
  

  

Novel Response Relation Method for Sensor Data Analysis of Complex Engineering Systems  
 

Kalyani Sunkara*, Venkata Rao K, Mary Sowjanya A 

 

 

Dept. of Computer Science & Systems Engineering, Andhra University College of Engineering (A), Visakhapatnam 530003, 

India 

 

Corresponding Author Email: dr.amsowjanya@andhrauniversity.edu.in 

 

https://doi.org/10.18280/ijsse.110503 

  

ABSTRACT 

   

Received: 27 July 2021 

Accepted: 2 October 2021 

 Technology of Internet of Things (IoT) offers extensive applications for industrial 

productivity and safety improvement. Advanced miniature sensors are available for 

monitoring multiple process parameters in a complex industrial or an engineering system. 

An industrial plant's overall operational status is captured using a network of sensors and 

stored on a cloud storage platform, where it is evaluated using the machine learning 

algorithms to produce valuable insights. Finding the correlation among these sensor 

variables is essential before feeding the same to machine learning algorithms. The present 

study proposes a novel approach to choose a few critical sensors out of numerous sensors 

based on the Response Relationship methodology. The Response Relationship method 

enables the system to be fully autonomous and helps find the interrelation among 

variables. The Response Relationship among variables is quantified and used for 

calculating the Remaining Useful Life of a complex engineering system. The proposed 

methodology is also applied to binary and multi-class classification to demonstrate the 

efficiency of the Response Relationship method. The results obtained are compared with 

standard methods of prediction and classification in terms of suitable metrics. 
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1. INTRODUCTION 

 

The Internet of Things (IoT) connects multiple machines 

and devices to the Internet in order to monitor their normal 

operation, aberrant operation, and the remaining useful life. 

The development of intelligent machines in aerospace, defense, 

and automotive needs frameworks that are self-powered and 

intelligent. With the advancement of cloud storage and 

processing capabilities, algorithms that run on edge devices 

offer increased benefits. There are numerous advantages to 

applying the IoT to manufacturing and engineering products. 

Figure 1 depicts the benefits of IoT applications like 

improving operational efficiency, improving safety, 

improving productivity, improving the well-being of workers, 

and creating new business opportunities. The application of 

IoT platforms has demonstrated less frequent downtime, asset 

planning and scheduling. These platforms can also learn from 

the product’s features from previously manufactured 

components and help develop process planning.  

With the wide range of enhanced network access, capturing 

the essential data with sensors and storing it on a cloud storage 

platform has become much easier. It is estimated that there is 

an exponential growth in the number of devices connected and 

consequently the data to be stored proportionally increased 

giving rise to a new set of challenges for enterprises to make 

real-world things. In time-critical situations, the stored data 

may not be helpful if the analysis is delayed due to limited 

network availability or overloaded central systems. An 

extensive array of analytics, networking, storage, high 

computation power, and suitable infrastructure are essential to 

analyze large amounts of data. 

In finance, insurance, and other closely related industries, 

generated data is examined using both conventional methods 

and models created during the last few decades. Though 

analytics is essential to IoT’s rapid growth and business value, 

conventional analytics approach may not fulfill different 

applications. Usually, such models cannot be directly used for 

sensor data analysis. Developing separate IoT application 

models is therefore highly essential. As sensors are located at 

various conditions, a new framework is required, which is 

applicable for industrial equipment. Data analysis techniques 

for analyzing the data captured in such platforms must 

therefore be improved and moved to edge devices to process 

the information efficiently. The primary challenge is to 

identify the most relevant predictors that will help predict each 

target time series. The current research presents a feature 

selection technique for multivariate time series forecasting. 

The paper’s remaining section is structured as follows: 

Section 2 reviews the recent developments in feature 

engineering and feature selection aspects to estimate the 

Remaining Useful Life of complex engineering systems. 

Section 3 describes the dataset used and its exploratory data 

analysis, followed by the proposed methodology in Section 4. 

Section 5 presents the Experimental study, results obtained, 

and discussions. Finally, the conclusion and future work is 

presented in Section 6. 
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Figure 1. Advantages of industrial IoT 

 

 

2. LITERATURE REVIEW 

 

Data-Driven Modeling has increased momentum with huge 

growth of articles utilising a variety of algorithms. Yan and 

Zhang [1] proposed a method for analysing and selecting 

features from correlated gas sensor data. To achieve a 

promising performance, this model's recursive feature removal 

technique used a correlation bias reduction strategy with linear 

and nonlinear SVM-RFE algorithms. Day et al. [2] presented 

the concept of autonomic feature selection through the lens of 

two concepts: representation and transfer learning. A system's 

representations for various forms of monitoring data are learnt, 

and the resulting knowledge is shared and reused. Su et al. [3] 

investigated the sensor data's feature engineering elements. 

Their approach entailed gathering sensor data correlation 

changes in order to enhance the detection of IoT (Internet of 

Things) equipment anomalies. Mosallam et al. [4] established 

a comprehensive foundation for RUL Prediction that is 

applicable to a wide variety of issues via the Bayesian 

approach. Li et al. [5] proposed a novel promising strategy for 

remaining useful life projections that requires no prior 

experience or signal processing. They used a deep 

convolutional neural network-based method. They examined 

the effect of critical factors on model parameter optimization 

for prognostic performance. Yu et al. [6] established a cluster-

based data analysis framework based on recursive principal 

component analysis (R-PCA) that aggregates correlated sensor 

data fast and accurately with outlier identification. Hromic et 

al. [7] extended the OpenIoTmiddleware's functionality for 

stream processing, providing real-time demand analytics on 

data streams. Ren et al. [8] proposed an integrated deep neural 

network approach for estimating the remaining useful life of a 

rolling bearing by combining time domain and frequency 

domain information. Le Son et al. [9] described a probabilistic 

approach to prognosis by integrating a data analysis technique 

(Principal Component Analysis) with a stochastic process 

(Wiener process) and applying it to the 2008 PHM Conference 

Challenge data. It simulates component deterioration in order 

to determine the RUL. Liao et al. [10] employed a logistic 

regression model and a proportional hazards model to develop 

a relationship between the numerous degradation 

characteristics of sensor inputs and the unit's specific 

reliability indices, allowing for the prediction of the unit's 

RUL. Liu et al. [11] developed a data-driven approach for 

RUL prediction that relies on sensor anomaly detection and 

data recovery. The associated algorithm detects and recovers 

aberrant sensor data in order to provide input to the RUL 

prediction algorithm. Mutual information, least squares 

support vector machine (LS-SVM), kernel principal 

component analysis (KPCA), and Gaussian process regression 

are all used (GPR). Medjaher et al. [12] developed a data-

driven prognostics technique using Dynamic Bayesian 

Networks (DBNs) in conjunction with Mixture of Gaussian 

Hidden Markov Models (MoG-HMMs). The RUL assessment 

is based on the crucial component that has been identified and 

the sensors that have been deployed. The prognostics method 

was divided into two phases: a learning phase in which the 

behaviour model was generated, and an exploitation phase in 

which the present health state was estimated and the RUL was 

computed. Zhang et al. [13] discussed the evolution of Wiener-

process-based approaches for analysing degradation data and 

estimating RUL. By taking into account nonlinearity, multi-

source variability, confounders, and multivariate, the 

degradation process concentrated on Wiener process 

variations. Wang et al. [14] introduced a unique strategy for 

RUL estimation termed functional Multilayer Perceptron 

(functional MLP). This is a revolutionary Functional Data 

Analysis (FDA) technique. Wang et al. [15] suggested a 

method for obtaining massive run-to-failure data for an 

engineering system. With data from numerous units within the 

same subsystem, a library of deterioration patterns is built. 

Estimation is based on the actual mapped units to the library's 

patterns. Loutas et al. [16] present a data-driven approach for 

estimating the remaining usable life (RUL) of rolling element 

bearings using Support Vector Regression (SVR). Massive 

research on feature selection necessitates a pre-learning 

procedure that is difficult to scale for high-dimensional data 

analytics that needs dynamic feature selection. As a result, Hoi 
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et al. [17] recommended two distinct research directions for 

feature selection approaches. One can infer that the number of 

features remains constant throughout while the rest change. 

Wang et al. [18] proposed an Online Feature Selection (OFS) 

technique based on the assumption that data instances are 

provided consecutively and that feature selection occurs as 

each data instance arrives. Wu et al. [19] introduced a 

straightforward but intelligent second-order online feature 

selection algorithm that is exceptionally efficient, scalable to 

large scale, and capable of handling extremely high 

dimensional data. Perkins and Theiler [20] presented the 

Grafting algorithm for this type of online feature selection. It 

is based on a stage-wise gradient descent approach. It regards 

convenient feature selection as an inherent aspect of learning 

a predictor in a regularised learning framework and gradually 

expanding a feature set while incrementally iteratively training 

a predictor model using gradient descent. Zhou et al. [21] 

proposed Alpha-investing as a new feature. Alpha-investing, 

on the other hand, requires previous knowledge of the original 

feature set and never assesses the redundancy among the 

selected features over time. Sunkara et al. [22] presented an 

integrated framework for IoT Systems that is suitable to 

engineering and industrial systems, with an emphasis on 

business and IoT intelligence integration. The current article 

expands on parts of integrated analysis by addressing the 

interdependence of sensor variables. Yu et al. [23] described a 

Scalable and Accurate Online Approach (SAOLA) technique 

for handling feature selection problems with exceptionally 

high dimensionality. It conducted a theoretical analysis and 

derived a lower bound on the correlations between features for 

paired comparisons, as well as proposing a set of online 

pairwise comparisons for the purpose of maintaining an 

economic model over time. Minor et al. [24] addressed the 

considerable issues associated in converting large-scale 

sensing data into judgments for real-world applications. Liu et 

al. [25] proposed a quantitative selection method based on 

information theory for sensor data in order to determine 

remaining useful life. Mosallam et al. [26] described a strategy 

for selecting unsupervised variables. Different health 

indicators (HIs) describe the degradation over time and are 

saved as reference models in the offline database. The 

approach identifies the offline HI that is the most comparable 

to the online HI in the online phase, and uses the k-nearest 

neighbour classifier as an RUL predictor. Djeziri et al. [27] 

studied wind turbine fault prognosis in the presence of 

numerous faults. The project sought to develop a physical 

model that could be utilised for structure analysis, sensor 

positioning, and cluster creation. Si et al. [28] discussed recent 

advances in modelling for calculating the RUL using statistical 

data-driven methodologies. They are divided between models 

that incorporate directly observable asset state information and 

those that do not. Zhang et al. [29] proposed a method for 

assembling multiobjective deep belief networks (MODBNE). 

The MODBNE approach combines a multiobjective 

evolutionary algorithm with the classic DBN training strategy 

to evolve several DBNs concurrently while balancing the 

competing aims of accuracy and diversity. Wu et al. [30] 

developed a quicker version of the Online Streaming Feature 

Selection (OSFS) algorithm, dubbed the Fast OSFS algorithm. 

Katukam et al. [31] employed a neural network approach to 

forecast the status of industrial equipment such as refrigerators, 

and this model contains an optimization strategy for 

guaranteeing that the equipment operates at the lowest 

possible energy and time consumption. Moraru et al. [32] used 

machine learning models to the processing of sensor data using 

the sensor node technique. The node senses parameters such 

as temperature (C), humidity (percent), light (Lux), and 

pressure (hPa), which are then processed by the internet 

gateway. Taha et al. [33] investigated the use of machine 

learning to create models for simulated aircraft sensor data 

provided by a turbofan aircraft engine. Although the engine is 

composed of several subsystems that each have their own set 

of parameters such as pressure, temperature, and flow rate, the 

suggested methodology estimates the remaining useful life 

(RUL) using only a fraction of the overall sensor data. The 

accuracy of the RUL forecast can be increased by considering 

as many parameters as possible. The model is constructed by 

removing the sensors' extreme values in order to approximate 

a Gaussian distribution. Okoh et al. [34] presented both 

regression-based and deep learning algorithms for estimating 

the remaining useful life. The computing costs of the methods 

discussed above become prohibitively expensive when the 

dimensionality is extremely high, on the order of millions or 

more. To summarize, the existing research of feature 

engineering seldom focuses on correlation changes, thus 

limiting the characteristics of correlation changes. Hence, the 

selection of good condition data is crucial for applying the 

data-driven methodology to be useful for the system with 

degradation characteristics. 

 

 

3. EXPLORATORY DATA ANALYSIS 

 

Data-driven models require data generated by sensors that 

measure physical characteristics such as pressure, temperature, 

and flow rate. The current research makes use of the publicly 

accessible NASA PCOE dataset, which contains the 

operational history of 100 aircraft engines, as well as readings 

from 21 sensors such as pressure, temperature, and flow rate. 

The dataset comprises around 100 cycles for each engine. The 

data set contains the averaged parameters of the model for 

each cycle of operation and are typically recorded until the 

engine reaches run-to-failure, which is the end of the engine’s 

life. Usually, the standard enterprise database collection 

system collects the sensor data and store the data in 

frameworks like SAP. The data is converted from the regular 

comma separated values (CSV) format to the panda 

framework using the panda analysis package in Python to 

facilitate data analysis on specific modules and to understand 

data's nomenclature such as missing values, null entries, and 

so on. Figure 2 illustrates the overall data analysis approach 

adapted in the current research. 

The framework begins with a dataset that is typically 

available in enterprise databases such as SQL and Oracle. The 

data collection is first preprocessed to remove null values, NA 

values, and empty cells to ensure that the model runs smoothly 

and doesn’t interfere with model processing. The Key 

Performance Indicators are determined by exploratory data 

analysis. A suitable method is used to identify and remove 

outliers and anomalies. Feature engineering is used to extract 

few features from the available large number of sensors. An 

ensemble algorithm with various regression and neural 

network models including the machine and business 

intelligence are deployed [22]. This generates quick alarms 

and plans the operations and maintenance of any complex 

system automatically. A fraction of the training data captured 

from the engine is shown in the following Table 1. 

Here, Id: Identity number of the engine 
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Cycle: Count of the cycle of operation 

Setting 1: Operation mode 1 

Setting 2: Operation mode 2 

Setting 3: Operation mode 3 

S1-21: Sensor Values captured for 21 sensors of various 

physical parameters. 

The fundamental statistical distribution of sensor values is 

first understood through data analysis. The maximum, 

minimum, range, mean, and standard deviation were 

calculated for all variables and are shown in Table 2. 

The standard deviation of any variable reflects the 

likelihood that the sensor will contribute significantly to the 

prediction of the target variable. For instance, Figure 3 

demonstrates that sensor 9 has the highest standard deviation 

in comparison to all other sensors. Additionally, standard 

deviation plays a crucial role in discovering anomalies and 

detecting outliers. 

Multiple variables are included in the data, and the 

relationship between them is the fundamental phenomenon 

that must be considered while developing a predictive model. 

As a result, a pandas correlogram is used to find correlation 

between sensors. The correlation matrix depicts how each 

parameter is interdependent on the others. As a consequence, 

a greater correlation 1 indicates that they are more dependent 

on one another. The association between sensors and non-zero 

standard deviations, for example, is depicted in Figure 4. 
 

 
 

Figure 2. Analytics framework for sensor data analysis 
 

Table 1. Dataset of aircraft sensor data 
 

 
 

Table 2. Key statistics of the variables 
 

 Id Cycle setting1 setting3 s1 s2 s3 s4 

Count 20631 20631 20631 20631 20631 20631 20631 20631 

Mean 51.506 108.807 -8.9E-06 100 518.67 642.68 1590.523 1408.93 

Std 29.227 68.8809 0.00218 0 6.54E-11 0.5000 6.13115 9.00060 

Min 1 1 -0.008 100 518.67 641.21 1571.04 1382.25 

25% 26 52 -0.0015 100 518.67 642.325 1586.26 1402.36 

50% 52 104 0 100 518.67 642.64 1590.1 1408.04 

75% 77 156 0.0015 100 518.67 643 1594.38 1414.55 

Max 100 362 0.0087 100 518.67 644.53 1616.91 1441.49 

 

 
 

Figure 3. Standard deviation of all variables (Zero &Non-Zero) 
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Figure 4. Dataset with non-zero standard deviation 

 

As described in Figure 4, out of all the 21 variables only 

variables which are having Non-zero standard deviation are 

considered for feature selection. Zero Standard deviation 

variables remain constant throughout the operation. 

 

 

4. METHODOLOGY 

 

In this proposed methodology, a novel solution as illustrated 

in Figure 5 is presented to perform feature engineering, find 

the critical sensors and the relationship among them using the 

following ensemble of algorithms. Initially, sensor readings 

are supplied to the framework in a suitable data format. Then 

the distribution of all variables is studied using statistical tools, 

and statistical properties are evaluated. A time or cyclic 

variation of the data is derived using the difference of 

consecutive data points. The standard deviation of the whole 

dataset is computed initially, and the same is classified into 

zero or non-zeros clusters. All non-zero standard deviation 

variables are grouped to be eligible for participation in further 

computation. For a non-zero group of sensors, a relationship 

matrix is formed. The computed relationship matrix is based 

on the Vector Auto Regression approach. Vector Auto 

Regression approach is a multi-variable probabilistic model 

that will give the probabilistic relationships among two 

variables through the impulse response function. VAR 

computation methodology is a standard library. Hence the 

explanation of the same is beyond the scope of the current 

paper. VAR considers the Lead /Lag relationship and 

influence probability between two variables to build the 

relationship matrix. From the relationship table, a ranking 

algorithm is used to find the variables with higher relation. 

These chosen sets of variables will be further used for 

developing machine learning algorithms. An error criterion 

like Root Mean Square Error (RMSE) is used to cross-check 

the model’s accuracy for a chosen set of sensor values. 

 

4.1 Response relation algorithm 

 

Input: Multivariate Time Series Data. 

Output: Significant features to be used in prediction. 

Step 1: Consider time series data S=[s1,s2,s3…sn] 

            For each Si in S 

               Calculate Std(Si) 

                    If  Std(Si==0) 

              zs=append.Si //append to Zero Cluster 

of variables 

                   else  

     nzs=append.S //append to Nonzero  

Cluster of Variables 

Step 2:  For each Si in nzs 

 res= ADFtest(Si) 

             If res is stationary 

               goto step3 

            else  

              apply transformations and goto step 2 

Step 3: Granger casuality test (nzs)  

            For each Si in nzs 

                 For each Sj in nzs 

                       grangercasuality(Si,Sj) 

             If (P-Value<=0.05) && (Fvalue>Fmean) 

                   Add(Si.Sj) to selected variables 

Step 4: For each Si in selected variables list 

                  sumlag(Si)              //find the sum of all lags  

Step 5: Rank them based on the highest value 

Step 6: Choose the top most ranked variables to 

participate in the prediction of RUL. 

 

 
 

Figure 5. Response Relation methodology 

 

Given a variable, several statistical tools and machine 

learning models are used to forecast its future value. These are 

models capable of forecasting for a single or numerous 

variables. Typically, models are constructed using simple 

linear approaches or sophisticated neural networks and begin 

with a fundamental mathematical relationship between one or 
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more independent variables and the dependent variable. Linear 

Regression is a machine learning approach that uses 

supervised learning to perform regression tasks. Regression 

modelling is used to create a target prediction value based on 

independent variables. It is mostly used to establish 

relationships between variables and to forecast their future 

values. The regression models vary in terms of the number of 

independent variables and the relationship between the 

independent and dependent variables. Linear regression 

models are more appropriate when the parameters are linearly 

dependent on one another. The current research is aimed at 

precisely calculating the remaining time to failure for all 

engines. As a result, the dependent variable is defined as the 

time to failure (TTF). A linear regression model is a critical 

component of any predictive study since it provides the initial 

estimate.  

Table 3 indicates the statistical relationship value among all 

the variables after applying the selection ranking criteria as 

0.05. This ranking can be chosen based on the dataset and 

domain expertise.  

 

Table 3. Relationship table after selection 

 
 setting1 s4 s6 s7 s13 s14 s15 s17 s20 s21 ttf 

Variable 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

setting2 0.03 0.03 0.60 0.98 0.37 0.23 0.31 0.68 0.42 0.09 0.05 

s4 0.50 0.01 0.02 0.02 0.03 0.56 0.00 0.04 0.14 0.12 0.02 

s8 0.45 0.00 0.90 0.00 0.00 0.00 0.00 0.05 0.14 0.06 0.00 

s20 0.50 0.01 0.57 0.01 0.09 0.62 0.00 0.01 0.07 0.00 0.05 

s6 0.81 0.21 0.04 0.62 0.01 0.75 0.05 0.30 0.35 0.62 0.02 

s13 0.75 0.70 0.03 0.01 0.00 0.00 0.63 0.06 0.14 0.01 0.05 

s11 0.80 0.00 0.71 0.00 0.00 0.57 0.00 0.00 0.00 0.01 0.04 

 

From the above table, seven sensors are selected before 

feeding the machine learning prediction algorithm. These 

sensors are namely setting2, s4, s6, s8, s11, s13, and s20. 

 

 

5. EXPERIMENTAL STUDY, RESULTS, AND 

DISCUSSIONS 

 

Once the selection of variables based on the response 

relation method is made, these variables are chosen to 

participate in machine learning prediction. In the current 

experimental study, seven variables are selected from 24 

parameters of the aircraft system. To demonstrate the 

comparison of the proposed method against all variable 

method predictions of RUL, Binary, and Multi-Class 

classification is conducted separately for both approaches. 

Finally, a comparative analysis is performed on the results. 

The current work employs a combination of regression 

techniques such as Linear, RIDGE, Random Forest, LASSO, 

Polynomial Regression, Decision Tree, SVC and MLP 

Classifier. 

 

5.1 Prediction of RUL (Remaining Useful Life) 

 

The graphs in Figure 6 represent the sample predicted and 

actual values using various models for all variable scenarios. 

In addition, a similar prediction is performed using Response 

Relation (RR) approach.  

The key requirement of a predictive maintenance algorithm 

is to predict the time to failure. Different Models are 

investigated for time to failure, with the SVC model predicting 

the time to failure prior to 25 cycles with an RMSE of 25. The 

same is computed for the response relation method, and the 

results are presented in Table 4. 

 

 
Linear regression model 

 
Linear regression model-LASSO 

 
Linear regression model-RIDGE 

 
Polynomial regression 

 
Random forest 

 
Decision tree 

 
SVC classifier 

 

Figure 6. RMSE comparison of actual & predicted values for 

various models with sensors 
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As described in Figure 6 RMSE values range from 25 to 32 

cycles. Out of all the algorithms SVC gave minimum RMSE. 

 

Table 4. RUL prediction using different models 

 

 
RMSE-

All 
R2-All 

MAE-

All 

RMSE-

RR 

R2-

RR 

MAE-

RR 

Linear 

Regression 

Model 

32.041 0.4054 25.5917 34.459 0.3123 26.830 

Linear –LASSO 31.966 0.40827 25.5518 34.33 0.3171 26.730 

Linear –RIDGE 32.008 25.5702 0.40670 34.42 0.3137 26.795 

Polynomial 

Regression 
32.852 0.37502 25.1062 33.81 0.3379 25.887 

Random Forest 28.899 0.51636 23.3600 32.58 0.3851 24.989 

Decision Tree 40.917 0.03047 26.3400 34.71 0.3020 26.736 

MLP Classifier 45.4794 0.1977 36.4800 38.62 0.1787 34.486 

SVC 25.50235 0.62338 19.6900 24.43 0.6123 18.583 

 

RMSE-All: Root Mean Square Error considering all 

variables in the dataset. 

R2-All: R squared error considering all the variables in the 

dataset. 

MAE-All: Mean Absolute error considering all the 

variables in the dataset. 

RMSE-RR: Root Mean Square Error with significant 

variables obtained from Relative Response. 

R2-RR: R squared error with significant variables obtained 

from Relative Response. 

MAE-RR: Mean Absolute error with significant variables 

obtained from Relative Response. 

 

5.2 Binary classification 

 

Any industrial IoT system must incorporate decision-

making capabilities. The algorithm's output must be expressed 

in terms of the profits that the business can reap. Based on the 

projected costs and profits for maintenance and operation in 

the current analysis, the KNN model provided the largest 

commercial advantage. The results of Binary Classification 

using all the variables in the dataset and comparison for binary 

classification using only the significant features obtained from 

relative response method are presented in Table 5 and Table 6, 

respectively. We compared the different models based on True 

and False Positive Rates (TPR, FPR). Theoretical basis for the 

response relationship methodology which is basis for these 

experiments is presented in section 4.1. The Mathematical 

procedure for each algorithm is available in open literature. 

 

Here, TP-True Positive FP-False Positive 

TN-True Negative FN-False Negative  

TPR-True positive Ratio FPR-False Positive Ratio 

 

Table 5. Comparison of binary classification with all the 

variables in the dataset 

 
 Model TP FP TN FN TPR FPR 

1 KNN  25 0 69 6 0.806 0 

2 Random Forest  25 0 67 8 0.757 0 

3 Logistic Regression 22 3 73 2 0.916 0.6 

4 SVC Linear  22 3 70 5 0.814 0.37 

5 Gaussian NB 21 4 67 8 0.724 0.33 

6 SVC  18 7 62 13 0.580 0.35 

 

 

Table 6. Comparison of binary classification with the 

significant variables from response relation 

 
 Model TP FP TN FN TPR FPR 

1 Random Forest 25 1 70 4 0.8631 0.085 

2 KNN 27 1 69 3 0.96 0.073 

3 Logistic Regression 25 2 69 5 0.917 0.073 

4 Gaussian NB 23 2 68 4 0.8558 0.084 

5 SVC Linear 24 3 68 5 0.8793 0.089 

6 SVC 24 1 70 5 0.8796 0.091 

 

5.3 Multiclass classification 

 

A multi-class classification is a valuable tool for decision-

making in industrial IoT applications. Typically, the operator 

is interested in knowing the time in which an engine will fail. 

In current research multi-class label is generated for the RUL 

cycle of 30 cycles. Figures 7 to 18 show the multi-class 

Classification matrix along with respective multi-class 

classification Statistics for Logistic Regression, Gaussian NB, 

SVC, KNN MLP and Decision Tree. Similar Computations 

are performed for the proposed response relation method, and 

finally, a comparison of both is made as shown in Tables 7 and 

8. 

In current study classification results with multiple 

algorithm experiments to prove that response relationship 

method provides acceptable results. 

 

 
 

Figure 7. Multi-class confusion matrix –SVC 

 

 
 

Figure 8. Multi-class classification statistics- SVC 

 

Support Vector Classifier Linear model: The support vector 

classifier (SVC) is a statistical technique that is used to 

determine the linear relationship between two continuous 

variables. SVC is memory efficient, which means it takes a 

relatively lower calculation resource to train the model, giving 

enormous computational advantages. 

Logistic Regression Model: Logistic Regression is a 

machine learning approach for binary classification in which 

the dependent variable is a binary variable. It forecasts the 

likelihood of occurrence of a categorical dependent variable 

with data coded as 1 (yes, success, etc.) or 0. (no, failure, etc.). 
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Figure 9. Multi-class confusion matrix- logistic regression 

 

 
 

Figure 10. Multi-class classification statistics- logistic 

regression 

 

 
 

Figure 11. Multi-class confusion matrix – KNN model 

 

 
 

Figure 12. Multi-class classification statistics – KNN model 

 

 
 

Figure 13. Multiclass confusion matrix –GB model 

 
 

Figure 14. Multi-class classification statistics –GB model 

 

 
 

Figure 15. Multi-class confusion matrix –MLP model 

 

 
 

Figure 16. Multi-class classification statistics –MLP model 

 

K-Nearest Neighbors model: K-Nearest Neighbors (KNN) 

is a standard machine learning approach that is a non-

parametric, lazy learning algorithm that makes no assumptions 

about the data it is learning. The numerical values are chosen 

based on their proximity to other data points, regardless of 

what feature they represent. Additionally, because this is a lazy 

learning method, there is minimal or no training step. 

Gaussian Naive Bayes Model: Gaussian Naive Bayes is a 

variation of Naive Bayes that is based on the Gaussian normal 

distribution and is capable of handling continuous data. The 

model fitting is by calculating the mean and standard deviation 

of the points within each label, that is required to construct a 

distribution of this type. It is assumed that the data is 

characterised by a Gaussian distribution with no covariance 

between dimensions (independent dimensions). 

Multi Layer Perceptron model: A Multi Layer Perceptron 

(MLP) can be thought of as a logistic regression classifier that 

uses a learned nonlinear transformation to alter the input. By 

projecting the input data to space, this transformation renders 

the data linearly separable. A hidden layer is a term which 

refers to this intermediary layer. MLPs can be used as a 

universal approximator with just one hidden layer. 

Decision Tree model: A decision tree is both a 

Classification and Regression approach, typically used to 

solve Classification problems. It is a technique for Supervised 
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Learning using a tree structure in which the internal nodes 

represent the features of a dataset, the branches represent the 

decision rules, and each leaf node represents the output. A 

Decision tree's two nodes symbolize the Decision Node and 

the Leaf Node. Decision nodes are used to make decisions and 

have numerous branches, whereas Leaf nodes represent the 

result of such decisions and contain no additional branches. 

 

 
 

Figure 17. Multi-class classification confusion matrix-

decision tree 

 

 
 

Figure 18. Multi-class classification statistics-decision tree 

 

Table 7. Comparison of multi classification using all 

variables of the dataset 

 
 Accuracy F1 Precision Recall ROC AUC 

Logistic Regression 0.78 0.53 0.55 0.52 0.93 

Decision Tree 0.78 0.54 0.58 0.52 0.93 

Random Forest 0.79 0.56 0.56 0.55 0.94 

SVC Linear 0.79 0.53 0.62 0.50 0.91 

KNN 0.83 0.63 0.72 0.58 0.93 

Gaussian NB 0.68 0.68 0.60 0.87 0.91 

Neural Net MLP 0.83 0.64 0.75 0.60 0.94 

 

Table 8. Comparison of multi classification using significant 

variables from relative response method 

 

 Accuracy F1 Precision Recall 
ROC  

AUC 

Logistic Regression 0.81 0.56 0.55 0.56 0.95 

Decision Tree 0.84 0.68 0.82 0.67 0.91 

Random Forest 0.82 0.61 0.78 0.57 0.96 

SVC Linear 0.60 0.46 0.60 0.38 0.93 

KNN 0.83 0.64 0.80 0.60 0.90 

Gaussian GB 0.74 0.76 0.66 0.98 0.95 

Neural Net MLP 0.84 0.75 0.85 0.69 0.95 

 

Based on all the Models MLP Model is chosen as the most 

suitable model for the current dataset. MLP model gave an 

accuracy of 84% and AUC of 95%. Multi Layer Perception 

Model proves better accuracy due to multiple layers of Neural 

Networks used in the architecture. Working Details of MLP 

Algorithm is available in open literature. Based on the two 

metrics of accuracy and AUC, multi-class classification is 

selected as the most suitable model for this dataset. The results 

from all variable methods and the Relative Response Method 

are in good agreement, as depicted in Figure 19 and Figure 20. 

Furthermore, the proposed Relative Response Method 

matches very well with the results of all variable method. The 

Primary reason for effectiveness of response relationship 

method lies in deriving the relationship variables that are 

responsible for the outcome variable, in this case RUL. The 

current procedure eliminated non response variables, hence 

better accuracy. 

 

 
 

Figure 19. Comparing binary classification results 

 

 
 

Figure 20. Comparing multi classification results 

 

 

6. CONCLUSIONS 

 

Industrial IoT is an emerging technology that can 

significantly assist in enhancing machine’s secure and 

intelligent operation. A practical application of such 

technology integrates machine learning models facilitating the 

business benefits. An integrated framework is developed for 

Industrial IoT with feature selection as one of the critical 

aspects of IoT system development and application. Feature 

elimination ranges from using a standard deviation-based 

approach to complex energy-based indicators unlike Physics-

driven models which rely on the interrelation of variables that 

are participating in a phenomenon. In data-driven approach, 

the relationship needs to be established using interrelation 

among sensor variables in response and relation. In the present 

study, the approach is to choose few critical sensors from all 

the available sensors combined with machine learning models 

like KNN, Decision Tree, Logistic Regression, and SVC. 

Relation Response method applied to both Binary and Multi-

Classification methods indicate that Relative Response 
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method matches well with all variable methods. Further, this 

method when applied to Binary and Multi-class classification 

proved to be very effective. 
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