machine 

Intelligence. https://www.hackevolve.com/image-

segmentation-using-deep-learning/, accessed on Jul. 18, 

2021. 

[14] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., 

Warde-Farley, D., Ozair, S., Bengio, Y. (2021). 

http://www.github.com/goodfeli/adversarial 

[15] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., 

Warde-Farley, D., Ozair, S., Bengio, Y. (2014). 

Generative adversarial nets. Proceedings of the 27th 

International Conference on Neural Information 

Processing Systems, 4: 2672-2680. 

[16] Gharakhanian, A. (2017). Generative adversarial 

networks-hot topic in machine learning. 

https://www.kdnuggets.com/2017/01/generative-

adversarial-networks-hot-topic-machine-learning.html, 

accessed on Jul. 14, 2021. 

[17] Sandfort, V., Yan, K., Pickhardt, P.J., Summers, R.M. 

(2019). Data augmentation using generative adversarial 

networks (CycleGAN) to improve generalizability in CT 

segmentation tasks. Scientific Reports, 9(1): 1-9. 

http://dx.doi.org/10.1038/s41598-019-52737-x 

[18] Souly, N., Spampinato, C., Shah, M. (2017). Semi 

supervised semantic segmentation using generative 

adversarial network. In Proceedings of the IEEE 

International Conference on Computer Vision, pp. 5688-

5696. http://dx.doi.org/10.1109/ICCV.2017.606 

[19] Xue, Y., Xu, T., Zhang, H., Long, L.R., Huang, X. (2018). 

Segan: Adversarial network with multi-scale l 1 loss for 

medical image segmentation. Neuroinformatics, 16(3): 

383-392. https://doi.org/10.1007/s12021-018-9377-x 

[20] Ledig, C., Theis, L., Huszár, F., Caballero, J., 

Cunningham, A., Acosta, A., Shi, W. (2017). Photo-

realistic single image super-resolution using a generative 

adversarial network. In Proceedings of the 30th IEEE 

Conference on Comput Vis Pattern Recognition, CVPR, 

pp. 105-114. http://dx.doi.org/10.1109/CVPR.2017.19 

[21] Simonyan, K., Zisserman, A. (2014). Very deep 

convolutional networks for large-scale image recognition. 

arXiv preprint arXiv:1409.1556. 

http://www.robots.ox.ac.uk/. 

[22] Wu, Y., He, K. (2002). Group normalization. 

International Journal of Computer Vision, 128(3): 742-

755. https://doi.org/10.1007/978-3-030-01261-8_1 

[23] Maas, A.L., Hannun, A.Y., Ng, A.Y. (2013). Rectifier 

nonlinearities improve neural network acoustic models. 

400



In Proc. ICML, 30(1): 3. https://doi.org/10.1.1.693.1422 

[24] Ronneberger, O., Fischer, P., Brox, T. (2015). U-net:

Convolutional networks for biomedical image

segmentation. In International Conference on Medical

Image Computing and Computer-Assisted Intervention,

pp. 234-241. http://dx.doi.org/10.1007/978-3-319-

24574-4_28

[25] Nagi, J., Ducatelle, F., Di Caro, G.A., Cireşan, D., Meier,

U., Giusti, A., Gambardella, L.M. (2011). Max-pooling

convolutional neural networks for vision-based hand

gesture recognition. In 2011 IEEE International

Conference on Signal and Image Processing

Applications (ICSIPA), pp. 342-347.

http://dx.doi.org/10.1109/ICSIPA.2011.6144164

[26] Bernal, J., Sánchez, J., Vilarino, F. (2012). Towards

automatic polyp detection with a polyp appearance

model. Pattern Recognition, 45(9): 3166-3182.

http://dx.doi.org/10.1016/j.patcog.2012.03.002

[27] Sirinukunwattana, K., Pluim, J.P., Chen, H., Qi, X., Heng,

P.A., Guo, Y.B., Rajpoot, N.M. (2017). Gland

segmentation in colon histology images: The glas

challenge contest. Medical Image Analysis, 35: 489-502.

http://dx.doi.org/10.1016/j.media.2016.08.008

[28] Sirinukunwattana, K., Snead, D.R., Rajpoot, N.M.

(2015). A stochastic polygons model for glandular

structures in colon histology images. IEEE Transactions

on Medical Imaging, 34(11): 2366-2378.

http://dx.doi.org/10.1109/TMI.2015.2433900

401




