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Traffic jams and congestion in our cities are a major problem because of the huge increase 

in the number of cars on the road. To remedy this problem, several control methods are 

proposed to prevent or reduce traffic congestion based on traffic lights. There are few works 

using reinforcement learning technique for traffic light control and recent studies have 

shown promising results. However, existing works have not yet tested the methods on the 

real-world traffic data and they only focus on studying the rewards without interpreting the 

policies. In this paper, we proposed a reinforcement learning algorithm to address the traffic 

signal control problem in real multi-phases isolated intersection. A case study based on 

Algiers city is conducted the simulation results from the different scenarios show that our 

proposed scheme reduces the total travel time of the vehicles compared to those obtained 

with traffic-adaptive control. 

Keywords: 

traffic signal control, signalized intersection, 

adaptive systems, machine learning, SUMO 

simulation 

1. INTRODUCTION

In recent years, the city of Algiers has experienced a huge 

explosion in the national automobile park with one million 

three hundred thousand vehicles (1.3 million vehicles) and 1.4 

daily trips per capita, and with the growth rapid transport 

demand with limited infrastructure capacity, urban congestion 

has become one of the major socio-economic problems in the 

life of road users in urban cities.  

In Algeria, the urban roads of the main agglomerations have 

experienced, in recent years, significant and growing 

congestion due to strong growth in the national automobile 

fleet in 2018. According to the National Statistical Office 

(ONS), the automobile fleet in Algeria reached 6,418,212 

vehicles in 2018, an increase of 4.15% compared to 2017, or 

the equivalent of 255,538 new vehicles. This explains the 

increase in demand for road traffic, around 85% of passenger 

movements are made by road and 90% of the volume of trade 

(internal transport of goods excluding transit) is carried out by 

road transport [1]. 

In this paper, recent advances in the field of artificial 

intelligence are used to research and develop a learning agent 

capable of controlling a traffic light system, with the aim of 

increasing the efficiency of road transport. The problem 

addressed in this thesis is defined as follows: given the state of 

a traffic light intersection, which phase of traffic lights should 

the officer choose in order to optimize traffic efficiency? 

The remainder of the paper is organized as follows: section 

2 we present a bereft stat of the art of work to control traffic 

problem. Section 3 presents the proposed agent design divided 

into state, action, reward, and learning mechanism. In section 

4 we describe the agent training phase and the techniques used 

in this process, such as agent exploration strategy or traffic 

control algorithm. Section 5 is devoted to the performance 

evaluation of the proposed control strategy and that we will 

validate our results with an application by simulations on an 

intersection located in downtown Algiers in order to validate 

our results. 

2. RELATED WORK

The Reinforcement learning have capability to provide a 

solution to Traffic signal control, this solution has recognized, 

displayed and validated by many authors and research studies 

the concept of reinforcement learning in traffic signal control 

are with deferent way: Harley et al. [2] proposed a 

conceptually simple and light weight framework for deep 

reinforcement learning that uses asynchronous gradient 

descent for optimization of deep neural network controllers, in 

[3] the describes using multi-agent reinforcement learning (RL)

algorithms for learning traffic light controllers to minimize the

overall waiting time of cars in a city, Wiering [4] made an

introduction to Q-learning, a simple yet powerful

reinforcement learning algorithm, and presented a case study

involving application to traffic signal control. Reinforcement

learning methods are applied for realistic and complex urban

traffic network models [5]. Aslani et al. [6] use an organization

called holonic multi-agent system (HMAS) to model a large

traffic network.

The evolution in machine learning have produced a deep 

reinforcement learning techniques [7, 8] which have been 

applied for traffic signal control in many works [9, 10]. 

Authors [11-13] used the extensive reinforcement learning for 

traffic signal control provides a numerous possible state 

representations as: vehicle density, flow, queue, location, 

Revue d'Intelligence Artificielle 
Vol. 35, No. 5, October, 2021, pp. 417-424 

Journal homepage: http://iieta.org/journals/ria 

417

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.350508&domain=pdf


 

speed along with the current traffic phase, cycle length and red 

time. 

 

 

3. METHODOLOGY 

 

In this section, we aim to improve the flow of traffic passing 

through an intersection controlled by traffic lights will be 

studied using learning techniques. The analysis will be carried 

out with a simulation where an agent manages the choice of 

the phase of activation of traffic lights with the objective of 

optimizing traffic efficiency. In order to choose the best light 

phase in each situation, a certain learning mechanism is 

required by the agent. The learning techniques used in this 

paper relate to reinforcement and deep learning. The whole 

system which includes the agent. The learning techniques used 

in this paper relate to reinforcement and deep learning. The 

whole system which includes the agent, its elements. 

 

3.1 Problem definition 

 

In this work, the environment is represented by a 4-lane 

intersection. A set of traffic lights (TL) manages the flow of 

traffic entering the intersection. Traffic signal control system 

(TSCS) is made up of a single agent that interacts with the 

environment using a state (s), an action (a) and a reward (r). A 

deep Q-Learning neural network is the learning mechanism of 

the agent. Figure 1 shows a summary of the TSCS. 

 

 
 

Figure 1. TSCS work process 

 

During the simulation, the agent takes samples from the 

environment and receives a state St and a reward r, where t is 

the current time step. According to the state and the prior 

knowledge, the agent chooses the next action which has the 

same time, the agent learns the consequences of the action 

taken in state using the reward and the state of arrival. The 

knowledge will be used to train the agent (i.e., neural network) 

to gain significant awareness of the consequences of future 

actions in similar states. 

The problem is defined as follows: given the state of the 

intersection s, which is the phase a of the traffic lights that the 

agent must choose, chosen from a fixed set of predefined 

actions a, in order to maximize the reward r and optimize the 

efficiency of traffic at the intersection. 

It should be noted that in this work, the possibility of a real 

application of the TSCS will be taken into consideration when 

designing the elements of the agent, in order not to use 

elements that might be difficult to implement with the 

technology currently available. 

 

3.2 The simulation environment 

 

The simulated environment for this project is the 

intersection shown in Figures 2 and 3 It is a four-lane 

intersection. Each section of the junction is: [Colonel 

Amirouche Street 325 meters - Mohamed Khmisti Street 191 

meters - AsselahHocine Street 462 meters - Sofia Parking 

Street 134 meters] long from the vehicle of origin to the stop 

line of the intersection. 

On each section, the four lanes used to enter the intersection 

indicate the possible directions a car may take. When a vehicle 

approaches the intersection, it selects the desired lane 

depending on its destination: 

(1) Turn left: select only the leftmost lane. 

(2) Continue straight ahead: select the two central lanes 

or the lane furthest to the right. 

(3) Turn right: select only the rightmost lane. 

 

 
 

Figure 2. Intersection geometry 

 

To facilitate work on this intersection, the spaces have been 

removed, in order to obtain normalized intersection, see Figure 

3. 

 

 
 

Figure 3. Intersection simplifies 

 

3.3 The traffic light system 

 

In the environment there are eight different traffic lights, 

each of them regulating one or more adjacent lanes. They are 

represented in Eq. (1). 
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; tL ; tL ; tL{t ; tL ; tL ; t ; tL }L LNG W WDN S SD E EGTL =  (1) 

 

where, the index indicates the position of each traffic light. For 

example, tLN is the traffic light that regulates all traffic from 

the north that wants to go straight. Alternatively, tLNG the 

regulates traffic coming from the north but only for vehicles 

that want to turn left. The same rule applies to each traffic light 

defined in set (1). A representation of each traffic and their 

position in the environment is shown in Figure 4. 

 

 
 

Figure 4. Position of each traffic light in the environment 
 

As with traditional traffic lights, a simulation tL traffic light 

has 3 possible states as described in set (2): 

 

{Green, Red, Yellow} (2) 

 

Each traffic light in the environment operates according to 

the following rules: 

 

(1) The color phase transition is always as follows: red 

green-yellow-red. 

(2) The duration of each phase of the traffic lights is fixed. 

Green time is always 10 seconds and yellow time is 

always 4 seconds. Therefore, the duration of the red 

phase is defined as the time elapsed since the last phase 

change. 

(3) For each time step, at least one light is in the yellow or 

green phase. 

(4) It is not possible to have all the lights of the red phase 

simultaneously. 

 

3.4 State representation 

 

The state of the agent describes a representation of the 

situation of the environment in a given time step t and it is 

designated by 𝑠𝑡. To enable the officer to effectively learn how 

to optimize traffic, the State should provide sufficient 

information on the distribution of cars on each road. 

The objective of this representation is to inform the agent of 

the position of the vehicles in the environment at the time step 

t. In particular, the design of this state includes only spatial 

information about the vehicles hosted in the environment, and 

the cells used to discretize the continuous environment are not 

regular. 

In this project, we will examine the chances of achieving 

good results with a simple and easy to apply state 

representation. In each section of the intersection, the entry 

lanes are discretized into cells that can identify the presence or 

absence of a vehicle within. Figure 5 shows the state 

representation for the western section of the intersection. 
 

 
 

Figure 5. Representation of the state in the west arm of the 

intersection 

 

3.4.1 The discrete representation of the intersection 

Formally, an IDR vector is defined as a discrete 

representation of the intersection (Intersection Discretized 

Representation) as the mathematical representation of the state 

space, where each element of IDRk is calculated according to 

Eq. (3). 

 

𝐼𝐷𝑅𝑘 = 𝑐𝑘 (3) 

 

where, ck is the k-nth cell. This means that each cell c is 

mapped to a position of the IDR vector. The IDR vector is 

updated according to rule (3). 

IDRk = 1 if there is more than one vehicle inside ck=0 

otherwise. 

 

3.5 Set of action  

 

The set of actions identifies the possible actions that the 

agent can take. The agent is the traffic light system, so taking 

an action result in turning the traffic lights green for a set of 

lanes and keeping it green for a fixed amount of time. The 

agent's task is to launch a green phase by choosing among 

those which are predefined. The action space is defined in the 

set (4). 

 

A = {NSA, NSGDA, EOA, ESODGA} (4) 

 

The set represents all the possible actions that the agent can 

take. Each action has from the set (5) is described below. 

(1) North-South Forward (NSA): the green phase is 

active for vehicles that are in the North and South neighbor 

and want to continue straight or to turn right for the South 

section. 

(2) North-South (Left, Right) Forward (NSGDA): the 

green phase is active for vehicles which are in the North and 

South lanes and want to turn left and right. 

(3) Advanced East-West (EPA): the green phase is active 

for vehicles that are in the East and West route and want to go 

straight or turn right for the East Lane. 

(4) East-West (Right, Left) Advanced (ESODDGA): the 
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green phase is active for vehicles which are in the East, South 

and West voices and which want to turn right and left. 

Figure 6 below shows a visual representation of the 4 

possible actions. 

 

 
 

Figure 6. The four possible actions 

 

3.6 The reward function 

 

In reinforcement learning, the reward represents feedback 

from the environment after the agent chooses an action. The 

agent uses the reward to understand the outcome of the action 

taken and improve the pattern for the future of action choices. 

Therefore, reward is a crucial aspect of the learning process. 

In this work the goal is to maximize the flow of traffic at the 

intersection over time. In order to achieve this goal, the reward 

must be calculated from a performance measure of traffic 

efficiency, so that the agent is able to understand whether the 

action taken will reduce or increase the efficiency of traffic. 

Intersections. 

In traffic analysis, several measures are used, such as 

throughput, average delay and travel time. In traffic lights, 

several actions taken by the candidate to generate the reward 

were as follows. 

(1) Queue length: number of vehicles with a speed lower 

than 0.1 m / s. 

(2) Total waiting time: the sum of the individual waiting 

times of each car in the environment in step t. Each waiting 

time is defined as the time during which a vehicle has a speed 

less than 0.1 m / s. 

(3) Throughput: the number of vehicles passing through 

the junction passing through a defined period of time. 

Among the measures proposed, the measure chosen is total 

waiting time. Formally, the total waiting time is defined in Eq. 

(5). 

 

𝑡ѡ𝑡𝑡 =∑ ѡ𝑡(𝑣𝑒ℎ,𝑡)
𝑛

𝑣𝑒ℎ=1
 (5) 

 

where, tѡt_t is the total waiting time at step t and ѡt (veh, t) is 

the amount of time in seconds a vehicle has a speed less than 

0.1 m / s at time step t. n represents the total number of vehicles 

present in the environment per time step t. The most efficient 

intersection is the one that prevents cars from waiting for the 

green phase. Therefore, the concept of wait time is crucial in 

choosing the reward metric. Total wait time is the most 

accurate measurement among those offered. 

 

 

4. EXPERIMENTAL SETUP AND TRAINING  

 

In the previous sections, the agent specification has been 

described, such as the state, possible actions and reward. 

Figure 7 shows how all these components work together to 

establish the agent's workflow during a single time step t. 

 

 
 

Figure 7. The agent's workflow in a time step 

 

After a fixed number of simulation steps, the agent's time 

step t begins. First, the agent recovers the state of the 

environment and the delay times. Then, using the delay times 

of time step t and the last time step t-1, it calculates the reward 

associated with the action taken at t-1. Then, the agent gathers 

the collected information and saves it in a memory which is 

used for training purposes. Finally, the agent chooses and fixes 

the new action to the environment and a new sequence of the 

simulation step begins. In this job, the agent is trained using 

micro-traffic simulator. The agent will be trained by 

submitting several episodes which consist of traffic scenarios, 

from which he will learn lessons. An episode consists of 5,400 

steps, which corresponds to 1 hour and 30 minutes of the 

traffic simulation. 

 

4.1 Experience replays 

 

Experience replay is a technique adopted during the training 

phase in order to improve the performance of the agent and the 

learning efficiency. It consists of submitting to the agent the 

information needed for learning in the form of a randomized 

group of samples called batch, instead of immediately 

submitting the information that the agent gathers during the 

simulation (commonly called Online Learning). 

 

 
 

Figure 8. The memory handling before training 
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The experience replay technique needs a memory, which is 

characterized by a memory size and a batch size see Figure 8. 

The memory size represents how many samples the memory 

can store and is set at 50000 samples. The batch size is defined 

as the number of samples that are retrieved from the memory 

in one training instance. 

 

4.2 The training processes 

 

This process is executed every time a training instance of 

the agent is initiated. 

(1) A sample m containing the most recent information 

is added to the memory. 

(2) A fixed number of samples, depending on the 

sampling strategy used, are picked randomly from the memory 

constituting the batch B. 

 

The training phase of the agent consists of finding the most 

valuable actions given a state of the environment. With that 

said, in the early stages of the training the agent does not know 

which actions are the most valuable ones. In order to overcome 

this problem, at the beginning of the training the agent should 

discover the consequences of the actions and do not worry 

about the performance. Once the agent has a solid knowledge 

about the action’s outcomes in a significant variety of states, it 

should increase the frequency of exploitative actions in order 

to find the most valuable ones and consequently increase the 

performance achieved in the task. 

 

 

5. RESULTS AND DISCUSSIONS  

 

In our case study will reproduce 3 scenarios in order to 

better put the performance of the command into perspective, 

so we will use the following 3 cases: 

(1) Low Traffic (LT): With 1000 cars generated 

randomly but following a Weibull distribution. 

(2) High Traffic (HT): With 3500 cars generated as 

before over a fixed period t. 

(3) South-north Scenario: with 1200 cars generated 75% 

coming from the southern section. 

 

In order to evaluate the performance of our agent, a set of 

fixed experiments was carried out on each trained agent. For 

each of the 3 scenarios randomly generated 1000 vehicles per 

episode with random directions. Then the agent is rated for 

each episode. Regarding the method used for the generated 

vehicles, we use Weibull's law in order to have a distribution 

with a car spike at a time t. 

The evaluation is based on the following performance 

indicators: 

 

,

0

( )
nt

avg ep t ep

t

nrw avg nrw
=

=   (6) 

 

The sum of every negative reward nrw received at every 

timestep t in an episode ep, averaged among the 5 episodes. 

 

,

0

( )ep veh ep

t

Twt avg wt
=

=   (7) 

 

The sum of the waiting times wt for every vehicle veh in an 

episode ep, averaged among the 5 episodes. Measured in 

seconds. 

 

,

/ v ( )
veh ep

wveh

ep

wt

Awt median
wveh

=


 (8) 

 

The average wait time wt of those vehicles that have waited 

wveh, gathered from the episode with the median value of 

negative reward. Measured in seconds. 

In this part, the experiments are carried out with fixed hyper 

parameters. These are described in Table 1. The main agent 

models tested are presented below. They are called Low 

Gamma Agent (LG), High Gamma Agent (HG). 

 

Table 1. Fixed parameters 

 
 Low Gamma High Gamma 

NN structure 
5 Couches with 400 

neurons 

5 Couches with 400 

neurons 

Number of 

episodes  
100 100 

Gamma 0.1 0.8 

 

The same neural structure was used for all the agents for the 

sake of training time, so we got suitable results with a 5/400 

structure, however a deeper configuration could not be tested 

for the sake of training power. material used, so a 9-layer 

neuron network with 1000 neurons takes +800 seconds of 

training per episode, which is quite important considering that 

at least 100 episodes are required. 

The choice of the neural structure used depends on two 

constraints: the desired performance and the total training time, 

which itself depends on the capacities of the machine used. 

Thus, for all the tests and simulations we will use the machine 

with the following characteristics: 

(1) GPU: Nvidia 920m 2Go CUDA 9.1 

(2) CPU: i5-7200U CPU @ 2.50GHz cap: 4005 MHz 

(3) RAM: 8 GB 

(4) IOS: Linux 16.04 x64 kernel: 4.15.0-101-generic 

 

The calculated training times are described in Table 2. 

 

Table 2. Estimating the time required to train RNN 

 
Training 

time 
 

RN simple 3 

couches 200N 

RN simple 5 

couches 400N 

RN simple 9 

couches 1000N 

100 

episodes 
 7h 10h 28h 

1500 

episodes  
 90h 112h 18days 

 

For the simple neural network, the performance obtained is 

unusable and the training time is almost equal to the 5c / 400n 

neural network, and this is due to the fact that the small 

network cannot correctly map the acquired data. Regarding in-

depth neural networks, the training time is much too long to be 

able to use it, solutions are offered in Cloud-Training, in 

particular with Google's CoLlab, but the latter is limited to 8 

hours of training per project. And so, we will use the 5 hidden 

layers configuration with 400 neurons for each layer. Low and 

High agents use the literature reward function and an intense 

sampling strategy, but experiments show that this 

configuration is not beneficial for the agent with low gamma 

values. 
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5.1 Low Gamma 

 

First, we used the model of an agent with a fairly low 

Gamma value (Low-Gama) that we trained with the hyper 

parameters represented in Table 2. 

The size of the neural network is set to a starting value: 

variations in depth and width will be discussed later in this 

section.  

The gamma is set to a low value: this means that the agent's 

anticipation is short and he will be more likely to prefer good 

immediate rewards, rather than waiting for a positive reward 

which could be acquired after more consequent actions. This 

agent behavior can be considered greedy.  

After training, the result of negative rewards is shown in 

Figure 9. The latter represents the cumulative negative rewards. 

 

 
 

Figure 9. Accumulate negative rewards 

 

 
 

Figure 10. Cumulative waiting time 

 

We notice that through the episodes, the accumulation of 

negative rewards does not converge towards a fixed value in a 

direct way. Sometimes the agent obtains an accumulation 

which is quite far from the neighboring values, especially 

during episode 37 and 70 with values -145000 and 178000 

respectively, and this because the Gamma being low, he 

pushes the agent to seek a reward on the field which generally 

leads to poor traffic management, hence the points of 

divergence that can be seen in the graph in Figure 10. 

Overall, however, we have fairly good performance on 

certain points, as can be seen from the previous graph. Thus, 

the cumulative waiting time per episode is improved compared 

to 50% of the initial departure time. 

In summary, the agent with a Low Gamma performs well, 

except for the "High-traffic" scenario being the only one that 

is not very efficient, it will be a recurring event in each model 

of the agent tested. 

This scenario causes long queues more than 200 cars on 

each lane because the number of cars generated is greater than 

the capacity of the junction. This explains the poor 

performance of the agent. When the agent sets a green phase 

where there is a long queue, starting the cars activates a wave 

of movement along the queue. This means that every waiting 

time for every car in the queue resets itself, but they don't 

happen instantly. For very long queues, the agent receives the 

reward for the last cars in the queue very late for the time when 

the transfer phase is activated. 

After training the data see Table 3. There is a constant 

improvement in traffic management for the Low-Traffic 

scenario, with around 39% improvement in total waiting time 

and 69% in average time per vehicle during one episode 

compared to traffic light straigie system [14-16], in another. 

On the other hand, we have the opposite with a deterioration 

in performance for the High-Traffic scenario. This confirms 

our statements previously. 

 

Table 3. Results after training with a Low-Gamma 

 

 
Low 

traffic  

Improvement 

over STL 

High 

traffic 

Improvement 

over STL 

Total 

waiting 

time 

12102.2 +39.1% 422377.2 -11% 

1500 

episodes 
12.2 +69.2% 121 -9.6% 

 

5.2 High Gamma  

 

This time the gamma value is set to a high value, while the 

other parameters are still fixed. High gamma means that the 

agent aims to maximize the expected cumulative reward of 

multiple consecutive actions. 

 

 
 

Figure 11. Evolution of cumulative negative rewards through 

episodes 

 

This agent is best suited for road networks with a complex 

traffic influence, i.e. it can explore all the possibilities 

available to it in order to extract the best performance. Figure 

11 represents the cumulative negative rewards obtained during 

training with low traffic. 

We notice a clear improvement in the negative rewards in 

the queues of episodes, with a reduction from the latter to 75%. 

However, we also notice that towards the end of the training 

the agent tends to make less random decisions. In order to 

better understand the preceding graph, we must remember that 

during the training of the agent, the latter follows an epsilon 

exploration function. The more training progresses, the more 

the agent tends not to choose an exploration decision. 

Therefore, it is normal that towards the start of the training, 

the agent performs poorly as he or she is more oriented 

towards exploratory actions. We notice that from episode 60 

the cumulative negative rewards decrease with a decrease in 
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the difference between the local max and the local minimum 

of the peaks of the graph, which means that the agent has 

learned a good decision-making policy in the first scenarios. 

An indicator of good training is stability towards the end of the 

graph. 

 

 
 

Figure 12. Cumulative waiting time 

 

One of the performance criteria can be seen in Figure 12, 

we notice a clear decrease in the number of waiting cars, it 

goes from 65 cars on average to 20 cars which demonstrates 

the efficiency of the agent during his training in very 

beginning of the episodes. The different results are shown in 

Table 5. 

Overall, there is an improvement of more than 50% in the 

total and average waiting time of each car compared to the 

STLS. As hoped, High-Gamma performs better compared to 

Low-Gamma and manages to reduce the waiting time to an 

average of 9 seconds. What is more interesting is to see an 

improvement in performance on the High-traffic side, 

however in order not to draw active conclusions it will be 

preferable to increase the number of episodes up to 1500 in 

order to see the real performance. of the agent in the face of 

high-traffic, because the observed improvement has not been 

robust enough (Table 4). 

 

Table 4. Results after training with a High-Gamma 

 

 
Low 

traffic 

Improvement 

over STL 

High 

traffic 

Improvement 

over STL 

N rewards -49824 - 
-

220398 
- 

Total waiting 

time 
8707.1 +56.2% 365299 +4% 

Average 

waiting time 
8.9 +77.4% 105 +3.9% 

 

Table 5. Numerical comparison between proposed control 

strategy and STLS 

 
Objective 

function  
PCS  STLS Improvement % 

Waiting time (s) 38 71 46,6% 

Time lost(s) 51.6 110 53.1% 

Co2(mg/s)  83703.15 7032 47.3% 

Co (mg/s) 76.10 127 40.1% 

Nox (mg/s) 1.51 2.95 48.8% 

Bruit (Db) 63.08 67.7 6.8% 

 

In the end, we better understand the impact of Gamma in the 

learning process, so for a better forecasting of future actions, 

an average Gamma is more suitable for urban traffic 

management, however the results obtained are the result of 

sufficient training. short of the agent, so that the latter can 

better learn the dynamics and stochasticity of the system, the 

latter must be trained over a longer period of time. 

 

 
 

Figure 13. Simulation test under SUMO 

 

The same problem has been investigated in Ref. [16] for the 

past year, who used a Genetic Algorithm to improve the 

performance of traffic management in the Sofia intersection. 

The comparative study Between proposed control strategy 

(PCS) and STLS are shown in Table 5. 

According to Table 5, the results obtained from the 

experimental groups demonstrate (see Figure 13) that the 

application of Q-learning agent implemented in the context of 

signal traffic control in order to investigate the efficiency 

improvement compared with conventional methods. 

 

 

6. CONCLUSIONS 

 

In summary, the application of reinforcement learning 

techniques in the field of traffic light control is a difficult task, 

but with a very high potential. Multiple versions of the agent 

should be tested in order to find the appropriate state 

representation, set of actions, reward function, and learning 

techniques that allow the agent to perform best in each. traffic 

scenario. 

In our case, the elements of the agent are defined in such so 

that the design is compatible with a real-world implementation. 

As well as the experimental results obtained presented and 

discussed have shown that the solutions proposed in our work 

surpass the classical methods. 

In order to validate our results, we evaluated our control 

algorithm in simulations with the SUMO software. Our results 

demonstrate a drastic improvement in the wait time due to Q 

values generated by the deep neural network, compared to a 

traffic adaptive signal control. 

Future research could be applied to the reinforcement 

learning techniques in large traffic network.  
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