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 This paper introduces the Q-learning-based deep reinforcement learning (Q-DRL) to the 

recurrent neural network (RNN) of the convolutional neural network-RNN (CNNRNN) 

model, aiming to improve the efficacy of rubber yield prediction based on optimum reward 

cycles under uncertainties, while interpreting ambiguous inputs accurately. The system 

builds a deep recurrent Q-network (DRQN) with the Q-DRL algorithm. The layers of 

CNNRNN were stacked in series, and then given the input variables. Based on these 

variables, the Q-learning network creates a rubber yield estimation model during training, 

by linearly mapping CNNRNN outputs to Q-factors. Then, the RL agent combines 

parametric attributes with a threshold to assist with rubber yield prediction. Further, the 

agent accepts an overall rate for the actions executed to minimize error and maximize 

forecast accuracy. If the time series is too long, however, the DRL-based RNN might suffer 

vanishing gradients. To solve the problem, probabilistic modeling schemes, such as data 

analytics, and probabilistic bias-difference decomposition, were introduced to the DRL to 

deal with the inherent ambiguity in geometric estimations. After that, the model predictive 

control (MPC) learns a probabilistic shift method utilizing Gaussian processes (GPs). Then, 

the MPC was applied to obtain a control series to minimize the predicted long-term cost. 

Because MPC enables the trained system to be restructured instantly, our method, denoted 

as CNNRNNPCDRL, became more robust to model inaccuracies. 
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1. INTRODUCTION 

 

Hevea brasiliensis (Pará rubber tree) is a significant 

industrial crop that occupies about 10 million hectares of the 

Earth's terrestrial surface [1], and generates over 11 million 

tons of natural rubber each year. For accurate forecast of 

rubber yield, the latex is often extracted repeatedly from the 

same rubber trees. If the interest lies in latex yield per harvest, 

it would be inevitable to collect data with the same 

measurement units from rubber trees across time. Considering 

the autocorrelation between rubber yields, mixed models must 

be adopted to process the sequentially correlated longitudinal 

data. 

The rubber yield can be improved, if the weather is 

favorable, the vegetation is suitable, and the field conditions 

are close to the natural living environment. The ontology 

rubber model [2] offers a way to locate the suitable rubber 

cropland, in the light of every agro-climatic factor. With the 

aid of this model, it is possible to judge whether a field is 

suitable for rubber production, and predict rubber yield 

accurately, laying the foundation for sustained growth of 

rubber yield. 

Deep neural networks (DNNs) help to predict and check 

yield, and identify the variation of rubber yield with genomes 

and weather conditions. As a kind of learning model, DNNs 

can automatically discover the underlying data representation, 

eliminating the need for manual feature input. A typical DNN 

consists of several nonlinear layers that convert the raw input 

into complex and sophisticated representations [3]. In this way, 

the system becomes deeper and more complex, and capable of 

obtaining precise results. 

Khaki et al. [4] have hybridized convolutional neural 

network (CNN) with recurrent neural network (RNN) into 

CNNRNN model to predict crop yield based on environmental 

factors and management activities. The CNNRNN structure 

used to be introduced to derive rubber yield from three 

important influencing factors. The structure can capture the 

time dependency of environmental factors, shorten the 

computing time, and generalize the precise yield under 

uncertain conditions, without sacrificing the prediction 

accuracy. 

In the CNNRNN model, the features are selected through 

error backpropagation, and the impact of each weather/soil 

condition is evaluated against yield. However, the RNN is 

prone to problems like vanishing or exploding gradients. 

During each iteration of training, the weight of each network 

node is updated according to the incomplete derivative of the 

error of the current weight. The gradient might be vanishingly 

small in some cases, making it impossible to modify the 

weight range. Exploding gradients are a problem that node 

weights are adjusted excessively during network training, due 

to the accumulation of a huge error gradient. 

In this paper, the RNN in RNNCNN model is improved by 

recalling long-term inputs by long short-memory network 

(LSTM) cells, which are precisely constructed recurrent nodes 

that perform excellently in series modeling. In addition, a Q-

learning-based deep reinforced learning (Q-DRL) system was 

employed in the RNN to realize efficient forecast of rubber 

yield with the best rewarding iterations. Then, a deep recurrent 

Q-network (DRQN) framework was built on Q-DRL for 
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efficient crop prediction. Data parameters were fed into the 

sequentially stacked layers of CNNRNN. Based on the input 

variables, the Q-learning network generated a rubber yield 

forecast setting. Then, the CNNRNN results were mapped to 

Q-factors on a linear layer. After that, the rubber yield was 

estimated by including a mixture of parameterized attributes 

with a threshold into the reinforcement-learning agent. 

Eventually, the agent summarized the measures to eliminate 

errors, and evaluate forecast efficiency. 

DRL-based RNN employs probabilistic analytical 

modelling schemes (e.g., data analytics and probabilistic bias-

difference decomposition) to control the ambiguity in 

geometric estimations. In this paper, a model predictive 

control (MPC) was developed based on DRL probabilistic 

learning to integrate system ambiguity, fuse long-term 

forecasts, and reduce the effect of system error. After that, the 

MPC learns a probabilistic shift method utilizing Gaussian 

processes (GPs). Then, the MPC was applied to obtain a 

control series to minimize the predicted long-term cost, and 

realize real-time update of the learned model. In this way, our 

method, denoted as CNNRNNPCDRL, became more robust to 

model inaccuracies.  

 

 

2. LITERATURE REVIEW 

 

Haque et al. [5] proposed a DNN approach for crop yield 

forecast and checking, and yield dissimilarity identification 

based on genetics and weather information. Initially, the 

missing values in the environmental dataset were padded 

through median imputation. Next, two DNNs were trained to 

provide the gap between predicted and actual crop yields. The 

proposed DNN could understand the complex relationship 

between environmental conditions and crop genes, and 

estimate the yield for novel hybrid crops in unknown site 

according to climate conditions. However, the DNN is too 

complex for hypothesis test. 

To predict crop yield accurately, Kalaiarasi and Anbarasi [6] 

designed a multi-parametric DNN (MDNN) to model the 

effects of climate change, weather condition, and soil 

parameters. Firstly, the growing degree day (GDD) was 

introduced to measure the overall effect of weather conditions 

on crop yield. The weather conditions were predicted by a 

neural network based on the collected dataset. After that, the 

predicted weather conditions, together with climate, and the 

impact of climate and soil parameters, were imported to a 

DNN. To improve the prediction effect, the leaky rectified 

linear unit (LeakyReLU) was implemented as the activation 

function of the MDNN. The problem with the MDNN lies in 

the difficulty of computation. 

Anjula et al. [7] mined spatial data with the optimal neural 

network (ONN), and predicted crop yield in three steps: 

preprocessing, feature selection and prediction. The 

preprocessing generates a better model; the features were 

selected through multi-linear principal component analysis 

(MPCA); the crop yield was predicted with ONN classifiers. 

Nevertheless, they failed to evaluate the precision of the 

predicted results. 

Using a hybrid adaptive neural genetic network, Qaddoum 

et al. [8] developed a framework for accurate crop yield 

prediction. Specifically, an intelligent computing technique 

was used as a learning system to forecast weekly tomato yield, 

with the environmental variables inside the greenhouse as the 

inputs. Following a modified optimizer approach, the 

connection weights of the neural network were adjusted 

through training. The convergence error of the network was 

examined in details. Nonetheless, the proposed framework has 

a low accuracy. 

Bu and Wang [9] created a DRL model of four layers, 

namely, a farming information acquisition layer, an Internet of 

things (IoT) layer, an information dissemination layer, and a 

data storage layer, and combined the model with sophisticated 

technology to improve crop yield. The real-time agricultural 

demand of irrigation water was determined smartly, with the 

help of artificial intelligence (AI) and extensive training. But 

the training phase was sluggish in getting the exact results. 

The remainder of this paper is organized as follows: 

materials and methods, results and discussion, and conclusions.  

 

 

3. MATERIALS AND METHODS 
 

3.1 Data acquisition 

 

This research aims to improve the prediction accuracy of 

rubber yield in Kerala, a southwestern coastal state of India. 

The potential factors affecting rubber yield, such as soil, 

rainfall, humidity, temperature, and average wind speed, were 

acquired from the India Metrological Department [10], and the 

data published by the Rubber Institute of India (RRII) [11], 

Kottayam. Multiple soil parameters were studied, including 

pH, organic carbon, phosphorus, potassium, calcium, iron, 

boron, etc. 

To predict rubber yield, the data on the above factors from 

2018 to 2021 were collected from different districts of Kerala, 

namely, Alappuzha, Ernakulam, Kannur, Idukki, Kasargode, 

Kollam, Kottayam, Kozhikode, Palakkad, Pathanamthitta, 

Thiruvananthapuram, Thrissur, and Wayanad. 

 

3.2 Proposed CNNRNN Model  

 

 
 

Figure 1. Structure of our CNNRNN model 
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The DRL has evolved over the time through data expansion 

and measurement improvement, as new ways emerge to 

determine, evaluate, and recognize the data process in rubber 

yield forecast frameworks. The prediction of rubber yield must 

fully consider the constantly changing factors. This paper 

initializes a CNN for the spatiotemporal changes of each 

feature: soil, rainfall, humidity, temperature, and average wind 

speed. These one-dimensional (1D) CNNs are abbreviated as 

s-CNN, r-CNN, h-CNN, t-CNN, and a-CNN, in turn. The 

high-level features extracted by the above CNNs were fused 

on a fully connected layer (FC) to reduce the dimensionality.  

Based on the data on previous years (t-k, t-k+1, …, t-k, t), 

the RNN, which was augmented with CNN structure, was 

adopted to estimate the rubber yield of a certain state in year t. 

The mean yield data of all states in the same year, management 

data, and FC layer performance were imported to the cell, 

which derives the fundamental features processed by the said 

CNNs. 

The DRL, Q-learning, and deep Q-network (DQN) 

frameworks for rubber yield forecast are detailed in this 

subsection. Figure 1 shows the structure of our CNNRNN 

model. The DRL is embedded in the structure to enhance the 

accuracy of yield prediction. 

 

3.3 Reinforcement learning (RL) 

 

As an AI paradigm, RL builds and trains strategies with an 

incentive and penalty system through adaptive programming 

[12]. During the RL, the problem is usually solved by Markov 

selection. The agent-like RL algorithm learns through 

cooperation and interaction with the surroundings. The agent 

would be rewarded for correct actions, and penalized for 

incorrect actions. The learning requires no manual 

intervention, for the agent automatically pursues a higher 

reward and a lower penalty. In our model, an agent in state ‘s’ 

(rubber yield prediction) takes an action ‘a’ (soil, rainfall, 

humidity, temperature, and average wind speed). After the 

action is completed, the agent receives a reward R(s, a), and 

enters a new state ‘s’. The mapping criteria between states and 

actions are called rules. In each state, a rule π is calculated to 

define the agent’s action. Here, there are three possible states: 

low, medium, and high. Once a parameter value changes, the 

rule under which the crop yield can be predicted with the 

minimum error is considered the best rule for that parameter. 

Throughout its lifespan, the agent aims to find the best rule π ∗ 

that maximizes the overall low-cost incentive.  

The best rule can be depicted as: 

 

𝜋 ∗ (𝑠) =  𝛾𝑎∈𝐴
𝑎𝑟𝑔𝑚𝑎𝑥

∑ 𝑃𝑠𝑎
𝑠′𝜖𝑠

(𝑠′, 𝑎)𝑉∗(𝑠′, 𝑎) (1) 

 

For each state-action combination, a value factor Vπ (s, a) 

[13] was introduced to represent the forecast of the predicted 

incentive following π. The best rule, which is determined by 

the maximum incentive gained by the agent in each state, 

yields the optimal value factor:  

 

𝑉∗(𝑠, 𝑎) =  𝑅(𝑠, 𝑎)

+  𝛾𝑎∈𝐴
𝑚𝑎𝑥 ∑ 𝑃𝑠𝑎

𝑠′∈𝑠
(𝑠′, 𝑎)𝑉∗(𝑠′, 𝑎)  

(2) 

 

In this way, each RL agent is trained through the interaction 

with the surroundings. Through dynamic programming, every 

RL agent optimizes his/her benefits to find the best rule and 

value factor. Figure 2 illustrates the RL process. 

 

 
 

Figure 2. RL process 

 

3.4 Q-learning 

 

The QL, as a way to determine the actions of an agent 

depending on a value-action factor, computes the probability 

for an action to occur in a given state. One of the most 

substantive advances in RL is the introduction of a non-

political method called temporal variance management. To 

identify the most valuable action for a target policy, Q-

learning assesses the condition-action range factor. With the 

current state (s) and action (a) as inputs, the Q function predicts 

the incentive, and provides arbitrary fixed values in the first 

step of configuration assessment. 

 

3.5 DQN 

 

DQN is an extended RL agent with DNN. It is comparable 

to a Q-table in QL, which records the mapping relationship 

between states and actions. Typical examples of DNNs 

capable of directly learning abstract representations from raw 

data include CNN, RNN, and sparse autoencoders. There is 

virtually no difference between a DQN agent and a Q-learning 

agent in the communication with the environment via a series 

of observations, actions, and benefits. The two serve the same 

task, for many annotations, activities and incentives adopt the 

DQN structure. During the improvement of the DQN agent, an 

understanding is randomly selected from storage to continue 

the process, and RNN is taken as the DQN to estimate the 

factor with weight 𝜃.  As a result, the Q-network can be 

established by reducing the mean squared error (MSE) in the 

Bellman equation by adjusting variable 𝜃𝑖 in the i-th iteration. 

The loss, i.e., the squared variance between the desired Q 

and the estimated Q, can be defined as: 

 

𝐿𝑜𝑠𝑠 =  (𝑟 + 𝛾
𝑎′
𝑚𝑎𝑥𝑄 (𝑠′, 𝑎′;  𝜃 ′)  − 𝑄(𝑠, 𝑎;  𝜃))2  (3) 

 

Gradient descent for the real variables is adopted to mitigate 

this loss. 

 

3.6 DRL for CNNRNN 

 

The DRL-based crop yield monitoring can be understood 

with the input parameter that converts supervised learning into 

RL. The surroundings need to be determined through 

prediction games, each of which consists of the mixture of 

parameterized attributes and a threshold. The attributes 

contribute to crop production. At the beginning of the game, 

the agent performs tasks to get rewards on the value of crop 

yield. If the value falls in the desired range, the agent would 
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receive a positive incentive; otherwise, it will receive a 

negative incentive. 

Normal RL techniques like QL cannot easily discriminate 

and analyze yield predictions, owing to their limitations in 

state definition. By virtue of the strength of DQN in big data 

analysis, this paper employs a CNNRNN to estimate rubber 

yield based on various factor, such as soil, rainfall, humidity, 

temperature, and average wind speed. The CNNRNN is 

sophisticated enough to mine spatiotemporal and lexical 

features in forecast, language modeling, and voice recognition. 

As a variant of artificial network, the CNNRNN combines the 

input of the current state with the output of the previous state 

to determine the results. Briefly speaking, the network can 

recall earlier data, and use them in the calculation of the 

current state. 

The DQN agent was created by stacking the CNNRNN 

layers sequentially, initializing the network parameters 

through pre-learning, and adding a linear layer that maps the 

RNN results to Q scores. Let 𝑥𝑡 be the input of the learning 

sample at time t; Ht be the hidden layer state at time t, which 

depends on the current input 𝑥𝑡 and the previous hidden layer 

state 𝐻𝑡−1; 𝑂𝑡 be the result of the current layer at time t; L be 

the error at time t, which depends on the learning sample 

output 𝑌𝑡 and the current layer output 𝑂𝑡; 𝑢, 𝑣, and 𝑤 be the 

weights of the CNNRNN; b1 and b2 be the mutual RNN 

thresholds. Then, the range of hidden layer state at time t can 

be calculated by: 

 

𝐻𝑡  =  𝑓(𝑢 × 𝑥𝑡  +  𝑤 × 𝐻𝑡−1  +  𝑏1) (4) 

 

The expected output O𝑡  of the RNN at time 𝑡  can be 

calculated by: 

 

𝑂𝑡 =  𝑓(𝑣 × 𝐻𝑡  +  𝑏2) (5) 

 

The error L of the RNN can be calculated by: 

 

𝐿 = 𝑂𝑡 − 𝑦𝑡 (6) 

 

The RNN can effectively compute crop yield, because the 

space variable and overfitting are restricted by two factors: the 

layered description of original features and the sparse 

constraint. Every learning instance is pre-learned before DRL. 

Then, the agent forecasts the yield to generate Q-range layer 

by layer. 

DRL training involves so many states and actions that the 

correlations between data might be unstable. Therefore, two 

adjustments were made to the DQN training. The primary 

adjustment is understanding replay: the agent’s understanding 

is preserved in the replay storage (𝐷) using the state, action, 

and reward of the current timestamp, as well as the state of the 

next timestamp. This adjustment saves the agent’s 

understanding at time t, resulting in a distinct group of 

understandings. Individual understanding 𝑒𝑡  at 𝑡  are 

characterized as 𝑒𝑡 =  ( 𝑒𝑡 , 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), and the memories 

time at 𝑡 are denoted as 𝐷𝑡  = {𝑒1 . . .. 𝑒𝑡}. Experience replay is 

a useful technique for eliminating parameter divergence, 

allowing agents to distinguish their understanding through 

training. The next adjustment is to allow an autonomous 

system to generate the goals during QL upgrading. Through 

the adjustments, DRL training becomes much more stabler. 

Note that most RL strategies employ a Bellman equation to 

iteratively update the action value factor. The updating process 

is rather time consuming. To solve the problem, this paper 

predicts this factor by the weighted RNN predictor with 

weight  𝜃 . Hence, the Q-network can be produced by 

decreasing the MSE in the Bellman equation by revising 

parameter 𝜃𝑖in the i-th iteration. 

The training process can be divided into two stages: the 

preprocessing of CNNRNN, and the training of DQN agent. 

Following the 𝜀 -greedy policy, the agent chooses and 

performs a random action with a probability  𝜀 . Thus, the 

probability of choosing the action with the highest q value 

equals 1-𝜀 . This paper also adopts the stochastic gradient 

descent technique. Based on the training data, the optimization 

strategy iteratively modifies the system weights. The 

following is the training algorithm of the CNNRNN using 

DRQN. 

 

Algorithm: Training of CNNRNNDRL 

 

Step 1: Pre-learning the CNNRNN. 

(a) Initialize the replay storage ability as 𝑁. 

(b) Initialize the s-CNN, r-CNN, h-CNN, t-CNN, and a-

CNN. 

(c) Initialize the I number of RNN network with 𝜃𝑖𝑗  random 

weights of J layers. 

For 𝑖 =  1, I 

For j =  1, J do  

(c) Learn the 𝑗𝑡ℎ hidden layer of 𝑖𝑡ℎ RNN 

(d) Preserve the variables of the 𝑗𝑡ℎ hidden layer.  

End For  

End For  

(e) Initialize action-value system Q using the hidden layer’s 

variables excluding the input and output layers.  

(f) Initialize the desired action-value factor 𝑄’ using similar 

variable as 𝑄.  

 

Step 2: Learning the DQN agent.  

For 𝑒𝑣𝑒𝑛𝑡 =  1, 𝑀 do  

(a) Initialize the examined series 𝑠1  via outputting the 

estimated yield arbitrarily.  

For 𝑡 =  1, T do  

(b) Pick an arbitrary action 𝑎𝑡 at the probability 𝜀.  

(c) Execute the action and find the incentive 𝑟𝑡.  

(d) Arbitrarily create the consecutive state 𝑠(𝑡+1) 

(e) Preserve the storage 𝐷 as (𝑠𝑡,𝑎𝑡𝑟𝑡, 𝑠(𝑡+1)).  

(f) Concerning the system variable 𝜃 , execute gradient 

descent on:  

 

( 𝑟𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡  ;  𝜃) 2 

 

(g) Reassign 𝑄’ =  𝑄.  

End For  

 

During the construction of learning models, our method 

explains several factors that affect rubber yield, and assess 

different plant metrics. If the time series is too long, the DRL-

based CNNRNN may suffer vanishing or exploding gradients.  

To improve the time series for rubber plant identification, 

this paper builds a novel deterministic formula of probabilistic 

MPC with trained GP models, and ambiguity dissemination 

for long-term forecast. Then, Pontryagin's Maximum Principle 

(PMP) can be applied to the open-loop planning stage of 

probabilistic MPC with GPs. The PMP offers a set of 

principles to handle control restrictions, while retaining the 

necessary criteria for optimality.  
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The above technique theoretically justifies the detection of 

DRL-based rubber yield, and realizes traditional information 

competence in DQN, without sacrificing the excellence of 

probabilistic modeling. In this way, it is possible to address 

state and control restrictions, and maximize information 

competence.  

 

3.7 Probabilistic MPC-based controller learning 

 

Suppose there is a dynamical system with a stochastic 

component [14] with states 𝑥𝜖𝑅𝐷 and admissible controls 

(actions) ∈ 𝑈 ⊂ 𝑅𝑈, The states follow Markovian dynamics: 

 

𝑥𝑡+1 =  𝑓(𝑥𝑡 , 𝑢𝑡) +  𝑤 (7) 

 

With a (known) transition function 𝑓  and an interaural 

intensity difference (IID) system noise 𝑤 ∼ 𝑁 (0, 𝑄), where 

𝑄 =  𝑑𝑖𝑎𝑔( 𝜎1
2, . . . , 𝜎𝐷

2), an RL setting is given to find the 

control signals 𝑢0
∗ , . . . , 𝑢𝑇−1

∗  that reduce the expected long-

term cost projections: 

 

𝐽 =  𝐸[𝛷(𝑥𝑇)] + ∑ 𝐸[𝑙(𝑥𝑡 , 𝑢𝑡)]
𝑇−1

𝑡=0
,  (8) 

 

where, (𝑥𝑇 ) is a terminal cost; (𝑥𝑡 , 𝑢𝑡) is the cost of applying 

control 𝑢𝑡 in state 𝑥𝑡. It is assumed that the initial condition 

has a Gaussian distribution, with 𝑝(𝑥0) =  𝒩(µ
0

, 𝛴0).  The 

overall flow of the proposed method is illustrated in Figure 3. 

The data efficiency is ensured by a model-based RL 

technique, in which a framework of the indefinite shift 

operation 𝑓  is created to generate open-loop1 optimum 

controllers 𝑢0
∗ , . . . , 𝑢𝑇−1

∗  that minimize the value of formula (7). 

In this way, the learnt framework is modified with the latest 

understanding, and re-planned after each application of the 

control series. 

 

 
 

Figure 3. Overall flow of CNNRNNDRL 
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3.8 Long-term estimations  

 

For a specific control series 𝑢0, . . . , 𝑢𝑇−1 , the state 

distributions 𝑝( 𝑥1), . . . , 𝑝( 𝑥𝑇) can be iteratively predicted by: 

 

𝑝(𝑥𝑡+1|𝑢𝑡)  = ∬ 𝑝(𝑥𝑡+1|𝑥𝑡 , 𝑢𝑡)𝑝(𝑥𝑡)𝑝(𝑓)𝑑𝑓𝑑𝑥𝑡
 (9) 

 

For  t =  0, . . . , 𝑇–  1,  a deterministic Gaussian 

approximation can be made to 𝑝(𝑥𝑡+1|𝑢𝑡) through moment 

matching. 

 

3.9 Expected long-term cost  

 

Adding the estimated immediate expenses to formula (8), 

the expected long-term cost can be estimated by: 

 

𝐸[𝑙(𝑥𝑡 , 𝑢𝑡)] = ∫ 𝑙(𝑥�̃�)𝑁 (𝑥�̃�|µ
�̃�
, 𝛴�̃�)𝑑𝑥𝑡

̃  (10) 

 

F𝑜𝑟 𝑡 =  0, . . . , 𝑇 −  1, 𝑙  is chosen such that this 

expectation and the partial derivatives 𝜕𝐸[`(𝑥𝑡 , 𝑢𝑡)]/
𝜕𝑥𝑡 , 𝜕𝐸[𝑙( 𝑥𝑡 , 𝑢𝑡)]/𝜕𝑢𝑡 can be computed analytically.  

 

𝑙𝑀𝑀(𝑧𝑡 , ut) =  lMM(zt̃) ∶=  E[l(xt, ut)] (11) 

 

ΦMM(zT ): =  E[Φ(xT)] (12) 

 

The deterministic mapping (10) projects the mean and 

covariance of x ̃ into the predicted costs in formula (7). After 

the CNNRNNDRL is combined with MPC, our method can be 

denoted by CNNRNNPCDRL, which can forecast rubber 

yield efficiently with a shorter time series and better 

classification accuracy. 

 

 

4. RESULT AND DISCUSSION 

 

The proposed CNNRNNPCDRL was compared with 

various methods, such as DeepLSTM [15], CNNRNN [4], 

interval deep generative artificial neural network (IDANN) 

[16], and CNNRNNDRL through rubber yield prediction 

experiments on the dataset [10]. The performance of each 

method was measured by precision, recall, and F-measure. The 

experimental results show that our method achieved a better 

forecast effect than the contrastive methods from 2018 to 2021, 

thanks to the use of parameters like soil, rainfall, humidity, 

temperature, and average wind speed. For experimental 

purpose, three kernels of the size 4×4 in each convolutional 

layer. Only 24 outputs were set for the fully connected layer 

and LSTM layer. 

The forecast accuracy was evaluated by comparing the 

predicted rubber yield with the actual rubber yield in the 

dataset. The mismatch and match between the two values are 

defined as: 

• True positive (TP): the number of samples with yield 

labels high, low, and medium being predicted as high, low, and 

medium, respectively; 

• False positive (FP): the number of samples with yield 

label medium being predicted as high or low; 

• False negative (FN): the number of samples with 

yield label low being predicted as high or medium; 

• True negative (TN): the number of samples with 

yield label high being predicted as medium or low. 

• FN (False Negative): The samples number with the 

yield quality label low is predicted as high/medium. 

• TN (True Negative): The samples number with the 

yield quality label high is predicted as medium/low. 

 

4.1 Accuracy 

 

The accuracy of each method is defined as the correctly 

predicted instances as a proportion of all instances: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝐹𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Table 1 and Figure 4 compare the rubber yield prediction 

accuracies of our method with Deep LTSM, IDANN, 

CNNRNN, and CNNRNNDRL. The x-axis represents the 

rubber yield prediction for future years; the y-axis represents 

the accuracy range. 

 

Table 1. Comparison of accuracy 

 

Years 

Methods 

Deep 

LSTM 

[15] 

ID- 

ANN 

[16] 

CNN-RNN 

[4] 

CNNRNN

DRL 

CNNRNNP

CDRL 

2018 70 75 77 81 83 

2019 73 78 81 84 87 

2020 77 81 85 88 91 

2021 80 83 88 93 95 

 

It can be inferred that the accuracy of the 

CNNRNNDRLMP structure was 18.57%, 19.17%, 18.18%, 

and 18.75% greater than that of Deep LSTM, 10.66%, 11.54%, 

12.35% and 14.16% greater than that of the IDANN, 7.79% 

7.41%, 7.06% and 7.95% greater than that of the CNNRNN, 

and 2.47%, 3.57%, 3.41% and 2.15% greater than that of the 

CNNRNNDRL in 2018, 2019, 2020 and 2021, respectively. 

Hence, our CNNRNNPCDRL method outperforms all the 

other methods in terms of accuracy. 

 

 
 

Figure 4. Comparison of accuracy 

 

4.2 Precision 

 

Precision measures the ability of a method to forecast the 

proper rubber yield based on a set of data. It is defined by the 

percentage of accurately estimated rubber yields at TP and FP 

rates, or the proportion of actual positives to predicted rubber 

yields. 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Table 2 and Figure 5 compare the rubber yield prediction 

precisions of our method with Deep LTSM, IDANN, 

CNNRNN, and CNNRNNDRL. The x-axis represents the 

rubber yield prediction for future years; the y-axis represents 

the precision range. 
 

Table 2. Comparison of precision 
 

Years 

Methods 

Deep 

LSTM 

ID- 

ANN 
CNN-RNN 

CNNRNN

DRL 

CNNRNNP

CDRL 

2018 75 80 82 83 86 

2019 78 83 84 86 88 

2020 81 86 88 89 91 

2021 86 88 89 90 93 

 

It can be inferred that the precision of the CNNRNNPCDRL 

was 14.67%, 12.82%, 12.34% and 8.14% greater than that of 

Deep LSTM, 7.5%, 6.02%, 5.81%, and 5.68% greater than that 

of the IDANN, 4.89%, 4.76%, 3.41%, and 4.49% greater than 

that of the CNNRNN, and 3.61%, 2.33%, 2.25%, and 3.33% 

greater than that of the CNNRNNDRL in 2018, 2019, 2020 

and 2021, respectively. This means our method achieves better 

precision than any of the contrastive methods. 
 

 
 

Figure 5. Comparison of precision 
 

4.3 Recall 
 

Recall assesses the ability of a method to identify each 

eigenvector of interest in a set of data. It is often depicted as 

the ratio of accurately predicted rubber yields TP and FN rates, 

or the proportion of observed positive cases. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Table 3 and Figure 6 compare the rubber yield prediction 

recalls of our method with Deep LTSM, IDANN, CNNRNN, 

and CNNRNNDRL. The x-axis represents the rubber yield 

prediction for future years; the y-axis represents the recall 

range. 

It can be inferred that the recall of the CNNRNNPCDRL 

was 21.88%, 28.79%, 30.89%, 36.62% greater than that of the 

Deep LSTM, 18.18%, 23.19%, 25.35%, and 29.33% greater 

than that of the IDANN, 13.04%, 16.44%, 15.58%, 14.12% 

greater than that of the CNNRNN, and 8.33%, 6.25%, 3.49%, 

2.11% greater than that of the CNNRNNDRL in 2018, 2019, 

2020 and 2021, respectively. The comparison shows that our 

method realizes relatively high recall values, compared to all 

other existing methods. 

 

Table 3. Comparison of recall 

 

Years 

Methods 

Deep 

LSTM 

ID- 

ANN 
CNN-RNN 

CNNRNN

DRL 

CNNRNNP

CDRL 

2018 64 66 69 72 78 

2019 66 69 73 80 85 

2020 68 71 77 86 89 

2021 71 75 85 95 97 

 

 
 

Figure 6. Comparison of recall 

 

4.4 F-measure 

 

The approximate prediction of rubber yields can be 

calculated by the harmonic average of precision and recall, i.e., 

the F-measure: 

 

F-measure= (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) × 2 

 

Table 4 and Figure 7 compare the rubber yield prediction F-

measures of our method with Deep LTSM, IDANN, 

CNNRNN, and CNNRNNDRL. The x-axis represents the 

rubber yield prediction for future years; the y-axis represents 

the F-measure range. 

It can be inferred that the F-measure of the 

CNNRNNPCDRL was 27.70%, 20.83%, 22.67%, and 20.51% 

greater than Deep LSTM, 15.28%, 14.47%, 17.95%, and 

17.50% greater than that of the IDANN, 10.67%, 11.54%, 

12.19%, and 9.30% greater than that of the CNNRNN 5.06%, 

and 6.09%, 6.97%, and 2.17% greater than that of the 

CNNRNNDRL in 2018, 2019, 2020 and 2021, respectively. 

Thus, our method outshines all the contrastive methods with a 

high F-measure. 

 

Table 4. Comparison of F-measure 

 

Years 

Methods 

Deep 

LSTM 

ID- 

ANN 
CNN-RNN 

CNNRNN

DRL 

CNNRNNP

CDRL 

2018 65 72 75 79 83 

2019 72 76 78 82 87 

2020 75 78 82 86 92 

2021 78 80 86 92 94 
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Figure 7. Comparison of F-measure 

5. CONCLUSIONS

This paper proposes an innovative method for rubber yield 

prediction, denoted as CNNRNNPCDRL, after analyzing 

various influencing factors, e.g., soil, rainfall, humidity, 

temperature, and average wind speed. To improve the 

prediction accuracy, a Q-DRL model was applied using the 

optimum reward cycles. Then, the rubber yield was predicted 

with a DQN model built on top of the QL. Based on the input 

variables, the QL network creates a rubber yield forecast 

environment. The rubber yield was predicted by the RL agent 

with a mixture of parameterized attributes along with a 

threshold. Moreover, the agent accepts an overall rate for the 

actions executed. If the time series to too long, however, the 

CNNRNN-based DRL could suffer vanishing gradients. To 

solve the problem, the CNNRNN-based DRL was coupled 

with probabilistic predictive modeling strategies to mitigate 

the uncertainty in statistical predictions. The DRL-based MPC 

uses GPs to learn a probabilistic transition model, which 

incorporates system ambiguity and long-term estimations, 

reducing the negative effect of system failure. Finally, the 

MPC was adopted to determine the control series that lowers 

the predicted long-term price. The effectiveness of the 

proposed method was demonstrated by accuracy, precision, 

recall, and F-measure. 
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