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The Copula approach for continuous variables is highly developed, while discrete ones 

are underdeveloped due to computational difficulties and sometimes algorithm failure 

to convergent. Therefore, providing an alternative method for discrete variables 

becomes an essential issue. In this paper, a simple method is proposed to answer the 

problem by applying the Continuous Extension Technique (CET). This is carried out 

by adding random independent perturbations in the form of either Uniform distribution 

U(0,1)  or (U(0,1) − 1), and the discrete variables are treated as continuous. 

Subsequently, a Copula model for resulted variables is estimated based on the Copula 

theory for continuous variables. This method is called a Copula continuous extension 

technique. Our analytic and simulation approaches show that both random perturbation 

forms produce the same Kendall’s Tau measure and the selected Copula bivariate 

model. As illustrations, the proposed method is applied to the seismicity data obtained 

from the annual frequencies of earthquakes that occurred in the Sumatra megathrust of 

Indonesia, from January 1971 to December 2018, with magnitudes (Mw) of at least 4.6.

Based on the selected Copula models, our simulations confirm the evidence of 

dependence seismic activity in each of the two adjacent large earthquake sources. These 

results provide new information regarding the seismicity behavior in the Sumatra 

megathrust.  
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1. INTRODUCTION

The Copula model approach becomes an alternative method 

in statistics, which is used in constructing the joint distribution 

of multivariate variables wherein dependence between 

marginals exists. Meanwhile, an application of the Copula 

model arises in a wide context, and several of the most 

commonly used are briefly mentioned, namely financial risk 

assessment by Zhang and Jiang [1], environmental sciences by 

Bhatti and Do [2], image processing by Dong et al. [3], health 

data by Ghahroodi et al. [4], and industrial problem by Wan 

and Li [5]. Furthermore, the Copula models used in the 

aforementioned cases are for continuous variables. Due to the 

non-uniqueness of the Copula model outside the range of 

marginal discrete distribution, the Copula for discrete 

variables is still not well developed [6]. In many real data 

applications, however, many phenomena are modeled based 

on the counting process, where the appropriate distributions 

are the discrete multivariate distributions. Therefore, these 

reasons motivate us to provide alternative procedures in 

Copula modeling for discrete variables. 

One way to overcome this problem is by applying the 

Continuous Extension Technique (CET) to the marginal of the 

discrete variables. Moreover, the CET idea is to transform the 

marginal discrete variables X to become continuous, denoted 

by X⋆. This is worked out by summing the discrete random

variable with a random perturbation taking values in (0,1) 

(e.g., Uniform distribution, denotes U(0,1) ) where the 

variables X and U(0,1) are independent. Formally, it can be 

written as follows [7]:  

X⋆ = X + U(0,1). (1) 

According to Eq. (1), it is depicted that X is continued by 

U(0,1) . After applying the CET to the discrete variable 

(previous), a Copula model is estimated for continuous 

variables (new) by following the model procedure for 

continuous variables (referred to as Copula continuous 

extension technique). 

The CET procedure has been studied further by Machado 

and Santos Silva [8] to extend quantile regression to count data 

and by Denuit and Lambert [9] to study concordance measures 

for dependent discrete data. The latter authors modified the 

CET, and Eq. (1) becomes X⍟ = X + (U(0,1) − 1) . The

detailed explanation is related to the idea of modifying the 

CET and its implications of the association measure 

(Kendall’s Tau, denoted by 𝜏 ) between the bivariate 

continuous (new) and the bivariate discrete (previous), that is, 

𝜏(X, Y) = 𝜏(X⍟, Y⍟), can be seen in Denuit and Lambert [9].

Currently, the bivariate discrete variables (X, Y)  are 
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considered, and are continued by (independent) considering 

two CET forms, (X⋆, Y⋆)  according to Stevens [7] and

(X⍟, Y⍟) according to Denuit and Lambert [9]. From each of

the bivariate continuous, a Copula model can be constructed, 

as stated in Sklar's theorem [10]. From this situation, a 

question worthy to ask is whether the two Copula models 

produce the same model. When this happens, then one of two 

existing CET forms can be selected. Otherwise, further 

analysis regarding the selection of the appropriate CET model 

is needed. Since the result of this problem becomes the base 

for the next, this issue will be examined first. The examination 

is carried out using two approaches, namely analytic and 

simulation studies. In the simulation studies, five common 

bivariate discrete, namely Binomial, Geometric, 

Hypergeometric, Poisson, and Binomial Negative, are used to 

generate the dependence bivariate data. Meanwhile, for 

constructing the bivariate Copula, two families of Copula 

models, namely the Archimedean, i.e., Clayton, Gumbel, 

Frank, Joe, and Independent, and Elliptical, i.e., Gaussian and 

Student’s, are applied. 

In the present paper, the possible real case for the 

application was selected, which is the dependence modeling of 

seismicity data in the Sumatra megathrust subduction zone of 

Indonesia. The main reason for selecting this context is the 

characteristics of data to be analyzed appropriately with our 

research problems, which is a discrete multivariate variable. 

Moreover, to the best of our knowledge, the application of 

dependence modeling of seismicity data using the Copula 

model is still rare. Even though, this model is needed by 

seismologists to identify the dependencies of seismic activity 

in one restricted area [11]. 

The rest of the paper is organized as follows. The study 

materials and methods related to this work such as the theory 

of bivariate discrete distributions, association measure, and 

bivariate Copula theory are provided in Section 2. In Section 

3, steps of simulation and corresponding analytical study are 

presented. Furthermore, the real data application on seismicity 

is described in Section 4. Finally, concluding results and 

recommendations for further study are discussed in Section 5. 

2. MATERIALS AND METHODS

The use of a Copula model is relatively easy to implement 

in a bivariate case, but it becomes awkward when we 

implement in the multivariate case. Therefore, we restrict the 

discussion to the bivariate case, although generalization to 

higher dimensions is possible. In the next subsection, we 

address subjects such as bivariate discrete distribution, 

association measure, and bivariate Copula models. For the 

descriptions of bivariate discrete distribution, the books of 

Kocherlakota and Kocherlakota [12], Montgomery and 

Runger [13], were used as references. Meanwhile, for an 

association measure and bivariate Copula model, the books of 

Joe [14], Nelsen [15], and Hofert et al. [16] were used. 

2.1 Bivariate discrete distributions 

Here, we focus the discussion on five discrete bivariate 

distributions commonly used, namely Binomial, Geometric, 

Hypergeometric, Poisson, and Negative Binomial. Those 

distributions are derived from the Bernoulli distribution [17]. 

Furthermore, the relationship between the Bernoulli and the 

five aforementioned bivariate distributions is seen in Figure 1. 

Figure 1. A family of bivariate distributions generated by the 

bivariate Bernoulli distribution (Adopted from Marshall and 

Olkin [17]) 

A common measure of the relationship between two random 

variables (X, Y) is the Pearson correlation coefficient (PCC) 

denoted by 𝜌(X, Y). The value 𝜌(X, Y) is the covariance of the 

two variables divided by the product of their standard 

deviations, which is formally stated as follows: 

𝜌(X, Y) = (𝜎X 𝜎Y)−1 Cov (X, Y). (2) 

As for the summary related to distribution notation-model 

parameters, joint probability mass function, and the Pearson 

correlation of the selected five bivariate discrete distributions 

are seen in Table 1. 

2.2 Association measure 

By far, the most familiar association measure between two 

random variables is calculated by the PCC defined in Eq. (2). 

However, it is noted that this approach has some limitations, 

namely only appropriate for detecting the linear dependencies 

between two variables and it is not invariant under strictly 

increasing non-linear transformation, which is, 𝜌(X, Y) ≠
𝜌(FX(x), GY(y)) . The variables FX(x)  and GY(y)  are the

cumulative distribution functions (CDFs) of the random 

variable of X and Y, respectively [18]. 

Those limitations motivate the development of a 

dependence measure for bivariate variables, i.e., Spearman’s 

Rho and Kendall’s Tau. Both measures are constructed based 

on the concept of concordance and discordance (Kruskal [19] 

and Lehmann [20]), which refers to the property that large 

values of one random variable tend to be associated with large 

values of the other random variable and small values of one 

random variable with small values of the other. Whereas 

discordance refers to large values of one random variable 

being associated with small values of the other.  

To be more precise, suppose a pair of data is given by 

(𝑥𝑖 , 𝑦𝑖)  and (𝑥𝑗 , 𝑦𝑗) . We identify a concordance or

discordance pair by: for 𝑖 ≠  𝑗, if sign (𝑥𝑖 − 𝑥𝑗) = sign (𝑦𝑖 −

𝑦𝑗) then (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) is a concordance pair otherwise it

is a discordance pair.  

In the following discussions, we concentrate on Kendall’s 

Tau measure which is denoted by “𝜏". By definition, Kendall's 

Tau measure is the probability of a concordance minus the 

probability of a discordance, which is formally written as 

follows: 

𝜏(X, Y) = 𝑃[(X1 − X2) (Y1 − Y2) > 0]
−𝑃[(X1 − X2) (Y1 − Y2) < 0]

(3) 
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Here, (X1 , Y1) and (X2, Y2) are independent random vector

and identically distributed from (X, Y).  Also, it should be 

noted that Eq. (3) is appropriate for continuous random 

variables but not for discrete ones due to the presence of ties 

condition, that is, P(tie) = P(X1 = X2 or Y1 = Y2). By using

that P(concordance) + P(discordance) + P(tie) = 1  then 

Kendall's Tau measure for the discrete bivariate variables (as 

commonly denotes 𝜏𝑏) is written as follows [21]:

𝜏𝑏(X, Y) = 4𝑃[(X1 − X2) (Y1 − Y2) > 0]
−1 + 𝑃(X1 = X2 or Y1 = Y2)

(4) 

Table 1. Joint probability mass functions and the PCC formulation associated with the selected five bivariate discrete 

distributions adopted from Kocherlakota and Kocherlakota [12] and Montgomery and Runger [13] 

Bivariate 

model 

Distribution notation and 

model parameters 

Joint probability mass function 

(PMF) formulation 
𝝆(𝐗, 𝐘) 

Binomial 

BivBin (𝑛, 𝑘, 𝑙, 
𝑝00, 𝑝𝑜1, 𝑝10, 𝑝11)
0 ≤ 𝑘, 𝑙 ≤ 𝑛 and 

𝑝00, 𝑝𝑜1, 𝑝10, 𝑝11 ≥ 0

∑
𝑛!𝑝00

𝑛−(𝑘+𝑙)+𝛿
𝑝10

𝑘−𝛿𝑝01
𝑙−𝛿𝑝11

𝛿

(𝑛−(𝑘+𝑙)+𝛿)!(𝑘−𝛿)!(𝑙−𝛿)!𝛿!

𝜀
𝛿

𝜀 = min(𝑘, 𝑙) and 𝛿 = max(𝑘 + 𝑙 − 𝑛, 0)  

𝑛(𝑝00𝑝11 − 𝑝10𝑝01)

√𝑎 √𝑏
, 

𝑎 = 𝑘(𝑝10 + 𝑝11) (𝑝00 + 𝑝01)
b = 𝑙(𝑝01 + 𝑝11)(𝑝00 + 𝑝10)

Geometric 

BivGeo(𝜂1, 𝜂2, 𝜂3)
0 < 𝜂𝑖 < 1, 𝑖 = 1,2

0 < 𝜂3 ≤ 1

𝜂1
𝑥−1𝜂2

𝑦−1
𝜂3

𝑧1 − 𝜂1
𝑥𝜂2

𝑦−1
𝜂3

𝑧2

−𝜂1
𝑥−1𝜂2

𝑦
𝜂3

𝑧3 + 𝜂1
𝑥𝜂2

𝑦
𝜂3

𝑧4

𝑧1 = max(𝑥 − 1, 𝑦 − 1), 𝑧2 = max(𝑥, 𝑦 − 1),
𝑧3 = max(𝑥 − 1, 𝑦), 𝑧4 = max(𝑥, 𝑦)

(1−𝜂3)√𝜂1𝜂2

1−𝜂1𝜂2𝜂3

Hyper-

geometric 

BivHG(𝑁, (𝑚1, 𝑚2), 𝑞)
𝑞 = 𝑥 + 𝑦, 𝑁 = 𝑚1 + 𝑚2 and

q≤ 𝑁 

(
𝑚1

𝑥
)(

𝑚2

𝑦 )

(
𝑁
𝑞

)
−√

𝑚1

𝑁−𝑚1

𝑚2

𝑁−𝑚2

Poisson 
BivPoi(𝜆1, 𝜆2, 𝜆3)

𝜆1, 𝜆2, 𝜆3 > 0

exp{−(𝜆1 + 𝜆2 + 𝜆3)}
𝜆1

𝑥

𝑥!

𝜆2
𝑦

𝑦!
 

∑ (
𝑥
𝑖

) (
𝑦
𝑖

)
min(𝑥,𝑦)
𝑖=0 𝑖! (

𝜆3

𝜆1𝜆2
)

𝑖

𝜆3

√𝜆1+𝜆3 √𝜆2+𝜆3

Binomial 

Negative 

BivNB(𝜅, 𝑝1, 𝑝2)
𝜅 > 0 and 0 < 𝑝𝑖 < 1
such that 𝑝1 + 𝑝2 < 1

Γ(𝑥+𝑦+𝜅)

𝑥!𝑦!Γ(𝜅)
𝑝1

𝑥𝑝2
𝑦

𝑝0
𝜅

𝑝0 = 1 − 𝑝1 − 𝑝2

𝑝1 𝑝2

√(𝑝0+𝑝1)(𝑝0+𝑝2)

In addition, the association of two continuous random 

variables is measured using the bivariate Copula models 

approach, which is known as Kendall's Tau Copula 𝜏𝐶 . This is

presented in the next subsection.  

2.3 Bivariate Copula theory 

To be self-contained, we provide a brief description of a 

bivariate Copula theory to sample-selection models. Literally, 

in statistics and probability theory, a bivariate Copula model 

is a two-dimensional joint CDFs based on a given marginal 

CDF. Therefore, the properties of the bivariate Copula models 

are analogous to properties of bivariate CDFs, that satisfy 

grounded and 2-increasing properties, see Joe [14], Nelsen 

[15], and Trivedi and Zimmer [18] for details. 

The following theorem, known as Sklar’s theorem [10], is 

the practical usefulness theorem of construction Copula 

models. According to that theorem, for random variables X 

and Y with respective marginal CDFs 𝐹X(𝑥) and 𝐹Y(𝑦), the

bivariate distribution 𝐻X,Y(𝑥, 𝑦) can be expressed as follows:

𝐻X,Y(𝑥, 𝑦) = 𝑃(X ≤ 𝑥, Y ≤ 𝑦)

= 𝐶(𝐹X(𝑥), 𝐹Y(𝑦): 𝜃), 𝑥, 𝑦 ∈ 𝑅
(5) 

where, 𝜃  is a parameter of the Copula model called the 

parameter of dependence, which describes the dependence 

between 𝐹X(𝑥) and 𝐹Y(𝑦). Estimation 𝜃 by the value �̂� can be

determined by maximizing the log-likelihood function of the 

pdf Copula model as follows [22]: 

�̂� = arg max𝜃 ∑ log 𝑐(𝐹X(𝑥𝑖), 𝐹Y(𝑦𝑖); 𝜃)𝑇
𝑖=1 (6) 

Based on the Integral Transform probability theorem 

(Angus [23]), the marginal distribution of variables (X, Y) 

follows the Uniform distribution ranging from 0 to 1. 

Therefore, by denotes 𝐹X(𝑥)  and 𝐹Y(𝑦)  with 𝑢1  and 𝑢2 ,

respectively, we can rewrite the Eq. (5) as follows: 

𝐶(𝐹X, 𝐹Y: 𝜃) =  𝐶(𝑢1, 𝑢2: 𝜃), 𝑢1, 𝑢2  ∈ [0,1] (7) 

There are a number of Copula models that have been widely 

explored in many articles and books. In this paper, models are 

chosen to be the Archimedean Copula family (i.e., Clayton, 

Gumbel, Frank, Joe, and Independent) and the Elliptical 

Copula family (i.e., Gaussian and Student’s) which were often 

used in practice. Here, we write those Copula models in terms 

of random variables U1 and U2 that have standard to denotes 

the Uniform marginal distribution, as can be seen in Table 2. 

3. ANALYTICAL AND SIMULATION STUDIES

Let (X, Y)  be bivariate discrete random variables. We 

reconsider two random independent perturbation forms of the 

CET process for marginal bivariate discrete variables, i.e., 

X⋆ = X + U(0,1) [7] and X⍟ = X + (U(0,1) − 1) [9]. There

is analog for the discrete variable Y, but now replacing U(0,1) 

by V(0,1) . Here, the variable U(0,1)  and V(0,1)  are 

independent. Subsequently, we analytically prove that for a 

given bivariate discrete variables (X, Y) the two CET results, 

i.e., (X⋆, Y⋆) and (X⍟ , Y⍟), produce the same Copula model

and its parameter. Therefore, some simulations are carried to

confirm our analytical approach. The process includes the

following.

Suppose (𝐹X⋆ , 𝐹Y⋆)  and (𝐹X⍟ , 𝐹Y⍟)  are the CDFs for

(X⋆, Y⋆) and (X⍟, Y⍟), respectively. We will first examine

that if two bivariate continuous, (X⋆, Y⋆) and (X⍟, Y⍟) have

the same behavior of the CDFs, i.e., (𝐹X⋆ , 𝐹Y⋆) = (𝐹X⍟ , 𝐹Y⍟),
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and Kendall’s Tau measure, i.e., 𝜏(X⋆, Y⋆) = 𝜏(X⍟, Y⍟), then 

they will have not only the same Copula model but also its 

parameter due to the presence of the unique property of the 

Copula model for continuous variables [10]. 

 

Table 2. Formulation of some single parameter Copula model of the selected Archimedean Copulas family with their generators 

function and the selected Elliptical Copulas family, i.e., Gaussian Copula and Students’s Copula 

 

Copula model Function 𝑪(𝒖𝟏, 𝒖𝟐; 𝜽) Generator 𝝓(𝒕; 𝜽) Parameter range(𝜽) Kendall’s tau of the copula C 

Independence 𝑢1 𝑢2 − log(𝑡) n/a 0 

Clayton (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)
−1/𝜃

  𝜃−1(𝑡−𝜃 − 1) (0, ∞) 
𝜃

𝜃+2
  

Gumbel Hougaard 
exp (−(�̃�1

𝜃 + �̃�2
𝜃)

1/𝜃
); 

�̃�𝑗 = − log 𝑢𝑗  
(− log 𝑡)𝜃  [1, ∞) 

𝜃−1

𝜃
  

Frank 
−

1

𝜃
log (1 +

𝑢1
∗ 𝑢2

∗ 

exp(−𝜃)−1
); 

𝑢𝑗
∗ = 𝑒(−𝜃𝑢𝑗−1) 

− log (
exp(−𝜃𝑡)−1

exp(−𝜃)−1
)  (−∞, ∞) 1 −

4

𝜃
[1 − 𝐷1(𝜃)]  

Joe 
1 − [𝑢1

∗ + 𝑢2
∗  − 𝑢1

∗ 𝑢2
∗]1 𝜃⁄ ; 

𝑢𝑗
∗ = (1 − 𝑢𝑗)

𝜃
 

− log(1 − (1 − 𝑡)𝜃)  [1, ∞) 1 − ∑
4

ℎ(𝜃,𝑘)
∞
𝑘=1   

Gaussian Φ𝐺[Φ−1(𝑢1), Φ−1(𝑢2); 𝜃] n/a (−1,1) 
2

𝜋
arcsin(𝜃)  

Student’s 
𝑡2,𝜈[𝑡𝜈

−1(𝑢1), 𝑡𝜈
−1(𝑢2); 𝜃]; 

𝜈 ∈ (2, ∞)  
n/a [−1,1] 

2

𝜋
arcsin(𝜃)  

Notes: 1. The quantity 𝐷1 is the Debye function of order one, defined by 𝐷1(𝑥) = 1 𝑥⁄  ∫ 𝑡 (𝑒𝑡 − 1)⁄ 𝑑𝑡
𝑥

0
, 𝑡 ∈ (0, ∞), 2. ℎ(𝜃, 𝑘) = (𝑘(𝜃𝑘 + 2)(𝜃(𝑘 − 1) + 2)), 

and 3. n/a denotes that the mentioned item is not available. 

 

Before proceeding to show (𝐹X⋆ , 𝐹Y⋆) = (𝐹X⍟ , 𝐹Y⍟) , a 

relation of 𝐹X⋆  with 𝐹X⍟  and 𝐹Y⋆  with 𝐹Y⍟  needs to be 

determined. In addition, for all (𝑥, y) elements of the domain 

(X⍟, Y⍟) , there is (𝑥 + 1, y + 1)  elements of the domain 

(X⋆, Y⋆)  such that 𝐹X⍟(𝑥) = 𝑃(X⍟ ≤ 𝑥) = 𝑃(X𝑖
⋆ − 1 ≤

𝑥) = 𝑃(X𝑖
⋆ ≤ 𝑥 + 1) = 𝐹X⋆(𝑥 + 1). The same statement also 

holds for 𝐹Y⍟(𝑥) = 𝐹Y⋆(𝑦 + 1). 

As already stated, we will prove (𝐹X⋆, 𝐹Y⋆) = (𝐹X⍟ , 𝐹Y⍟) 

by showing that (𝐹X⋆ , 𝐹Y⋆) ⊆ (𝐹X⍟ , 𝐹Y⍟)  and (𝐹X⋆ , 𝐹Y⋆) ⊇

(𝐹X⍟ , 𝐹Y⍟).  

We start the investigation for (𝐹X⋆ , 𝐹Y⋆) ⊆ (𝐹X⍟ , 𝐹Y⍟) . 

Suppose that (𝑎0, 𝑏0) ∈ (𝐹X⋆, 𝐹Y⋆) , by using the CDF 

definition, there is (𝑥0, 𝑦0), which belongs to the domain of 

(X⋆, Y⋆)  such that 𝑎0 =  𝐹X⋆(𝑥0) = 𝐹X⍟(𝑥0 − 1)  and 𝑏0 =
 𝐹Y⋆(𝑦0) = 𝐹Y⍟(𝑦0 − 1). Thus, 𝑎0 =  𝐹X⍟(𝑥0 − 1) and 𝑏0 =
 𝐹Y⍟(𝑦0 − 1) where (𝑥0 − 1, 𝑦0 − 1) belongs to the domain 

of (X⍟, Y⍟) and thus (𝑎0, 𝑏0) ∈  (𝐹X⍟(X⍟), 𝐹Y⍟(Y⍟)). As a 

conclusion (𝐹X⋆ , 𝐹Y⋆) ⊆ (𝐹X⍟ , 𝐹Y⍟). 

Next, we check for (𝐹X⋆ , 𝐹Y⋆) ⊇ (𝐹X⍟ , 𝐹Y⍟). We work out 

in similar way. Let (𝑎1, 𝑏1)  be the element of (𝐹X⍟ , 𝐹Y⍟) . 

This means, there is (𝑥1, 𝑦1) , which belongs to domain of 

(X⍟, Y⍟)  such that 𝑎1 =  𝐹X⍟(𝑥1) = 𝐹X⋆(𝑥1 + 1)  and 𝑏1 =
 𝐹Y⍟(𝑦1) = 𝐹Y⋆(𝑦1 + 1). In other words, 𝑎1 = 𝐹X⋆(𝑥1 + 1) 

and 𝑏1 = 𝐹Y⋆(𝑦1 + 1)  where (𝑥1 + 1, 𝑦1 + 1)  belongs to 

domain of (X⋆, Y⋆) . So, we have that (𝑎1, 𝑏1) ∈

 (𝐹X⋆(X⋆), 𝐹Y⋆(Y⋆)) and thus, (𝐹X⋆ , 𝐹Y⋆) ⊇ (𝐹X⍟ , 𝐹Y⍟). 

By combining the two results above, i.e., (𝐹X⋆ , 𝐹Y⋆) ⊆

(𝐹X⍟ , 𝐹Y⍟) and (𝐹X⋆ , 𝐹Y⋆) ⊇ (𝐹X⍟ , 𝐹Y⍟), we therefore have 

(𝐹X⋆ , 𝐹Y⋆) = (𝐹X⍟ , 𝐹Y⍟). 

The second examination is related to Kendall’s Tau measure 

of (X⋆, Y⋆)  and (X⍟ , Y⍟) . Let (X1, Y1)  and (X2, Y2)  be 

independent copies of bivariate discrete (X, Y). We assume 

that for 𝑖 =  1,2  holds: (i) X𝑖  and Y𝑖  are continued by the 

method of Stevens [7] or Denuit and Lambert [9] (ii) the 

Uniform distribution U𝑖  and V𝑖  are independent. Under these 

conditions and according to Eq. (3), Kendall’s Tau measure of 

(X⍟, Y⍟)  is written as follows: 𝜏(X⍟ , Y⍟) = 𝑃[(𝑋1
⍟ −

𝑋2
⍟) (𝑌1

⍟ − 𝑌2
⍟) > 0] − 𝑃[(𝑋1

⍟ − 𝑋2
⍟) (𝑌1

⍟ − 𝑌2
⍟) < 0]. 

Note that, we write the expression of X𝑖
⍟ = X𝑖 +

(U𝑖(0,1) − 1)  to become X𝑖
⍟ = X𝑖

⋆ − 1,  similarly for the 

variable Y𝑖
⍟

. Thus, we get 

 

𝜏(X⍟, Y⍟) = 𝑃[((𝑋1
⋆ − 1) − (𝑋2

⋆ − 1))((𝑌1
⋆ − 1) −

(𝑌2
⋆ − 1)) > 0] − 𝑃[((𝑋1

⋆ − 1) − (𝑋2
⋆ − 1))((𝑌1

⋆ −

1) − (𝑌2
⋆ − 1)) < 0]  

= 𝑃[(𝑋1
⋆ − 𝑋2

⋆) (𝑌1
⋆ − 𝑌2

⋆) > 0] −  𝑃[(𝑋1
⋆ −

𝑋2
⋆) (𝑌1

⋆ − 𝑌2
⋆) < 0] = 𝜏(X⋆, Y⋆)  

(8) 

 

The last expression of Eq. (8) confirmed that 𝜏(X⋆, Y⋆) =
𝜏(X⍟, Y⍟). In addition, Denuit and Lambert [9] have stated 

that for a given bivariate discrete (X, Y) , then 𝜏(X, Y) =
𝜏(X⍟, Y⍟). Hence, based on those results, we conclude that 

𝜏(X, Y) = 𝜏(X⋆, Y⋆) = 𝜏(X⍟ , Y⍟) . This means the two 

random independent perturbation forms of the CET process in 

bivariate discrete did not change Kendall’s Tau measure. 

To summarize the analytic studies, in setting consideration 

for our research problem, two necessary conditions are 

provided, namely (𝐹X⋆ , 𝐹Y⋆) = (𝐹X⍟ , 𝐹Y⍟)  and 𝜏(X⋆, Y⋆) =

𝜏(X⍟, Y⍟),  such that 𝐶(𝐹X⋆ , 𝐹Y⋆: 𝜃⋆) = 𝐶(𝐹X⍟ , 𝐹Y⍟: 𝜃⍟) 

with 𝜃⋆ = 𝜃⍟ . In other words, they have the same Copula 

model and its parameter. 

Subsequently, some simulations are presented to confirm 

the analytical approach. In the simulations, data are drawn 

from five bivariate discrete (see Table 1). Furthermore, a 

sample of size N = 200 is generated by choosing a set of 

parameters corresponding to the characteristics of each 

distribution model. The characteristics are referred to as low 

PCC (below of 0.5) and high (above of 0.5) except for 

Hypergeometric. Therefore, there are nine possible cases to be 

studied. The procedure simulation listed below can be 

followed: 

 

1. Generate a vector (X, Y) of bivariate data from one of the 

five bivariate discrete distributions. 
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2. Apply Continuous Extension Technique (CET) to 

marginals bivariate discrete distributions X  and Y  with 

three different random perturbation forms, i.e., U(0,1) 

(Control), and (U(0,1) − 1)  (Treatment 1): (Stevens, 

[7]), (Denuit and Lambert [9]), respectively, plus 
(U(0,1) + 1)  (Treatment 2) so that yielding three 

bivariate continuous (new), namely (X⋆, Y⋆), (X⍟ , Y⍟), 

and (X▴, Y▴). 

3. Identify the marginal density function of the three 

bivariate continuous variables.  

4. Estimate Kendall’s Tau Empiric ( 𝜏𝐸 ) of (X⋆, Y⋆) , 

(X⍟ , Y⍟), and (X▴, Y▴) using Eq. (3). 

5. Construct the bivariate Copula model of the (X⋆, Y⋆) , 

(X⍟ , Y⍟) , and (X▴, Y▴) . Here, the seven types of 

bivariate Copula models as display in Table 2 are 

evaluated altogether. 

6. Estimate Kendall’s Tau Copula ( 𝜏𝐶 ) of (X⋆, Y⋆) , 

(X⍟ , Y⍟), and (X▴, Y▴).  

7. Repeat the following steps 100 times and report the 𝜏𝐸, 

selected Copula model, and 𝜏𝐶 . 

It must be noted that for the construction continuous Copula 

model, a two-step maximum likelihood (TSML) procedure is 

commonly used. That is, the marginals are estimated in the 

first step, and then as the second step, the dependence 

parameter is estimated using the selected family of Copula 

models based on the CDF of the inferred marginal 

distributions. This procedure is known as the Inference 

Function for Marginals (IFM) [24].  

In the third simulation step, marginal probability 

distributions of continuous variable are identified by fitting 

with eight distribution models, namely Normal, Logistic, 

Cauchy, Exponential, LogNormal, Gamma, Weibull, and 

Gumbel. 

The notation, formulation, and parameters of each 

continuous probability function are presented briefly in Table 

3. The standard approach to estimate the parameters models 

(𝝎) of each distribution is the maximum likelihood method, 

which requires the maximization of the log-likelihood 

function that represented as follows [25]: 

 

ℒ(𝝎|𝑥1, … , 𝑥𝑇) = ∑ log 𝑓((𝑥𝑖); 𝝎)𝑇
𝑖=1   (9) 

 

 

Table 3. Probability and cumulative distribution functions associated with the selected eight continuous distribution models 

 

Univariat model 
Probability density function 

𝒇(𝒙: 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔) 

Cumulatif density function 

𝑭(𝒙: 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬) 

Domain and parameters 

range 

𝚴𝐨𝐫𝐦𝐚𝐥(𝝁, 𝝈𝟐) 
1

𝜎√2𝜋
exp (−

(𝑥 − 𝜇)2

2𝜎2 ) 
1

2
(1 + erf (

𝑥 − 𝜇

√2 𝜎
)) 

𝑥, 𝜇 ∈ (−∞, +∞) 

𝜎2 ∈ (0, +∞) 

𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜(𝝁, 𝒔) 

exp (−
(𝑥 − 𝜇)

𝑠
)

𝑠 (1 + exp (−
(𝑥 − 𝜇)

𝑠
))

2 

1

1 + exp (−
(𝑥 − 𝜇)

𝑠
)

 𝑥, 𝜇 ∈ (−∞, +∞) 

𝑠 ∈ (0, +∞) 

𝐂𝐚𝐮𝐜𝐡𝐲(𝒙𝟎, 𝛄) 
1

𝜋γ
(

γ2

(𝑥 − 𝑥0)2 + γ2
) 

1

𝜋
arctan (

𝑥 − 𝑥0

γ
) +

1

2
 

𝑥, 𝑥0 ∈ (−∞, +∞) 

γ ∈ (0, +∞) 

𝐄𝐱𝐩𝐨𝐧𝐞𝐧𝐭𝐢𝐚𝐥(𝝃) 𝜉 exp(−𝜉𝑥) 1 − exp(−𝜉𝑥) 
𝑥 ∈ [0, +∞) 

𝜉 ∈ (0, +∞) 

𝐋𝐨𝐠𝐧𝐨𝐫𝐦𝐚𝐥(𝝁, 𝝈𝟐) 
1

𝑥𝜎√2𝜋
exp (−

(ln 𝑥 − 𝜇)2

2𝜎2 ) 
1

2
(1 + erf (

ln 𝑥 − 𝜇

√2 𝜎
)) 

𝑥, 𝜎2 ∈ (0, +∞) 

𝜇 ∈ (−∞, +∞) 

𝐆𝐚𝐦𝐦𝐚(𝒉, 𝝑) (Γ(ℎ) 𝜗ℎ)−1 𝑥ℎ−1𝑒−𝜗
𝑥⁄  

1

Γ(ℎ) 
 γ (ℎ,

𝑥

𝜗
) 𝑥, ℎ, 𝜗 ∈ (0, +∞) 

𝐖𝐞𝐢𝐛𝐮𝐥𝐥(𝝔, 𝒌) 
𝑘

𝜚
 (

𝑥

𝜚
)

𝑘−1

exp (− (
𝑥

𝜚
)

𝑘

) 1 − exp (− (
𝑥

𝜚
)

𝑘

) 
𝑥 ∈ [0, +∞) 

𝑘, 𝜚 ∈ (0, +∞) 

𝐆𝐮𝐦𝐛𝐞𝐥(𝝁, 𝜷) 
1

𝛽
exp (− (

𝑥 − 𝜇

𝛽
+ 𝑒

−
𝑥−𝜇

𝛽 )) exp (−𝑒
−

𝑥−𝜇
𝛽 ) 

𝑥, 𝜇 ∈ (−∞, +∞) 

𝛽 ∈ (0, +∞) 

Note: erf(𝑥) =
2

√𝜋
∫ 𝑒𝑡2

𝑑𝑡
𝑥

0
. 

 

The goodness-of-fit quantification level between the given 

data set (as information) and a theoretical model fitted is 

required in steps 3 and 4. Due to the theoretical model 

parameters (Tables 2 and 3) are estimated using the maximum 

likelihood, then the information-theoretical, such as the 

Akaike and Bayesian Information Criteria ( AIC  and BIC , 

respectively) are used for model selection, as recommended by 

Akaike [26] and Schwarz [27]. These criteria are defined as 

follows: 

 

AIC(𝑙) = −2ℒ𝑙 + 2𝑝(𝑙). (10) 

 

BIC(𝑙) = −2ℒ𝑙 + 𝑝(𝑙) log T. (11) 

 

Variable ℒ𝑙 is the value for the maximum likelihood of the 

fitted model, p(𝑙) is the number of parameters, and variable T 

is the number of observations. Furthermore, the smaller values 

of AIC(𝑙)  and BIC(𝑙)  means that the selected model shows 

better agreement with the data set. 

In the present paper, the simulation and visualizations are 

carried out using the R program. Furthermore, several 

packages in the R program that correspond to this study 

include “extraDistr” (Wolodzko [28]), “BivGeo” (de Oliveira 

and Achcar [29]), “bivariate” (Spurdle [30]), “fitdistrplus” 

(Delignette-Muller and Dutang [31]), “RMKdiscrete” 

(Kirkpatrick [32]), “copula” (Hofert et al. [33]), and 

“VineCopula” (Schepsmeier et al. [34]). As information, steps 

to construct the bivariate Copula model for continuous 

variables have been provided by Xu et al. [35]. Meanwhile, 

Hofert et al. [16] have provided the elements of Copula 

Modeling with R program. 

To summarize the simulation studies, there are two main 

results from 100 iterations performed. Firstly, the comparison 

of the frequency histograms of dependence parameter, the 
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Kendall’s Tau Empiric (𝜏𝐸)  of three continuous bivariates, 

that is, (X⋆, Y⋆), (X⍟, Y⍟), and (X▴, Y▴), with the random 

perturbation forms U(0,1)  as control, (U(0,1) − 1)  as 

treatment 1, and (U(0,1) + 1) as treatment 2, respectively). 

These are shown as the same histogram (the left-hand panels 

of Figure 2). In other words, the three data sets of 100 

iterations performed are the same. 

Secondly, as seen in the right-hand panels of Figure 2, a 

comparison of the frequency histograms of dependence 

parameter, which is, Kendall’s Tau Copula 𝜏𝐶  of (X⋆, Y⋆) , 

(X⍟, Y⍟), and (X▴, Y▴) are shown as the same histogram. In 

other words, each of 100 iterations performed the same as the 

selected Copula model.  

The simulation results are in line with the findings of the 

analytic studies. Accordingly, the CET form of Denuit and 

Lambert [9] and Stevens [7] gave the same conclusion, i.e., 

produced the same Copula model and its parameter. Therefore, 

in practice, one of two existing random independent 

perturbation forms of the CET process can be selected in 

modifying the Copula methods for bivariate discrete variables. 

The next discussion is related to the illustration of our 

proposed technique on the dependence modeling of seismicity 

data. Hence, to assist in explaining the illustration for the 

seismologists, we will elaborate on the CET process of 

bivariate discrete (previous) and the steps of the Copula 

modeling for the bivariate continuous (new) in detail. 

 

   

 

   

   

 

   

   

 

   
 

Figure 2. The frequency histograms of the 𝜏𝐸 (left-hand panels) and 𝜏𝐶  (right-hand panels) for the nine cases analyzed 
 

 

4. APPLICATION TO SEISMICITY DATA  
 

4.1 Research area and seismicity data 

 

The Sumatra megathrust region of Indonesia is 

characterized by high seismic activity due to the presence of 

the subduction process of the Indo-Australian plates into the 

Eurasian plates with an average rate of 4 mm/year. Also, the 

region has three earthquake sources, namely the Sumatra 

subduction zone, Mentawai fault zone, and the Sumatra fault 

system. 

In this study, the Sumatra megathrust (as the study area) is 

defined to be a rectangle region with latitude between 6.2° S - 

5.5° N and longitude between 93.5° E - 104.5° E. Due to the 

presence of large earthquake sources, the seismologists have 

led to divide the region into five sub-regions, which do not 

overlap, namely Aceh-Andaman (AA), Nias-Simelue (NS), 

Mentawai-Siberut (MS), Mentawai-Pagai (MP), and Enggano 

(EO), as seen in left-hand panels of Figure 3 [11]. 
 

 
Figure 3. Map of the research area and the scatter plot of the pairs data. The left-hand panels is adopted from PusGeN [11] and 

Wikipedia.org (2020), while the right-hand panels is obtained using the R program 
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Here, the observed yearly numbers of mainshock 

earthquakes that occurred in the sub-regions from January 

1971 to December 2018, with Magnitude of Completeness (Mc) 

≥ 4.6 Mw are the data considered in this application.  

The seismicity data source is the earthquake catalog of the 

United States Geological Survey (www.earthquake.usgs.gov). 

The data pairs of earthquakes count are graphically shown in 

the right-hand panels of Figure 3. Meanwhile, statistic 

descriptions such as min-max value, mean, and standard 

deviations for each sub-region are seen in Table 5.  

In illustrating the proposed technique, we focus on two 

adjacent sub-regions of five, such as AA-NS, NS-MS, MS-MP, 

and MP-EO although the other six pairs are possible. 

Previously, Orfanogiannaki et al. [36] and Rizal et al. [37] 

have provided the sub-region seismic activity in the study area 

using the univariate Poisson mixture models (dependent and 

independent). However, according to the last column in Table 

4, i.e., association measure, it is important to note that for 

every two adjacent sub-regions, there is a positive association 

measure and significant (p-value < 0.01). Therefore, it shows 

evidence of dependence from two selected sub-regions exists. 

From these preliminary results, the data set can also be used in 

bivariate dependence modeling through the Copula model 

approaches. 

 

4.2 Results  

 

As a starting point, discrete data are transformed into 

continuous using the CET process proposed by Stevens [7], 

and then investigate the best-fit probability model among the 

eight models in Table 3. These models were jointly used for 

the investigation. In summary, those initial steps are displayed 

in Figure 4. The first and second rows describe the CET 

process, while the third and fourth describe the PDF and CDF 

of the selected univariate continuous model. 

Table 5 shows the level comparisons of the goodness of fit 

(Log-llk, AIC, and BIC) between a theoretical probability 

model and the given data set. Here, the smallest AIC and BIC 

scores on each row are denoted by bold marks. However, for 

the sub-region MS, two criteria (AIC and BIC) gave two 

different models. Therefore, to overcome this problem, we use 

the third criterion, i.e., the maximum of Log-likelihood 

function (Log-llk). We then decide the appropriate model for 

sub-region MS would be the Gamma distribution. 

 

Table 4. The descriptive statistics for five sub-region empirical data and association measure for two adjacent sub-regions 

 

Sub-regions Min Max Mean Variance 
Association measure 

𝝉(𝒊, 𝒊 + 𝟏) p-value 

AA 𝑖 = 1 0 81 8.73 165.12 0.683 < 0.01 

NS 2 0 61 11.94 221.41 0.524 < 0.01 

MS 3 0 31 4.58 27.56 0.285 < 0.01 

MP 4 0 59 8.48 150.31 0.323 < 0.01 

EO 5 0 25 8.58 32.04   

 

     

     

     

     
 

Figure 4. The visualizing of the CET process with the varying random perturbation and fitted marginal distributions. Columns 

correspond to the five sub-regions studied, namely AA, NS, MS, MP, and EO. Rows correspond to (1) histogram of the random 

perturbation (Uniform distribution), (2) histogram of the discrete variable (red color) and the continuous variable (black color), 

(3) density curves of fitted marginal distributions, and (4) cumulative density curve of fitted marginal distributions 
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With the two-information, i.e., the marginal distribution for 

each sub-region (Table 5), and the association measure of two 

adjacent sub-regions (Table 4), the next step is to search for an 

appropriate Copula model for the dependence structure of two 

selected sub-regions. To achieve this, the investigation is like 

the procedure of determining the marginal distribution, i.e., 

trial and error process. Also, among the six Copula models, 

each is fitted to the data set (pairs of CDFs) of two selected 

sub-regions. To decide the best model, the goodness-of-fit 

level is calculated in three terms, namely Log-likelihood, AIC, 

and BIC. Here, the smallest AIC and BIC scores on each row 

are denoted by bold marks. The investigation summary for the 

six Copula models and the selected model, as well as its 

parameter for each case studied are shown in Table 6. 

Table 5. Comparison of the fitted eight continuous probability models on the basis of loglikelihood, AIC, and BIC 

Sub-regions Goodness of fit criteria Normal Logistik Cauchy Exp LogNorm Gamma Weibull Gumbel 

AA 

-Log-llk 190.426 171.148 154.573 154.923 147.947 153.944 154.865 160.340 

AIC 384.852 346.296 313.145 311.846 299.895 311.888 313.729 324.680 

BIC 388.594 350.038 316.887 313.717 303.637 315.630 317.472 328.422 

NS 

-Log-llk 196.994 193.997 180.128 168.972 165.086 168.871 168.550 183.315 

AIC 397.988 391.995 364.255 339.944 334.172 341.743 341.101 370.629 

BIC 401.730 395.737 367.998 341.816 337.914 345.485 344.843 374.372 

MS 

-Log-llk 147.617 138.286 135.332 126.636 125.304 125.222 125.879 130.082 

AIC 299.233 280.573 274.665 255.272 254.609 254.443 255.758 264.163 

BIC 302.975 284.315 278.407 257.143 258.351 258.186 259.500 267.906 

MP 

-Log-llk 187.842 179.539 155.090 153.410 148.818 153.345 152.850 167.278 

AIC 379.684 363.078 314.181 308.820 301.636 310.689 309.701 338.556 

BIC 383.427 366.820 317.923 310.691 305.378 314.431 313.443 342.298 

EO 

-Log-llk 150.461 148.092 147.702 153.799 151.791 146.167 145.532 144.900 

AIC 304.923 300.185 299.403 309.597 307.583 296.334 295.064 293.800 

BIC 308.665 303.927 303.146 311.469 311.325 300.077 298.807 297.542 

Table 6. Comparison of the fitted six Copula models on the basis of AIC and BIC 

Two adjacent sub-regions Copula Log-likelihood AIC BIC 
Selected copula 

Type Parameters 

AA-NS 

AA ~ LogNormal (1.80, 0.76) 

NS ~ LogNormal (1.89, 1.30) 

Gaussian 26.113 -50.226 -48.354

Gumbel Hougaard 2.706 

Student’s 26.073 -48.147 -44.404

Clayton 25.855 -49.709 -47.838

Gumbel 27.414 -52.827 -50.956

Frank 25.356 -48.711 -46.840

Joe 25.913 -49.826 -47.955

NS-MS 

NS ~ LogNormal (1.89, 1.30) 

MS ~ Gamma (1.38, 0.27) 

Gaussian 15.868 -29.735 -27.864

Gaussian 0.727 

Student’s 15.790 -27.580 -23.837

Clayton 14.966 -27.932 -26.061

Gumbel 15.829 -29.658 -27.787

Frank 14.900 -27.800 -25.929

Joe 14.275 -26.550 -24.679

MS-MP 

MS ~ Gamma (1.38, 0.27) 

MP ~ LogNormal (1.58, 1.24) 

Gaussian 4.496 -6.993 -5.121

Clayton 0.798 

Student’s 4.358 -4.717 -0.974

Clayton 5.738 -9.476 -7.605

Gumbel 4.984 -7.968 -6.097

Frank 4.178 -6.356 -4.485

Joe 5.381 -8.763 -6.891

MP-EO 

MP ~ LogNormal (1.58, 1.24) 

EO ~ Gumbel (6.61, 4.21) 

Gaussian 5.652 -9.303 -7.432

Gaussian 0.501 

Student’s 5.480 -6.960 -3.217

Clayton 4.816 -7.632 -5.761

Gumbel 5.026 -8.051 -6.180

Frank 5.284 -8.568 -6.697

Joe 4.183 -6.366 -4.495

4.3 Comparison with other count models 

In this section, we compare our proposed technique, i.e., 

Copula continuous extension technique, and the popular 

models for count data, such as bivariate Negative Binomial [38, 

39], bivariate Poisson [40, 41], and double Poisson distribution 

[12]. The first two models have been briefly described in 

subsection 2.1, as seen in Table 1. 

The double Poisson is a special case of the Poisson bivariate. 

It is important to consider the bivariate Poisson formula for 

bivariate discrete (X, Y) , denoted by BivPoi(𝜆1, 𝜆2, 𝜆3) .

Marginally, each random variable follows a univariate Poisson 

distribution with E[X] = Var[X] = 𝜆1 + 𝜆3, E[Y] = Var[Y] =
𝜆2 + 𝜆3, and Cov[X, Y] = 𝜆3. The parameter 𝜆3 is a measure

of dependence between the two random variables X and Y. If 

𝜆3 = 0 , then the two variables are independent and the

bivariate Poisson formula is represented as the product of two 

independent univariate Poisson distributions (called as double 

Poisson distribution). 

The comparison of four models selected for count data 
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modeling in Table 7 shows that, on the basis of AIC and BIC, 

the Copula continuous extension technique is superior to the 

models of double Poisson, bivariate Poisson, and bivariate 

Negative Binomial. 

Some aspects can be read from Table 7 which is associated 

with the information in Table 4. Firstly, it is reasonable that 

double Poisson distribution has the last rank, since the data set 

of the two selected sub-regions studied were not independent 

(Table 4). Secondly, it is important to note that according to 

the fifth and sixth columns of Table 4, an overdispersion 

condition, i.e., variance greater than mean, in the observation 

data from each sub-region exists. As we know, the marginal of 

the bivariate Negative Binomial allows for overdispersion 

found in the data set, which can not be accounted by the 

bivariate Poisson. Therefore, the bivariate Negative Binomial 

have a better performance than the bivariate Poisson. Thirdly, 

although the bivariate Negative Binomial can overcome the 

problems of dependent and overdispersion in the data set, it is 

not enough to capture the joint probability behavior of our 

bivariate data, as well as the selected Copula model, due to this 

model have assumptions that must be considered [12, 13]. 

Finally, the joint probability function is determined from the 

two adjacent sub-regions considered by combining the 

selected marginals (Table 5) and selected the Copula model 

(Table 6). For two adjacent sub-regions AA-NS, NS-MS, MS-

MP, and MP-EO are expressed as follows, respectively. 

 

𝐻AA,NS(𝑥, 𝑦) = exp (− ((− log (
1

2
(1 + erf (

ln 𝑥−1.80

1.232
))))

2.706

+ (− log (
1

2
(1 + erf (

ln 𝑦−1.89

1.612
))))

2.706

)

0.370

)  (12) 

 

𝐻NS,MS(𝑥, 𝑦) = Φ𝐺 [Φ−1 (
1

2
(1 + erf (

ln 𝑥−1.80

1.232
))) , Φ−1 (

1

Γ(1.38)
γ (1.38,

𝑥

0.27
)) ; 0.727]  (13) 

 

𝐻MS,MP(𝑥, 𝑦) = ([
1

Γ(1.38)
γ (1.38,

𝑥

0.27
)]

−0.798

+ [
1

2
(1 + erf (

ln 𝑥−1.58

1.575
))]

−0.798

− 1)
−1.253

  (14) 

 

𝐻MP,EO(𝑥, 𝑦) = Φ𝐺 [Φ−1 (
1

2
(1 + erf (

ln 𝑥−1.58

1.575
))) , Φ−1 (exp (−𝑒−

𝑥−6.61

4.21 )) ; 0.501]  (15) 

 

Another way of visualizing the selected Copula model is to 

present its densities as contour plots (first row), as shown in 

Figure 5. Furthermore, as seen in the second row in Figure 5, 

the scatter plots of simulated and observed data are shown. 

Also, the association measure of the simulated data of AA-NS, 

NS-MS, MS-MP, and MP-EO were 0.668, 0.514, 0.273, and 

0.314, respectively. These results are near to the association 

measures from the observed data, i.e., 0.683, 0.524, 0.285, and 

0.323, as shown in Table 4. In other words, the selected Copula 

models yielding from the Copula continuous extension 

technique can capture the association behavior of bivariate 

discrete variables. 

 

Table 7. Comparison of the four models based on AIC and BIC  

 

Two adjacent sub-

regions 

Bivariate Poisson 
Double Poisson Bivariate Negative 

Binomial 

Copula continuous extension 

technique 

AIC BIC AIC BIC AIC BIC Model AIC BIC 

AA-NS 1341.643 1349.336 1516.381 1521.510 330.843 336.456 Gumbel  -52.827 -50.956 

NS-MS 1137.008 1144.701 1223.226 1228.355 373.964 379.577 Gaussian -29.735 -27.864 

MS-MP 1035.361 1043.055 1059.908 1065.037 296.043 307.656 Clayton -9.476 -7.605 

MP-EO 1058.489 1066.182 1067.261 1072.389 319.571 325.184 Gaussian -9.303 -7.432 
As a note, the AIC-BIC listed in the Copula continuous extension technique refers to the selected Copula model as shown in Table 6. 

 

    

    
 

Figure 5. Some visualizations are based on selected Copula models. Columns correspond to sub-regions studied, namely AA-NS, 

NS-MS, MS-MP, and MP-EO. Rows correspond to contour plots of the densities, and scatter plots observed and simulated 
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5. CONCLUSIONS 

 

A simple technique has been provided in modifying the 

Copula modeling method for bivariate discrete variables, 

which is the continuous extension. There are two steps carried 

out in this technique. The first is applying the Continuous 

Extension Technique (CET) at the marginal bivariate discrete 

variables to become continuous ones. In the second step, a 

Copula model was constructed for a new bivariate variable 

(continuous) by following the procedure from the Copula 

theory for continuous variables. However, two forms of 

random perturbation of the CET can be used, i.e., U(0,1) and 
(U(0,1) − 1)  as proposed by Stevens [7] and modified by 

Denuit and Lambert [9], respectively. Based on analytical and 

simulation studies, two different forms of CET produced the 

same conclusions about Kendall’s Tau measure and the 

selected Copula model. Therefore, practitioners can select one 

of two existing CET forms in practice. 

The advantage of the present technique is not only from 

practical point of view, but it is also able to preserve the 

parameter dependence of the former discrete variables. Thus, 

the selected Copula model based on the Copula continuous 

extension technique can be used to represent the dependence 

modeling of the discrete variables. 

To help the seismologists understand the proposed 

technique, an application to the seismicity data recorded in 

five sub-regions of the Sumatra megathrust, namely Aceh-

Andaman (AA), Nias-Simelue (NS), Mentawai-Siberut (MS), 

Mentawai-Pagai (MP), and Enggano (EO) has been presented. 

The illustration was based on the observed yearly numbers of 

mainshock earthquakes that occurred from January 1971 to 

December 2018, with Magnitude of Completeness (Mc) 4.6 

Mw. According to the selected Copula model, the evidence of 

dependence seismic activity in each of the two adjacent sub-

regions exists. The results of these analyses provide new 

information regarding the seismicity behavior in the Sumatra 

megathrust. Therefore, as future study, the dependence 

modeling using the Copula models can be applied as an 

alternative approach in developing the prediction of 

earthquake hazard models in Sumatra megathrust. 
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NOMENCLATURE 

 

CET Continous extension technique 

PCC Pearson correlation coefficient 

U(0,1) Uniform distribution (0,1) 

V(0,1) Uniform distribution (0,1)  that independent 

with U(0,1)  

X Discrete random variable 

X⋆ A continuous random variable that resulting 

from the CET process with the Stevens method. 

X⍟ A continuous random variable that resulting 

from the CET process with the Denuit and 

Lambert method. 

E [] The expectation of arandom variable 

Var ()  The variance of a random variable 

Cov () The covariance of the two variables 

F() The cumulative distribution function 

PDF Probablitiy distribution function 

PMF Probablitiy mass function 

CDF Cumulative distribution function 

𝐻() Joint cumulative distribution 

𝐶() The Copula model  

erf (x) 2

√𝜋
∫ 𝑒𝑡2

𝑑𝑡
𝑥

0
.  

T The number of observation 

𝑅 Real numbers 

p-value the probability of declaring that the test result is 

at least the same as the actual observed result, 

assuming that the null hypothesis is correct. 

log Logarithm function 

Log-llk Logarithm of the loglikelihood function 
n/a not available 

AIC Akaike Information Criteria 
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BIC Bayesian Information Criteria 

p(𝑙) the number of parameters of the fitted model 

Mc Magnitude of Completeness  

Mw moment magnitude 

⊆ Subset 

Greek symbols 

𝜏 Kendall’s Tau measure  

𝜌 Pearson correlation coefficient 

𝜎 Standard deviation 

ℒ The likelihood function 

𝜃 Parameter of Copula models 

𝝎 Parameters of univariate continuous models 

Φ CDF of a standard normal distribution 

Φ−1 Invers of Φ 

𝜈 Degrees of freedom of the bivariate  

t-distribution

Γ Gamma function
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