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The aim of this paper is to analyze the performance of the two-phase MX/M/1 queueing
mechanism. The other conditions of the queueing system under study are state-dependent
arrival rates, N-policy, unreliable server and delayed repair. A single server provide service in
two stages. The first stage is batch service and the second one is individual to each customer
in the batch. The client’s arrival rate depends upon the state of the server. We developed the
steady state equations. Probability generating functions were used to solve the equations. The
expected size of the queue while the server is at different states are derived. Cost function has

been developed to determine the optimal threshold of N. Sensitivity analysis is presented to
study the effect of the system parameters at the threshold of N for the geometric batch size
distribution. The findings of this research help in designing two-phase queueing systems that
occur in telecommunication networks, production etc. at a low cost.

1. INTRODUCTION

In many queueing systems that are observed in
telecommunication networks, production systems etc. the
arrival rates are not constant, but depends on the state of the
server. Various authors have studied queueing problems with
state dependent arrival rates under different queue control
policies.

One of the critical works done towards this path was
performed by Yechiali and Naor [1]. Haris and Marchal [2]
studied the M/G/1 queue with server vacations whose
distributions can be state dependent. Yijun and Quanlin [3]
examined the two-stage queueing system with state dependent
vacation policy. They derived the stationary distributions of
the queue length and the cycle time for the closed state-
dependent vacation model.

Kumar and Chandan [4], analyzed the performance of two-
phase M*/Ex/1 queuing system with server startups and N-
policy. They derived optimal threshold value of N by
computing average queue size of the system and average cost
considering three batch size distributions. Al Hanbali, &
Boxma [5] studied Busy period analysis of the state dependent
M/M/1/K queue. Vasanta Kumar et al. [8, 9] examined the
performance of two-phase M*/M/1 and M*/EW/1 queueing
systems with N-policy and unreliable server, respectively.

Madhu Jain and Agarval [6] dealt with a state dependent
batch arrival queueing system with modified Bernoulli
vacation under N-policy. They proposed a method to find the
optimal value of the threshold parameter to minimize the total
expected cost. Singh et al. [10] considered a single server, state
dependent Poisson arrival system. They used supplementary
variable technique to obtain probability generating function of
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number of units in the system. In addition, some special cases
are also provided. Charan Jeet Singh and Binay Kumar [11]
investigated a batch arrival queueing system with unreliable
server, state dependent arrival rates and two stages of
heterogeneous service. They studied the transient and steady-
state behaviour of the queue length distribution.

Banik [7] assessed state-dependent arrival in GI/BMSP/1/0
queue. Rashmita [12] evaluated M*X/G/1 queueing model.
They considered the state-dependent server vacation and
derived the explicit expressions for the system size. Charan
Jeet Singh et al. [15] investigated a single repairable server
queueing system with bulk input and state dependent rates
considering the general distributions for the repair, delay to
repair and service processes.

Hanumantha Rao et al. [13] studied two-phase M/M/1
queueing system with server breakdowns, delayed repair, and
impatient customers. They found expected loss due to balking
and reneging. Numerical illustrations are presented to support
the model. Recently, Hanumantha Rao et al. [14] examined the
M/M/1 two -phase queueing system with state dependent
arrival rates under N policy.

As observed from the review of literature two-phase
M*/M/1 queueing system with state dependent arrival rates,
N-policy and unreliable server has not been studied so far.
Thus the present study is aimed at the analysis of this queueing
system. The remainder of this paper is organized as follows:
Section 2 describes the model and its assumptions. Section 3
describes the analysis under steady state, Section 4 presents
the performance analysis of the system, Section 5 describes the
cost function and the optimal operating policy, Section 6
describes the sensitivity analysis and summary is presented in
Section 7.



2. DESCRIPTION OF PROPOSED MODEL AND
UNDERLYING ASSUMPTIONS

In the present research we examine the performance
analysis of M*/M/1 queueing system. The queugeing system is
considered with two phases of service, state-dependent arrival
rates, server breakdowns and delayed repair under N-policy.

Notation symbols used in this paper are presented below:
Notation symbols used in the present paper are presented below.

A;: Arrival rate while idle or startup states

A, Arrival rate while batch and individual services

A5 Arrival rate while breakdown and delay states

0: Startup rate

[: Batch service rate

pt Individual service rate

a1: Breakdown rate while batch service

az: Breakdown rate while individual service

0: Delay rate while batch and individual services

v: Repair rate while batch and individual services

Wy, Ws, Wy, Whb,, Wan, Wi , Whi , Wap: Average length of
vacation time, startup time, first phase service time, delay
period during first phase service, waiting time for repair
during first phase service, second phase service time, during
second phase service, waiting time for repair during second
phase service, and the cost parameter notations are taken from
our previous publication [14].

Assumptions

The first assumption of present queueing model is that a
single server provides with two-phases of service. The first
stage of service is batch service while the second one is
individual.

The customers arrive into the queue in batches of size ‘X’
according to Poisson process. The queueing model has state-
dependent arrival rates, as given in the notation. The queue
discipline is FCFS.

After providing batch service, the server proceeds to the
second phase. In the second phase individual customers in the
entire batch are served.

The service times for the batch stage and individual stage
are exponentially distributed with parameters  and p.

After offering individual service to the customers, the server
returns to the batch service queue and serve the newly joined
customers to the queue. After finishing batch service for the
waiting customers, the server proceeds to individual service.

At the moment of system being unoccupied, the server turns
off. The server will turn on as and when the number of arrivals
in the queue meet a preset threshold ‘N’. However, on return
the server is not available momentarily to restart the service to
the clients in waiting. At this moment it calls for a startup time.
The startup time of the server follows a negative exponential
distribution with average 1/6. On fulfillment of startup time
requirement, the server starts serving the clients in batch.

During the preservice and batch service, the new customers
are permitted to be included in the ongoing batch of service.

The server in the system which may face breakdown at
whatsoever moment follows Poisson breakdown with
parameters a; for initial phase of batch service and a; for the
second phase of individual serve. At whatever point the server
breaks down, the server is sent for repairing and it cannot
accomplish the service till it gets repaired. The delayed time
and repair time are considered to be negative exponentially
distributed with means 1/ and1/y.

When there is server failure during service, the customers
in process and in queue need to wait till the server available to
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complete the service. The customers are allowed to join the
queue even during the delay time and repair time.

3. ANALYSIS

In the current paper, the following notations have been
utilized as below:

Io,mo=Steady state probability when m customers are in the
batch queue and the server is on vacation state, m= 0,1,
2, ...(N-1).

I11,mo=Steady state probability when m customers are in the
batch queue while the server is in startup state, where m = N,
N+1, N+2, ...

I1o,m0=Steady state probability when m customers are in the
batch which is in batch service state, m= 1,2, 3...

I13m0= Steady state probability when m customers are in the
batch which is in batch service, while the server is found to be
broken down and waiting for repair state, m=1, 2, 3, ...

I14m0= Steady state probability when m customers are in the
batch which is in batch service, while the server is undergoing
repair, m=1,2,3, ...

I1smn= Steady state probability when m customers are in the
batch queue service and n customers in the individual service
while the server is in individual service state, m =0, 1, 2...,
andn=1,2,3, ...

I1s,mn= Steady state probability when m customers are in the
batch service and n customers in the individual service state,
while the server is in individual service but found to be broken
down and waiting for repair, m=0,1,2 ...,andn=1,2,3....

Il7mn = Steady state probability when m customers are in
the batch service and n customers in the individual service
queue while the server is in individual service, but undergoing
repair, m=0, 1,2...,andn=1,2,3....

The steady state equations for the queue length distribution

@)

Mgmo = A4 2=t allgm-10, 1 <=m < (N-1). (2)

Mg o0 = ullgg -
Ay + 0y o = A1 XLy aTgno1o- 3)

0\1 + e)l_ll,m,o = 7\1 Zl“:’IN alnl,m—l,o +
M XEm-n-n aillom-100 M= N+ 1. 4

Az + B+ alymo = A X2y aylly g0 + ulls 1 +
Yl4mo 1 <m < (N—-1). Q)

Az +B+a)lyme =24, 2z, ally oy + Wlsmq +
Y4mo + 61l o, m =N (6)

)

A3 + )Mz mo = a1l mo + A3 XiZq ailly 10, m>1 (8)

A3 + 5)“3,1,0 =yl 0.
s+ Y)H4,1,0 = 68I13,1,0. )
(A3 + Y)ymo = 6M3mo + A3 X124 ayll3 10, M>1 (10)

A +a, + li)ns,o,n = pllsoner + Blzno + Y700, n =1
(11)



O\Z + 0] + u)ns,m,n = 7\2 Z{rzli a l—Is,m—l,n +u l—Is,m,n+1 +
Y7 mpn m=1,&n = 1 (12)
(A3 + 8)1_[6,0,11 = aznsloln’n 2 1. (13)

(7\3 + 8)HG,m,n = o(Zl-ls,m,n + 23 Z{gl a) I—[6,m—1,n: m =
1,&n =1 (14)
s + Y)H7,0,n = 5“6,0,n,n =1 (15)

()\3 + Y)H7,m,n = Snﬁ,m,n + )\3 Zln;1 aj l_[7,m—l,n'rn =&nz=1
(16)

In the next step PGF’s (Probability generating functions) of

queue size at an arbitrary time epoch are derived for different
states of the system. Prior to that PGF’s are defined below:

Fo(s) = Z omes™, Fi(s) = Z [y mos™, Fa(s)
m=0 m=0

[ee]
— § m
- l_[Z,m,OS ’
m=0

Fa() = ) Tamos™ Fa®) = ) Ty s™ Fs(5,5)

= m=

[ee]
m=0n

Fes,) = ZZHGmns Y™ Fo(5,9)
m=0 n=
Z I—[7,m,nsmyn )

NgE

m,,n
l_[S,m,ns y,
1

[ee)
m=0n=1

Sn(s) = Xm=o I—16,m,nsm ,Ta(s) =
Xm=0 H7,m,nsmvanan(S) = Ym=0 1—IS,m,nSmr Is| <1yl <1

Let B(s) = Xm_;a,s™ be the probability generating
function of the arrival batch size random variable X and
B'(s), B''(s) represents the first and second order derivatives
of B(s) respectively.

From equation (1) to (16), using the PGFs, we will get
Fo(s) =ToooYn(S) .

where
Yn(S) = ZNzo Yms™ YN(l) moo Ym&Yy(1) =
Y eim Yp,. (17)
[A: (1 = B(s) + B]F;(s) = A1I1g 0,0 + A1 (B(s) — 1)F,(s)(18)

[A,(1 = B(s) + B + o;]F,(s) = pR(s) + OF;(s) —

Mg 0,0 + YF4(S). (19)
[A3(1 — B(s) + 8]F3(s) = a;F,(s). (20)
[A3(1 — B(s) + Y]F4(s) = 8F;(s). (21)

[A2(1 = B(s) + oz + u]R,(S) = uRp11 () + YT, (s) +
BIL; o, (22)
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[A,y(1 = B(s) + azy + u(y — D]Fs(s,y) = —uyR;(s) +

YyF;(s,y) + ByF2 (). (23)
[A3(1 = B(s) + 8]Sy(s) = azRy(s), (24)
[A3(1 = B(s) + 8]F4(s,y) = azFs(s,y). (25)
[A3(1 = B(s) + v]Ta(s) = 8 Sx(s), (26)
[A3(1 = B(s) + YIF;(s,y) = 8F¢(s,y). @7)
Put the value of F¢(s,y) in equation (27) we obtain
Ds(1=B) +VIF,(5y) = prma s (28)

[A3(1-A(s)+3]
Puty =sin Eq. (23), we get

[A;s(1 = B(s)) + a,s + pu(s — 1)]Fs(s, s)
= —usR,(s) + ysF,(s,s) + BsF,(s).

Put the values of F,(s) and F,(s,s) obtained through
equations (19) and (28) respectively, we get

[(As(1 = B(s) + azs+ pu(s — DA3(1 = B(s) + &) (A3 (1 —
B(s) +v) — y8a,s]Fs(s,s) = (BSFz (s) — usRy (5))[7\3(1 -
B(s) + y][A;(1 — B(s) + 8]. (29)

Put s=1 and y=1 in Eqns. (17), (18), (19), (20), (21), (25),
(28), and (29), we get

Fo(1) = Yy (Dg00. (30)

F,(1) = ““°°° (31)

F>(1) =GRy (D) (32)

F2(1) = T F,(1) (33)

Fa(1) = HF,(1) (34)

i nw <1><;+§3((1‘}; y)):22<1+ SFL() )
12240 1. 23(44%2))

Fe(1,1) = 2 Fs(1,1) (36)

F,(1,1) = % Fs(1,1) 37

Thequeue length distribution is given by

F(s,s) = Fy(s) + F1(s) + F5(s) + F5(s) + F,(s) +
F<(s,s) + Fs(s,s) + F, (s, s).

Probability that the server is not doing any service is given
by
AB'(1) A3B'(1)

Fo(1)+F1(1)_1_T_T(

_%B_(D(m&)'
B y 6

o o\ AB(1)
+ ) -
y & 11



This gives

A1+0Y N (1)
(%) Mooo =1—p1—p2

- 520224 %))
p= 0 1422 (219)

and p = p, + p, is the utilizing factor of the system.

0
Hence, Iy 0 = (1 —p) (A +6yN (D)

The Normalizing condition is

(38)
where P1

A3
Az

F(1,1) = Fo(1) + F{(1) + F,(1) + F;(1) + F,(1) +

Fs(1,1) + Fg(1,1) + F,(1,1) = 1. (39)
Using the normalizing condition, we get
R(1) = ﬁ[(zﬁpz)(l p)u-(1+°2+2)oF1 (1)  40)
[,L[(1+ S48t (- al)( 5)(A2-25)B" (1)
Let F(1,1) =1 in the forms lyiir}F(l,y)zl and

1irr11 F(s,1) = 1we find
S—

_ P2 |{2B'@ | 3B'() (a; | a
Ri(1) = (1p)[< R (5+y))F2(1)+
A1B (1)
“——1-p - Pz)]- (41)

4. PERFORMANCE ANALYSIS OF THE SYSTEM

In the present segment, authors evaluated the mathematical
expressions for average size of the system at distinct states of
the server:

e  The average size of the system while the server is on
vacation state is
Ly = Yhoamlly o = Fo(1) =Yy (DMge,.  (42)
e  The average size of the system while the server is in
startup state is

o ' AB (1)(A1+6YN (1)
Ls = X=-nmllpmo = F1 (1) = %H (43)
e The average size of the system while the server is

offering in first of batch service

Lb_Z mHZmO_FZ(l)—

ZCOIAT

ay i 0
7)) +ERI(D) + ZFi (D), (44)

e  The average size of the system while the server is waiting
for repair during service

=8P W (1) + SRy (1)

(45)

Lpp = Xm=1 mll; 0 = Fé(l) =

e  The average size of the system while the server is in
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under repair during batch service,

A3B'(1
_ 43 (z)al Fz(l)"l‘

(46)

Lap = 25_11 mH4mo = F;(l)
bW, (1) 44 2F (1),

e The average size of the system while the server is
offering individual service state

= Ym= oZ?’f 1(m +n) sy = F5(1,1)

_ B - o
T uG-pp A +( T 0z = A,;B' (1))( )+ 2A'(D) ()\3 +
24 %) 73’*;1)“2] F<(1,1)
A3B’(1) a; | oy ' ' ag
(G 34 a0 + BP0 2+
0‘1
VS )FZ(D +
B (1) (A “a 7\1B "W,
AZB/
p2) =t @ (1 —py—p2)
7\23 ( ) A
+= y : (1_91_92)4‘_1(1— pz)"‘ YN(l)Hooo]
A3B'(1)
“n(1-p2) ( ) [}\38 M ( )FZ(l) +
AB (D(L - py - p2>] (47)

e  The average size of the system while the server is in
waiting for repair in second phase of service

Ly = Z;:o 2n=1(m+n) Memn =
Fo(1,1) =220% R (1,1) + 2Fy(1,1)  (48)

e  The average size of the system while the server is under
repair in second phase service

Lgi = Xm=o2n=1(m + )y = F,(1,1) =

1) %
5)+ 2R

A3B' (Da, (1 n
14 Y
(49)

The average quantity of clients in the system is given by

L(N) = Fo(1) + F1(1) + F5(1) + F3(1) + F,(1) +
F5(1,1) + F¢(1,1) + F,(1,1).

(2, + 6Yy (D)
T 0,0,0

+(1 +7+ ) Es1)
SR

a;
8y
(1 +2 4 )F5(1 1.

=Yy (D0 + 4,B'(1)

+A,B'(1) ( 5

+ 1,B'(1) (—§ +

+ 2+
Y2
a;
+ ﬁ) Fo(1,1)
(50)
Then the average length of a busy cycle is given by
WC = WV + WS + Wb +Wbb + de + Wi +Wbi + Wdi' (51)
The long run fractions of time, the server is in distant states

are given below:
e  The fraction of time the server is in vacation state



Wy

WC =1, = YN(l)HO,O,O (52)
e  The fraction of time the server is in startup state
Ws _ _ Moo
WC - 1_[S - 0 ) (53)

e  The fraction of time the server is in first phase service
state

Wb_

A2B'(1)
W !

I, =
b B

(54)

e  The fraction of time the server is in delay period during
first phase service state

we — bb = (1)

(55)

e  The fraction of time the server is in waiting time for
repair during first phase service state

Wap

= = 4
w, = Hab = —F2(1)

(56)

e  The fraction of time the server is in second phase service

state
!
A2B (1) 1+)‘_3(ﬂ+ﬂ) F2(1)+9F'1(1)
wi _ . = n A2\8 v 13 (57)
We ! 1 7\23'(1)(1_'_7\_3(0(2 . ‘12)
o \TTA\8 Ty

e  The fraction of time the server is in delay state during
second phase service and

Whi
We

=Tl = 2 F5(1,1), and (58)

e  The fraction of time the server is in waiting time for
repair state during second phase service respectively.

Wai _ . = %2
k=g = “2Fs(1,1) (59)
e The expected length of vacation period Wy, =AYNB—$(11)).
1

Substituting this in equation (52), we get W =
1

A B (DIg0,0°

5. COST FUNCTION AND OPTIMAL OPERATING
POLICY

System managers are keen on limiting the total expenditure.
For this reason, we establish the cost function in terms of
adequate performance measures and interrelated cost
components to ascertain the optimal threshold parameters.

Let Ca (N) be the average cost per unit of time. Then

C4(N) = CL(N) + C, (VV\\’,—'S + VV\‘]’—;) +C, (%) n

Cb (Wbb+Wd3\ZWbi+Wdi) + Cs (WLC) _ Cr (:,/vv_:) WC(GO)
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Neglecting the terms independent of N in Ca(N), from (61)
we get the new cost function

A4B'(1) , Ch M
T,(N) = m +1 ) YD, M +Cpy o o0,

+ A11-[0,0,0CS - CrYN(l)HO,O,O
1 ' ' C
= —— [(WB'W + (1 — p))VN (D) L+ (1 -
N (1-p2) k
p2) (Cm 2+ Ao = €Y (1)] o0

' ) C
= [B @ + 1 = p V(D 2+ uct
M
—p2) (Cm = T MG

VD] () = 1 = p2).

(61)
Subsequently for determination of the superior operating N-
policy, minimizing Ca(N) in (60) is equivale to minimizing
T,(N) in (61).
It is tight to prove that TA(N) is convex but now we
presented a technique to determine the optimal threshold N*.
Result
Utilizing the long run expected average cost criterion, the
optimal threshold N* is given by

N*:min{k > 1/( K3k — n)y, + +

C;) (1= p)}

) 5 o (ot
0 cp\ 6

(62)

Proof: Let J(k) = 2,y yim + 72 and 1()=2_y mym.
Consider the following difference

MY, H(K)

A0 =Tl D =100 = G 5 jaoite - 1

where A is the difference operator, and

Ch +C;

HOO = €y ()09 = 109) =4
=Cp [Z523 k= m) yie + 52 = 24 (

+ Cs) (1 - pz)
+C,) (1 - p,)(63)

Cm+Cr
Gl

By definition, Cy, [ kt(k—n)y, + k—;‘l] > 0 and

MY, -0
(1 =p)IK)J(k - 1)

Then it follows that AT, (k) > 0.

Thus, the sign of H(K) determines whether Ta(N) increases
or decreases,

Let m be the first k such that H(k) > 0, then we have

Hm+ 1) =C[(m+1)J(m+ 1) —P(m+ 1)]
Cpn +C;
_/11( +Cs)(1_P2)
= H(m)+C,P(m).

It follows that H(m+1)> H(m).

Hence for some n>m, we have Ty (n) > T, (m).

Let N"be the optimal value of N, which minimizesT, (N),
Then from equation (63) we have



N*:min{k = 1/( Ktk —n)y, + %) > A—l(ﬂ "

Ch 0
Cs) (1 - p2)} (64)
therefore, the premier threshold of N may be evaluated from
equation (64), through selecting the pleasant value of k, that is
one of the integers surrounding ‘N’.

Also, note that if (Cmfci‘;w) > 1,(1 - p,), the optimal
0 S

threshold N*should be 1.

To carry out the sensitivity analysis, we assume that the
arrival batch size follows geometric distribution. Then by, =
PX=K) =p(1-p)*%L 0o<p<lLk=12,..

with probability generating function B(s) = (11__;)5)-

B'(1)= ﬁ and E(X(X-1)) =B"'(1)= 2(;—;") . Then

E(X) =

, A (A + 0y (1)
L(N) = Yy(DIg 0 + ;1(19721\]) 0,0,0

o 0
+ (1 +7+—) Fy(1)

§
Az oy 0 0y
3(6_2+5+\7)F2(1)
Asfa oy
F(g 5+y—2)ps(1,1)

+(1+a2+a2)F’(11)
§ v/ s

)
where, Moo0 =1 —p1—p2) (m)'

_ 12 A3 (a1, a1
,pl—pﬁ<1+/12(y + 8)>,and

22 (a2 | 22
pz_pu<1+lz(6 +V))'

6. SENSITIVITY ANALYSIS

In this section, authorsdemonstrated thenumerical
illustrations of the model to study the variations in various
performance measures with respect to some parameters. The
illustrations presented in ensuing section show the analytical
outcomes acquired and display a way to reach to a decision.

The most suitable threshold N*, mean number of jobs inside
the system and minimal expected cost arediscovered for a
targeted range of values of A1, A2, A3, , B, 6,y, 8, a1, az, Ch, Co,
Cm, Cb, Cr, and Cs. Let us we ussume the A;=0.1, 2,=0.9 A5=0.5,
u=15, B=25, 0=2,y=2, 6=1, a1=0.2, 02=0.5, Cpn=20, C,=50,
Cm=35, C»=40, C,=30, and C,=30, and m=3.

From Table 1, it can be observed that

(i) N" shows enhancing trend with rise in the values of Ay,
diminishing trend for increase in 2, and is no significant with
increase in the values of A,

(i) both L(N™) and T(N™) increases with rise in the values
of A1,A,, andA;.

From Table 2, we can concludeas

(i) N" shows increasing trend with increase in the values of
w, and is insensitive with increase in the values of 3 and 6.

(ii) (N") and T(N*) decrease for increase in the values of p
and f3, and decreases slightly with increase in the values of 0.
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Table 1. Influence of (A1, A2, As) on N*, L(N"), and T(N*)

M N L(NY) TN
01 4 1862 48135
02 6 1868 48571
03 7 1871  489.29
04 8 1877  492.65
05 9 1887  496.04
06 9 1889 49962
w  N° LIN)  T(N)
09 10 761 273.31
1 10 842 291.08
11 10 946  312.64
13 9 1247 37526
14 9 1507 42442
16 8 2477  609.85
N L(ND)  T(N)
05 9 822 282.65
06 9 945  307.38
07 9 1101 33872
08 9 13 378.64
09 9 1556 42981
1 9 1887  496.04

Table 2. Influence of (. B, 6) on N*, L(N™), and T(N*)

L N L(ND) T(N)
13 8 297 708.24
15 9 1897 496.04
17 9 1418 406.75
20 9 1092 342.41
25 10 839 295.54
30 10 7.21 273.78
BN L(N) T(N)
20 9 2029 526.75
24 9 191 501.09
28 9 1839 483.19
32 9 1766 469.99
3 9 1719 459.87
40 9 1682 451.86
5 N L(N) T(N)
13 9 1893 496.93
14 9 1892 496.74
15 9 1891 496.58
16 9 189 496.44
17 9 1889 496.32
1.8 9 1888 496.22

Table 3. Influence of (@, ;) on N*, L(N"), and T(N*)

ar  N* L(N) T(N)
01 9 2348 621.08
02 9 1887 496.04
03 9 1655 432.25
04 9 1516 393.32
05 9 1424 366.92
06 9 136 347.73
@ N* L(N) T(N)
02 10 947 320.97
03 10 1165 360.1
04 9 1452 415.18
05 9 1887 496.04
06 8 2543 622.1
07 7 3654 837.68




From Table 3, one can conclude as

(i) N* is insensitive with enhance in the values of «,,and
shows decreasing trend with increase in the values of a,,

(ii) Both L(N™) and T(N™) decrease for rise in the values of
a,, and

(iii) with enhance in the values of a,, both L(N") and T(N*)
increase.

Table 4. Influence of (Cp, Cs, Cm) on N*, L(N*), and T(N™)

Co  N* L(N)  T(N)
25 9 1887 484.78
30 9 1887 49854
35 9 1887  492.29
40 9 1887  496.04
45 9 18.87  499.79
50 9 18.87 50355
C. N* L(N) T(N)
250 7 1867  486.68
300 8 1877  490.06
400 9 18.87  496.04
500 10 1897  501.42
600 11 19.07  506.34
700 12 19.17  510.88
Cm  N* L(N)  T(N)
25 9 1887 49595
30 9 1887 49599
35 9 1887  496.04
40 9 1887  496.09
45 9 1887  496.13
50 9 18.87  496.17

From Table 4, it is observed that,

(i) N* and L(N") are insensitive with enhance in the values
of Cp and Cr, and increases with rise in the values of Cs, and

(if) T(N™)rises for enhance in the values of Cyand Cs, and
T(N™) increases slightly with rise in the values of C.

Table 5. Influence of (Cy, Co, Cy) on N*, L(N™*), and T(N*)

Cn N* L(N)  T(N)
15 11 19.07  40L4
17 10 1897  439.35
21 9 1887 51491
23 8 1877 5525
31 7 1867  702.19
33 7 1867 73953
Co  N* L(NY  T(N)
25 9 1867  460.69
30 9 1867  467.76
35 9 1867 47483
40 9 1867  481.98
45 9 1867  488.97
50 9 1867  496.04
C._N* L(N) __ T(N)
15 9 1887 49878
20 9 1887 4981
25 9 1887 49741
30 9 1887  496.73
35 9 1887  496.04
40 9 1887  495.36

From Table 5, it observed that,
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(i) N*and L(N™) show diminishing trend with rise in the
values of Cp, and are no significant with enhance in the
values of C, and C; and

(ii) T(N™)rises with enhance in the values of C, and C,, and
diminishes with increase in the values of C;,

7. SUMMARY

In the present paper, we investigated some important
performance measures of the two-phase MX/M/1 queueing
system with state-dependent arrival rates, server startup and
unreliable server. The average cost function per unit time is
formulated to conclude the best threshold of N. Impact of the
system parameters on N, mean system size and minimum cost
are studied via numerical values. This work can be generalized,
considering the general distributions for the batch size, service
time, startup time and repair times.
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