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This research paper introduces an adaptive terminal synergetic nonlinear control. This 

control aims at synchronizing two hyperchaotic Zhou systems. Thus, the adaptive terminal 

synergetic control’s synthesis is applied to synchronize a hyperchaotic i.e., slave system 

with unknown parameters with another hyperchaotic i.e., master system. Accordingly, 

simulation results of each system in different initial conditions reveal significant 

convergence. Moreover, the findings proved stability and robustness of the suggested 

scheme using Lyapunov stability theory. 
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1. INTRODUCTION

Chaos theory and chaotic systems are deterministic, 

irregular, and aperiodic with unpredictable behavior having an 

extra-sensitive dependence on initial conditions [1]. Hence, 

chaotic systems are generally defined as a set of two or three 

autonomous nonlinear equations. Accordingly, a three-

dimensional chaotic system includes one positive, one zero, 

and one negative Lyapunov exponents. Thus, if a system has 

more than three states and displays chaotic behavior, then it is 

referred to as a hyperchaotic system [2], that was first 

discovered by Rössler [3]. For instance, among the classical 

common systems are, Lorentz system [4], hyperchaotic Lü 

system [5], Chua’s circuit [6], and Qi system [7]; in addition, 

the recent hyperchaotic systems are Dadras system [8], 

hyperchaotic Vaidyanathan systems [9], hyperchaotic 

Sampath system [10], and hyperchaotic Pham system [11]. On 

the other hand, a four-dimensional hyperchaotic system 

contains one more positive Lyapunov exponent. It has 

complex dynamics and characteristics than chaotic systems; 

therefore, this type of dynamics has miscellaneous 

applications in engineering such as secure communications 

[12, 13], cryptosystems [14], encryption [15, 16], and 

electrical circuits [17, 18]. 

Furthermore, in the last two decades, synchronization of 

chaotic and hyperchaotic systems has been a crucial topic of 

research, it is required when a chaotic system drives another 

chaotic system reaching asymptotically zero error between 

master and slave systems states. Among synchronization types 

studied recently in the literature are: complete synchronization 

[19], anti-synchronization [20, 21], hybrid synchronization 

[22, 23], lag synchronization [24], phase synchronization [25], 

anti-phase synchronization [26], generalized synchronization 

[27], projective synchronization [28], generalized projective 

synchronization [29-31], etc. 

In the same vein, since the discovery of chaos 

synchronization applications, various control techniques and 

methods have been developed, such as active control method 

[32] can be used when the system parameters are known,

adaptive control method [31, 33] is applied when the system

parameters are unknown., nonlinear feedback [34],

backstepping control [35] and sliding mode control [36].

Similar to sliding mode (SMC) but without chattering, the 

synergetic technique is a robust approach which doesn’t need 

linearization with no discontinuous term in its control law is 

thus more suited for real-time implementation. As in sliding 

mode control upon reaching the equilibrium point, the system 

dynamics remain insensitive to a class of parameter deviations 

and disturbances. A variety of successful applications of this 

approach exist such as a battery charging system [37], a power 

system stabilizer [38, 39], a quadrotor helicopter system [40], 

and DC_DC power converter control [41, 42]. 

The goal considered in this paper, is to force the master-

slave hyperchaotic systems to be synchronized even if they 

have differential initial conditions. Simulation results show 

that the proposed controller effectively drives the slave system 

in spite of different initial conditions. In this paper, Section 2 

introduces the hyperchaotic Zhou system while Section 3 

covers the main results for the adaptive terminal 

synchronization of the identical Zhou systems with unknown 

parameters using terminal synergetic control. Finally, the 

concluding remarks are given in Section 4. 

2. SYSTEM DESCRIPTION

In 2009, hyperchaotic Zhou system [43] is described by a 

fourth order model. 
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x1, x2, x3 and x4 represent the system variables, and a, b, cand 

d are system parameters. Hyperchaotic comportment for (1) 

can be observed for: 

 

35, 3, 12,0 34.8a b c d= = =    (2) 

 

Using (2), the system linearization matrix at the equilibrium 

point E0=[0 0 0] is obtained as: 
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Eigenvalues of A are:  
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It is obvious that system (1) is unstable, λ1being positive. 

In the simulation study, the values of a, b, c are as given in 

(2) and the value of d is chosen as d=1.Projections of different 

attractors are shown in Figure 1. This figure shows the 

behavior chaotic of Zhou system. 

 

 

 

 

 
 

Figure 1. Hyperchaotic Zhou system phase plane portrait 

3. SYNERGETIC CONTROL 

 

Synergetic control is a robust nonlinear approach very 

similar to sliding mode control technique; it relies on a suitable 

macro-variable choice which comprises variables of interest 

and a desired performance based constraint. 

Synthesis of the controller begins with a choice of a function 

of two or more state variables called the macro-variable (5): 

 

x t f x u t=( ) ( , , )  (5) 

 

x is the system state vector and u the control law.  

Synergetic control includes the choice of a function of two 

or more system variables called the macro-variable as in (6): 

 

( , )x t =   (6) 

 

The synergetic control goal is to drive the system to a 

chosen manifold. 

 

d
x

dx


 =  (7) 

 

T represents the desired speed convergence to the selected 

manifold. 

 

d
x
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
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Substituting (9) and (6) into (8) gives: 

 

( , , ) 0
d

f x u t
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Solving (9) for u leads to (10): 

 

( , ( , ), , )u g x x t t=    (10) 

 

 

4. ADAPTIVE SYNCHRONIZATION USING 

TERMINAL SYNERGETIC CONTROL 

 

An adaptive scheme will be used in this section in 

conjunction with a terminal synergetic approach to provide a 

robust control law for globally synchronizing identical 

hyperchaotic Zhou systems with unknown parameters. 

Letting the master system be given as: 
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The slave system with the terminal synergetic controllers (ui) 

is defined as follows: 
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𝑦1 , 𝑦2, 𝑦3, 𝑦4 represent system states and 𝑢1, 𝑢2, 𝑢3, 𝑢4  the 

adaptive controls to be elaborated based on estimates �̂�, �̂�, �̂�, �̂� 

for the unknown parameters a, b, c, d. 

For the complete synchronization of the master and slave 

systems, the synchronization errors must rapidly reach a zero 

value i.e.: 𝑙𝑖𝑚𝑡→∞ 𝑒𝑖 = 0. Where ei is defined by: 

 

i i ie y x= −  (13) 

 

Thus, the synchronization errors dynamics can be described 

by (14): 
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4.1 Control design 

 

The main objective here is to design adaptive terminal 

synergetic controllers ( 𝑢1, 𝑢2, 𝑢3, 𝑢4)  to synchronize the 

hyperchaotic systems in Eq. (12) with Eq. (11). 

First, a macro-variable 𝛹is defined to construct a manifold 

for the nonlinear system to be controlled given as:  
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The derivative of (15) leads to: 
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where, 𝑖 = 1,2,3,4  and 𝑘𝑖 >0, p and q are positive odd 

constants, such that 0<
𝑝

𝑞
<1. Upon reaching the terminal 

attractor 𝛹 = 0, the error system dynamics is constrained by 

(17): 
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which may be written as (18): 
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Time integrating (18) ( 𝑒𝑖 (0)≠0, e( 𝑡𝑓 )=0) leads to the 

following equation: 
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When the system reaches the terminal synergetic mode at 

𝑡 = 𝑡𝑓, the system state error converges to zero in finite-time. 

The adaptive synergetic controllers obtained are given in 

(20): 
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The estimated unknown parameters are obtained using the 

following adaptive laws: 
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(21) 

 

4.2 Robust stability analysis of the controller 

 

Lyapunov stability analysis is used to study the stability of 

the controlled system. 

Theorem: The adaptive terminal synergetic control input 

law in Eq. (20) with 𝑘𝑖>0 and 𝛵𝑖>0 stabilizes the system. 

Proof: A Lyapunov function candidates chosen as: 
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where the parameter estimation errors are defined as: 
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The derivative of the Lyapunov function gives: 
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Using (16) and (23) in (24) results in (25) 
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which leads after some basic mathematical manipulations to 

(26): 
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Making use of (20), (21) in (26) permits to write: 

 
22 2 2

31 2 4

1 2 3 4

V
  
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 (27) 

 

where, 𝛵𝑖>0, 𝑖 = 0, . . . ,4. 

Thus, one concludes: 

 

0V =  (28) 

 

It’s obvious that (28) confirms the stability of the system. 

 

5. SIMULATION RESULTS 

 

Numerical simulations are carried out to assess the proposed 

method performance; the parameters of the Zhou system for 

hyperchaotic behavior are: 𝑎 = 35, 𝑏 = 3, 𝑐 = 12, 𝑑 = 1. 

Two different sets of initial conditions are chosen:  

𝑥1(0) = 25, 𝑥2(0) = −16, 𝑥3 = (0)20, 𝑥4(0) = −30 , for 

the master system (11) and:𝑦1(0) = 14, 𝑦2(0) = 28, 𝑦3(0) =
−10, 𝑦4(0) = 6, for the salve system. 

Initial values for the parameter estimates are taken as: �̂� =

6, �̂� = 10, �̂� = 20, �̂� = 15. The synergetic control parameters 

used are 𝛵 = 100, 𝑘𝑖 = 30, (i=1,..,4). 

A comparative study is realized using identical initial 

conditions between the proposed method and a sliding mode 

controller. Simulation results are shown in Figure 2 for the 

synchronization of states of the two identical hyperchaotic 

Zhou systems, where was it noted that the states of the slave. 

Systems in terminal synergetic control are synchronized 

with the master system faster than the states of SMC. 

In Figure 3 the simulation responses of errors of proposed 

method presents a faster convergence to zero than the sliding 

mode control errors. Figure 4 shows the parameter estimates 

of the slave system with terminal synergetic control do 

converge to parameter values in the master system with faster 

responses and less oscillations than SMC. 

These tables recapitulate the comparison between the two 

methods TSC and SMC. 

 

 

 
 

Figure 2. Synchronization of the states with SMC and TSC 
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Figure 3. Synchronization of the errors with SMC and TSC 

 

 
 

Figure 4. Comparison of the parameter estimates �̂�, �̂�, �̂�, �̂� between SMC and TSC 

 

 

Table 1. Comparison of the response time of states between 

TSC and SMC 

 
Methods/response time of states TSC SMC 

x1,y1 0.031 sec 0.26 sec 

x2,y2 0.047 sec 0.17 sec 

x3,y3 0.046 sec 0.19 sec 

x4,y4 0.059 sec 0.18 sec 
 

Table 2. Comparison of error response time between the two 

methods TSC and SMC 
 

Methods/response time of errors TSC SMC 

E1 0.127 0.44 

E2 0.059 0.36 

E3 0.048 0.45 

E4 0.06 0.39 

 

It is evident from Tables 1 and 2 that faster synchronization 

can be obtained using terminal synergetic control than with the 

use of SMC by a factor of 4. Sliding mode control induced 

errors subsides up to 0.4 seconds whereas those related to the 

proposed approach fade away within 0.15 seconds. So, thanks 

to the terminal synergetic control (TSC), the accuracy and the 

dynamic stability of the system is improved. 

6. CONCLUSION 

 

In this paper, an adaptive synergetic terminal approach has 

been proposed in a synchronization process of two 

hyperchaotic Zhou systems. Accordingly, the system model 

used was dismantled, then two identical hyperchaotic systems 

were synchronized using adaptive terminal synergetic control; 

provided that the system parameters are unknown. Finally, the 

findings were compared to sliding mode control results. The 

simulation outcomes show the prevalence of the synergetic 

approach over the sliding mode control. Indeed, two identical 

hyperchaotic systems have been synchronized using adaptive 

terminal synergetic control assuming unknown system 

parameters with good overall performance.  
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