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Misalignment and unbalance are a common fault occurring in the rotor system. A new 

approach for detecting misalignment and unbalance problems combining the intrinsic time 

- scale decomposition (ITD), the root mean square (RMS) and perceptron multilayer

network (MLP) is proposed in this paper. Vibration signals of normal condition,

misalignment horizontal, misalignment vertical and unbalance with different level are

collected under different speed. ITD, nonlinear analysis of signals, was applied to

decompose the vibration signals into 8 proper rotation components. The RMS values of 8

components are calculated and using as features vector. Last, the perceptron multilayer

network was used for fault identification and classification. The proposed approach

accurately classified and detection of unbalance and misalignment; the average accuracy

achieved is 97.99%.
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1. INTRODUCTION

Misalignment and imbalance are the most common failures 

of rotating machinery [1]. According to statistics, more than 

80% of rotating machine faults is due to unbalance and 

misalignments [2]. Therefore, it is important to detect these 

faults at an early stage to minimize maintenance cost and 

catastrophic accidents [3, 4]. 

Misalignment and unbalance of rotating shafts are common 

cause of vibration in rotating machinery [5, 6]. Thus, the most 

powerful way to detect such faults is vibration monitoring and 

analysis [7]. 

Feature extraction is a key step in traditional fault diagnosis 

methods based on vibration signal [8], the extraction of 

features from vibration signals affected by the non-linearity 

and non-stationary [9, 10]. 

Recently an advanced signal processing methods using for 

features extraction from the vibration signals of rotating 

machinery [11]. Wavelet transforms (WT) [12, 13], empirical 

mode decomposition (EMD) or Hilbert-Huang transform 

(HHT) [14, 15], local mean decomposition (LMD) [16], and 

intrinsic time-scale decomposition (ITD) [17]. 

EMD or HHT a powerful technique for non-linear and non-

stationary signal processing, is superior to Fourier transform 

and WT and LMD in the field of machinery fault diagnosis 

[18]. 

The intrinsic time-scale decomposition (ITD) is superior to 

the EMD in reducing invalid components and mode mixing 

[17], and its calculation time is much lesser than that of the 

EMD method [19]. 

Different neural network classifier used the extracted 

features as input vectors like Multi-layer Perceptron (MLP) 

[20], k-nearest neighbor (KNN) [21], or support vector 

machine (SVM) [22]. Comparative studies have demonstrated 

the efficiency of MLP over other classifier types [23]. 

In this paper, we propose a novel strategy for identify and 

classify the condition of the rotor system as normal, 

unbalanced and misaligned. Firstly ITD, nonlinear analysis of 

signals, are applied to decompose the vibration signals into 

several proper rotation components. The RMS values of these 

components are calculated and using as features vector. Last, 

the perceptron multilayer network is used for fault 

identification and classification. 

2. RELATED WORK

The detection and classification of unbalance and 

misalignment faults has been the subject of several articles in 

recent years as an example reference [24] presented a study of 

a rotor system to quantify the effects induced by the 

simultaneous presence of an imbalance and misalignment of 

the shaft. The authors concluded that imbalance and 

misalignment can be characterized by one and twice the speed 

of operation in the corresponding spectra. Reddy and Sekhar 

[25] developed a method using strain sensors for the detection

of shaft misalignment at low speed. Wang et al. [26] used the

torque signal for the detection of coupling misalignment in the

rotor. Wang and Jiang [27] used laser measurements to detect

misalignment. The reference [28] presented a study on rotor

misalignment and imbalance defects. The authors observed

that the unbalanced mass incentive force occurs at the first

harmonic and the force associated with misalignment occurs

at the second harmonic.

The signature of the defects of imbalance and misalignment 

is almost the same that is why difficulty of identification. For 

this, we will develop a new approach to identify imbalance and 

misalignment at different shaft speeds.  
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3. METHODOLOGY 

 

The block diagram of the proposed methodology is shown 

in Figure 1. The signal vibration measured is devised into 20 

segments equitable. Each segment is decomposed into 08 

components using ITD technique. After decomposition, the 

root mean square of each component is calculated. The root 

mean squares (RMS) were used for fault detection using 

classifiers. 
 

 
 

Figure 1. The block diagram of the proposed method 
 

3.1 Experimental setup 
 

As shown in Figure 2. The machinery fault simulators 

consist of Motor 1/4 CV DC with extended shaft, single disk 

rotor and two identical self-aligned ball bearing. The shaft is 

supported by two bearing and has a length of 520 mm with a 

bearing span of 390 mm. The diameter of shaft is 16 mm. VFD 

(Variable Frequency Drive) is used to control the speed of 

motor from 700 to 3600 rpm for variable speed.  
 

 
 

Figure 2. Machinery fault simulators 

3.2 Experimental results  

 

In this work three different types of faults are considered: 

Misalignment horizontal (0.5, 1 and 2mm), Misalignment 

vertical (0.51, 1 and 1.90mm) and unbalance (10, 15 and 20g) 

under three different frequency operation 15 Hz, 30 Hz and 60 

Hz [29]. 

 

3.3 Segmentation 

 

In this work, for augmentation data the vibration signals are 

divided into 20 Segments equitable. 15 segments used for 

training neural network and 5 segments used for testing neural 

network. The Table 1 below presents the number of samples 

vibration signals used for each class. 

 

Table 1. The number of samples vibration signals 

 

Class 
Number of samples for 

Training Testing 

Normal 45 15 

Misalignment Horizontal 135 45 

Misalignment Vertical 135 45 

Unbalance 135 45 

Total samples 450 150 

 

3.4 Decomposition of signal using ITD 

 

After segmentation The Intrinsic Time-Scale 

Decomposition ITD method is used to decompose each 

segment into proper rotation components (PRCs), and a 

monotonic trend (we will illustrate an example in Figure 3). 

The input signal Xn can be decomposed as [17]: 

  

Xn= Hn + Ln (1) 

 

where,  

Xn is the input signal, Hn represents the proper rotation 

components (PRCs), and Ln =L Xn is the monotonic trend 

signal.  

If the real valued signal under analysis is {X𝑛, n ≥ 0} and 

suppose {τ𝑘, k = 1,2, … } be the local extreme points on X𝑛. 

For convenience define, τ0, = 0  be the first sample of the 

signal. Let the value of the signal at τ𝑘 be X(τ𝑘) and value of 

its baseline at τ𝑘 be L(τ𝑘). We assume that L𝑛 and H𝑛 are 

defined on [0, τ𝑘]and X𝑛 is available for n ∈ [0, τ𝑘 + 2]. The 

baseline extracting operator L is defined as a piecewise linear 

function on the interval [τ𝑘, τ𝑘 + 1] between the two extreme 

points as [17]. 

 

L𝑛 =  L𝑘 + (𝐿𝑘 + 1 − 𝐿𝑘
𝑋𝑘 + 1 − 𝑋𝑘

) (X𝑛 − X𝑘) (2) 

 

where, 
 

L𝑘 + 1 =  α (X𝑘 + [τ𝑘 + 1 − τ𝑘
τ𝑘 + 2 − τ𝑘

] (X𝑘 + 2 − X𝑘))

+ (1 − α)X𝑘 + 1 

(3) 

 

And 0 < 𝛼 < 1 with a typical value of 0.5. 
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Figure 3. Example illustrating ITD decomposition of vibration signal relating to normal condition a 30 Hz frequency 

 

3.5 Feature Extraction (RMS) 

 

After ITD decomposition, the RMS of each proper rotation 

component obtained by decomposition of different segments 

vibration signals are calculated separately. The root mean 

square (RMS) is defined as the square root of the mean square.  

The RMS value of a discrete-time signal is the square root 

of the arithmetic mean of the squares of the signal sample 

values.  

The RMS can be computed as equation following [20].  

 

RMS = √
1

N
∑  x[n] 2  

N

n=1

 (4) 

 

where, n=1,2,…, N, and N is the sample size, that is, the 

number of observations in the sample. 

 

 
 

Figure 4. Bar graph of RMS values for condition normal (a) 

frequency 15 Hz (b) frequency 30Hz (c) frequency 60 Hz 

 
 

Figure 5. Bar graph of RMS values for misalignment 

horizontal (a) frequency 15 Hz (b) frequency 30Hz (c) 

frequency 60 Hz 

 

 
 

Figure 6. Bar graph of RMS values for misalignment vertical 

(a) frequency 15 Hz (b) frequency 30Hz (c) frequency 60 Hz 
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Figure 7. Bar graph of RMS values for unbalance (a) 

frequency 15 Hz (b) frequency 30Hz (c) frequency 60 Hz 

 

Figure 4, 5, 6 and 7 show bar graph of RMS values 

calculated of different proper rotation component of the first 

segment vibration signals for condition normal, misalignment 

horizontal, misalignment vertical and unbalance respectively. 

 

3.6 Multilayer perceptron 

 

In this work a multi-Layer perceptron (MLP) is used for 

detection and classification shaft misalignment and unbalance. 

It is a feedforward neural network with two layers between 

input and output layer. 8 input neurons and 2 output neurons. 

Feed forward means that data flows in one direction from input 

to output layer (forward). This type of network is trained with 

the back propagation learning algorithm.  

For each neuron receiving n inputs, the neuron’s output is 

given by [20].  
 

y𝑗 = 𝑓𝑘(∑ 𝑤𝑖𝑗𝑥𝑖 

N

i=1

+ 𝑏) (5) 

 

where,  

yj = neuron’s output; 

fk = activation function; 

wij =weight from node i to node j; 

xi = neuron’s input; 

𝑏 =scalar. 

 

The structure of the MLP is shown in Figure 8. 

 

 
 

Figure 8. Structure of MLP 

 

 

4. RESULT 

 

In this work we propose a novel approach to distinguish the 

different fault (misalignment horizontal (MH), misalignment 

vertical (MV), and unbalance) using ITD decomposition and 

nonlinear analysis of vibration signals. A total of 450 vibration 

signal segments are decomposed into 08 different components. 

The RMS of each component is calculated and multi-Layer 

perceptron (MLP) classifier is used. Our proposed approach 

obtained the highest classification accuracy of 97.99%, 

sensitivity of 94.44% and of Specificity 99.54%  

The classification accuracy of the normal condition, 

unbalance, misalignment horizontal and misalignment vertical 

were 99.33%, 97.33%, 97.33% and 98.00%, respectively. 

The confusion matrix of four class is presented in Table 2. 

45 values were correctly classified as normal, 41 values were 

correctly classified as MH and 42 values were correctly 

classified as MV and unbalance 1 value that should have been 

Unbalance were classified as MV and 1 value that should have 

been Normal were classified as Unbalance. 

 

Table 2. Confusion matrix 

 

  Predicted class Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) Normal MH MV Unbalance 

T
ru

e 
cl

a
ss

 Normal 45 0 0 0 99.33 100 99.21 

MH 0 41 0 0 97.33 91.11 100 

MV 0 0 42 1 98.00 93.33 100 

Unbalance 1 0 0 42 97.33 93.33 98.98 

Average - - - - 97.99 94.44 99.54 

 

 

5. CONCLUSIONS 

 

We have proposed a new approach for misalignment and 

unbalance detection and classification under variable speed 

based on a combining the intrinsic time - scale Decomposition, 

RMS and perceptron multilayer. Firstly, we decompose the 

raw vibration signal into 8 proper rotation components using 

ITD, after we calculate the RMS of each component. Finally, 

Perceptron multilayer classifier is trained for classification and 

detection of misalignment, unbalance and healthy condition. 

Our proposed approach obtained the highest classification 

accuracy of 97.99%, sensitivity of 94.44% and of Specificity 

99.54%. 

In future, this study can be expanded to classifier other 

faults using other method of signal decomposition. 
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NOMENCLATURE 

 

 
 

Subscripts 

 

MH nanoparticle 

MV fluid (pure water) 
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