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This paper investigates the remarkable effects for introducing the Ion-slip 

characteristics in the magnetohydrodynamic phenomena on the drift of Bingham fluid 

when flowing through the inner territory of two porous parallel plates in correspondence 

with the suction case. The lower plate (L-plate) is as steady while the upper one (U-

plate) is oscillatory, which oscillates in its own plane at time t>0. A magnetic field, 

which is uniform, is affixed perpendicular to the plates. The U-plate temperature 

oscillates while the L-plate temperature is constant. Numerical performance is 

presented by the MATLAB R2015a simulation tool with the explicit Finite difference 

Method (FDM) algorithm. To ensure the preciseness and convergence of the solutions, 

careful attention has been given on the criteria of stability and convergence of the FDM 

schemes. As an outcome, the converged solution is obtained for Pr ≥ 0.066, βi ≥ 2, Ha ≤ 

20, k0 ≤ 8, S ≥ −10 and Re ≥ −0.017 with the arbitrary choice of βe = 0.10 and Ec = 0.01. 

The mesh sensibility test gives the competent mesh space at (m,n)=(60,60). The time 

sensibility test ensures that the solutions at dimensionless time, τ=2.0 will be steady-

state. The exactitude of the current study is obtained by comparing with the published 

results. Finally, the physical influences of several governing parameters, including Ion-

slip on the fluid property like velocity, local shear stress, temperature and Nusselt 

number are discussed and decorated graphically. 
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1. INTRODUCTION

The Magnetohydrodynamic (MHD) fluid passing a porous 

medium has attracted much attention in various scientific and 

engineering applications in industry. Ample applications of 

the flows via medium of porosity are found for petroleum 

processing problems, filtration processes and oil purification 

processes, biological mechanisms as well as polymer 

decomplex industries. Numerous investigations have been 

considered on multifarious MHD non-Newtonian flow 

configuration such as Human blood, slurries, molten plastics, 

tomato sauce, honey, soup, mud, lava, painting oil, cement, 

sludge, grease, chocolate etc. passing through porous 

oscillating plate. 

The foremost approach to establish an exact solution of the 

Navier-Stokes’ equation over the oscillating plate has been 

studied in Ref. [1] which is concerned with the flow past a 

horizontal oscillatory plate. In the works [2], the oscillatory 

MHD flow flowing through a flat plate with Hall impacts is 

considered. The free convection-radiation for the MHD 

oscillating flow through a medium of porous material which is 

circumscribed by plane surface of vertical orientation has been 

investigated (see Ref. [3]). According to Chaudhary and Jain 

[4], the free convection flow flowing over an oscillatory and 

porous flat vertical plate with the mixed heat and mass 

exchange effects is studied. The study of unsteady MHD 

Hartmann–Couette flow through a Darcian channel be with 

Ion-slip, Hall current including Joule heating effects has been 

inquired by Bég et al. [5]. In Ref. [6], the MHD flow passing 

over an oscillating porous plate bewith Soret impact and 

thermal radiation are investigated. The solution by FEM for 

MHD flow flowing through time depending permeable 

medium of porous material correspondence with the suction 

velocity of oscillatory nature has been carried out by Rao e al. 

[7]. Manna et al. [8] studied the impressions of radiation and 

oscillatory heat flux on the unsteady MHD viscous 

incompressible flow past an oscillating porous plate bewith the 

consideration of free convection. The study on a three-

dimensional oscillatory flow passing along a porous plate 

bewith Dufour and Soret effects has been assumed by Ahmed 

et al. [9]. In a rotating system, the study of MHD flow 

including free convection also mass transfer while flowing 

through an oscillatory porous plate along with heat source, 

Ion-slip, and Hall currents have been investigated (see Ref. 

[10]). The unsteady MHD viscous incompressible free 

convective flow for non- Newtonian Casson fluid flowing over 
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an oscillating porous plate is studied by Khalid et al. [11]. In a 

Rotating Porous Medium, the study of MHD fluid flowing 

through an oscillatory porous plate bewith Ion-slip and Hall 

currents has been considered in works [12]. The impression 

silver nanoparticles on the flow of non-Newtonian Jeffrey 

fluid through an oscillating porous vertical plate with the 

magnetic field has been investigated (see the Ref. [13]). The 

MHD radiating and chemically reacting flow criteria for the 

Casson fluid through oscillatory vertical plate inserted in the 

porous medium are considered [14]. The unsteady MHD flow 

of viscoelastic fluid under the presence of heat source along 

with an infinitely long plate with oscillation has been studied 

by Sharmin and Alam [15]. The Impact of Ion-slip and Hall 

currents for the unsteady flow of MHD free convective 

incompressible rotating fluid past an oscillatory vertical plate 

has been considered by Singh et al. [16]. The Soret and Hall 

impact on the study of unsteady MHD flow passing over a 

porous plate with changing suction criteria through a varying 

permeable medium are investigated [17]. For Bingham fluid, 

the Hall and Ion-slip effects through parallel plates [18, 19], 

and the EMHD flow through parallel Riga plates [20, 21] have 

been discussed. However, the Bingham fluid flow through an 

oscillatory channel with different physical aspects is yet to 

understand. 

The objective is to make a thorough understanding of the 

Ion-slip responses on the flow of Bingham fluid through 

oscillatory porous parallel plates with the consideration of 

suction velocity. First, the use of a compatible scaling group 

of transformations has been employed to obtain the 

dimensionless governing non-linear PDEs. Then employment 

of explicit FDM leads to obtain the solution of the 

dimensionless PDEs. Finally, the resulting features have been 

discussed with validation and expressed graphically. 

 

 

2. MATHEMATICAL FORMULATION 

 

The analysis deals with the flow of incompressible, laminar 

Bingham fluid under the convenient choice of two infinitely 

long plates of horizontal orientation which are placed at the 

planes (Figure 1) defined as y=±h while the lengthening ranges 

are from x=0 to   and from z=0 to  . A uniform suction is 

considered for the fluid motion. Before the immediate starting 

of unsteadiness i.e. at t=0, the fluid and the U-plate are 

presumed at static state with temperature T1. Then while 

unsteadiness happens i.e. at t>0, the U-plate commences own 

plane oscillation in a specified direction with the reference 

velocity 0 cosU t , additionally, the temperature of the plate is 

promoted to T2. At the U-plate a temperature of periodic nature 

is instated in addition to the fixed mean temperature. The L-

plate temperature is supposed to be unchangeable with T1, 

where T2> T1. 

A constant pressure gradient 
dp

dx
is employed in the X-

direction within the flow zone along with a negligible 

assumption of body force. Applied uniform magnetic field B0, 

is deemed in the Y-direction, whereas the existence of small 

magnetic Reynolds number discloses an inconsiderable 

magnetic induction. A Z-element is expected to occur in the 

velocity for the causation of Hall current. For the uniform 

suction, 0
u

x


=


therefore, continuity equation 0

u v

x y

 
+ =

 
 

forms 0
v

y


=


, i.e. 

0v v= − . The vector form of fluid velocity 

is given as ( ) ( )0, , .u y t v w y t= − +q i j k  

 

 
 

Figure 1. The physical configuration of the problem 

 

Within the outlines of the above discretions, the governing 

equations related to Ion-slip responses on the flow of Bingham 

fluid through oscillatory porous parallel plates with the 

controlling of suction velocity under the boundary-layer 

approximations are ([22-25]): 

Continuity Equation:  

 

0
v

y


=


 (1) 

 

Momentum Equations: 

 

 0

0

2

e

2 2

e e

1 1

1
                   

'
e e

u u dp u
v

t y dx y y

B
u w u

k


 

 
 

  

    
− = − +  

    

− + −
+

 (2) 

 

 0

2

e

0 2 2

e e

1 1

'
e e

Bw w w
v w u w

t y y y k

 
  

   

    
− = − − − 

    + 

 (3) 

 

Energy Equation: 
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where, 

 

0

2 2
K

u w

y y


 = +

    
+   

    

 

(5) 

 

The criteria for the initial and boundary settings are: 

 

10, 0, 0,t u w T T = = =  everywhere (6) 

 

674



 

( )

1

1

0

2 2 1

0, 0, at =0

0,    0, 0, at
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at

cos

u w T T x
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(7) 

 

The following use of compatible scaling group of 

transforming variables have been employed to make the 

governing equations (1) to (5) dimensionless as the solution is 

based on explicit FDM concerning the conditions (6) and (7): 

 

2
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0 1

2 1 0
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, , ,
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tU T T h
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(8) 

 

The above process possesses expected non-linear PDEs as 

follows: 
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(12) 

 

The corresponding dimensionless criteria for the initial and 

boundary settings are: 

 

0, 0, 0, 0U W  = = =  everywhere (13) 
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The dimensionless quantities are: 
0

0

D

h

KU


 =  (Bingham 

number or dimensionless yield stress), 0

e

U h
R

K


=  (Reynolds 

number), 
0p

r

c U h
P

k
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0

2 1( )
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p

U K
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−
 (Eckert number), 

2 2

2 0B h
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K


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(Hartmann number squared), 0V h
S

K


=  (Suction Parameter) 
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2

0 2

0

k
kU


=  (Permeability of porous medium). 

 

 

3. SHEAR STRESS AND NUSSELT NUMBER 
 

The nature of fluid velocity vicinity to both the L-plate 

(static plate) and U-plate (oscillatory plate) create the scope 

for the calculations of the shear stresses. In X-direction the 

local shear stress for L-plate is: 

 

2 2

1

1

w

Y

U W

Y Y
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=−
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     
 

, (15) 

 

and for U-plate is: 

 

2 2

2

1

w

Y

U W

Y Y
 

=

     
  +   
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 

. (16) 

 

Also, the temperature vicinity to both the L-plate (static 

plate) and U-plate (oscillatory plate) create the scope for the 

calculations of the Nusselt numbers. So, the mathematical 

representations of the local Nusselt number in X-direction for 

L-plate is: 

 

1

1

Y

u

m

T

Y
N

T

=−

 
 
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
−

, 
(17) 

 

and for U-plate is: 

 

( )
1

2
1

Y

u

m

T

Y
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where, 

1

1

1

1

m

U dY

T

UdY


−

−

=




. 

 

 

4. CALCULATION TECHNIQUE 
 

The explicit FDM has discretized the mathematical 

equations (9) to (12) of the physical problem, and 

consequently, the equations disclose some numerically 

discretized equations which are then solved via MATLAB 

under the specified boundary conditions. This discretization 

technique is conducted for flow space through backward type 

differencing regarding first-order differential term and through 

central type differencing regarding the higher-order 

differential term. The time-domain has been severed in 

possible small quantities where the last time value is used to 

compute the next time value for all the profiles. The territory 

covered by the boundary layer is allocated with the help of 
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several grid lines to the normal direction of Y -axis (see Figure 

2). 

The maximum length of the limiting layer is supposed to be 

( )max 2Y =  which corresponds to Y →  i.e. the range of Y 

starts from 0 and ends to 2. Along the Y-direction, n=60 is 

supposed to be the number of grid spacing. This supposition 

discloses the uniform mesh size as: 

 

( )0.033 0 2Y y =   ; 

 

with the possible smaller time-step, 0.0001 = . Some 

successful studies within a similar calculation framework can 

be found in Refs. [26-31]. 

 

 
 

Figure 2. The finite difference grid space 

 

 

5. STABILITY AND CONVERGENCE ANALYSIS 

 

The stability interpretation of the FDM is important since 

an explicit scheme is being used. To obtain the converged 

solution, following Fourier expansion for U , 'U , W , 'W  

and  , '  are defined in terms of ( )exp ibY  at arbitrary time 

τ=0: 

( ) ( )( ) ( ), ' , ' expU U ibY   =  

( ) ( )( ) ( ), ' , ' expW W ibY   =  

( ) ( )( ) ( ), ' , ' exp ibY     =  

 

Using the above expressions to Eqns. (15) to (17), a matrix 

notation is obtained with a constant matrix, called the 

amplification matrix. For stability, each eigenvalue of that 

constant matrix must not exceed unity in modules. Hence, the 

stability with convergence criteria can finally be expressed as 

follows:  
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2 2

e e

1
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e

e e

H kS
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 (19) 

 

( )
2

2
1

er

S

R YP Y

  
− 


 (20) 

 

These inequalities generate converging restrictions as Pr ≥ 

0.066, βi ≥ 2, Ha ≤ 20, k0 ≤ 8, S ≥ −10 and Re ≥ −0.017 with βe 

= 0.10 and Ec = 0.01 while the constant values 0.033Y =  

and 0.0001 =  are used. 

6. RESULTS AND DISCISSION 

 

The numerical values in steady-state cases of the flow 

model have been reckoned, to describe the physical insight, for 

the dimensionless velocities ( ),U W  and temperature ( )  

distribution in the inward limiting layer region. First of all, 

for the validation of the present study, some experiments are 

performed, such as mesh sensibility and time sensibility; 

also, a qualitative comparison is discussed graphically. 

After obtaining the appropriate solutions of the study with 

the convergence criteria, the response of velocity, local 

shear stress at both L-plate (stationary) and U-plate 

(oscillatory) including temperature distributions and local 

Nusselt number at both L-plate (stationary) and U-plate 

(oscillatory) are discussed with the impact of some important 

parameters, like as, Ion-slip parameter (βi), Hartmann 

number (Ha), phase angle (ητ) and Suction parameter (S). To 

make the study concise, the impacts of Permeability 

parameter (k0), Hall parameter (βe), Reynolds number (Re), 

Bingham number (τD), Prandtl number (Pr) and Eckert number 

(Ec) have not been considered.  

 

6.1 Examine mesh sensibility 

 

To assure a convenient and appropriate number of grids for 

numerical computations, a series of trial have been executed 

and among them three computing values as (m,n)=(40,40); 

(m,n)=(60,60); and (m,n)=(80,80); are shown in Figure 3, 

where 0.10,e =  2.00,i =  2.00,aH =  2.00,eR =  

0.01,cE = 1.00,S =  / 2, =  0 0.50,k =  0.8rP =  and 

0.1D = . Different curves from Figure 3 are showing an 

ineffective variation with sleek nature among them. Based on 

the discussions, an adjudication of confirming (m,n)=(60,60) 

as the appropriate mesh size is made for the therewithal 

computations of numerical values.  

 

 
 

Figure 3. Examine mesh sensibility 

 

6.2 Examine time sensibility 

 

The time sensibility test has been performed to ascertain 

the steady-state situations of the solutions. For that, a series 

of trial have been executed and among them six computing 

values of the non-dimensional time step as  = 0.40, 0.50, 1.00, 

1.50, 2.00 and 2.50 have been shown. Figures 4 to 6 shows the 

time sensibility test on velocities and temperature profiles; 

where, 0 0.50,k = 0.10,e =  2.00,i =  2.00,aH =  1.00,S =

2.00,eR =  0.01,cE =  / 2, = 0.8rP =  and 0.1D = . The 

 

 

000 
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computed values of different profiles are found to be varied up 

to  = 2.0 and showed negligible changes after  = 2.0. Thus 

steady-state is confirmed at dimensionless time  = 2.0. 

Figures 4 to 6 also show a monotony in the attainment of 

steady-state for the profiles of U , W and  . The secondary 

velocity is slower than the primary velocity as well as 

temperature to reach steady-state. 
 

 
 

Figure 4. Examine time sensibility on U  
 

 
 

Figure 5. Examine time sensibility on W 
 

 
 

Figure 6. Examine time sensibility on   

 

6.3 Comparison 

 

The accuracy of this study has been obtained by the 

following qualitative comparisons with the published results 

[23]. By setting the values of some parameters, as mentioned 

in Figure 8, the present study (see Figure 8) coincides the 

published research. Figures 7 and 8 show that both the study 

are qualitatively also quantitatively quite same, which proofs 

the exactness of the current research. 

 
 

Figure 7. Effect of S on U at U-plate 

 

  
 

Figure 8. Effect of S on U at U-plate (see [23]) 

 

6.4 Effect of parameters 

 

To understand the inner physical situation of the flow model 

of the study, the impressions of some major parameters 

namely, Ion-slip parameter ( )i  where 1e i e  = + , 

Hartmann number ( )aH , phase angle ( )  and Suction 

parameter ( )S  in the appearance of Permeability parameter 

( )0 0.50k = , Hall parameter ( )0.10e = , Reynolds number

( )3.0eR = , Prandtl number ( )0.8 ,rP =  Eckert number 

( )0.01cE =  and Bingham number ( )0.10D =  at steady-state 

time 2.00 =  are represented graphically through Figures 9-

22.  

The repercussion of both the primary and secondary 

velocities, temperature distributions, local shear stress as well 

as local Nusselt number against the impact of Hartmann 

number ( )aH  and Ion-slip parameter ( )i  are represented in 

Figures 9-15. From Figures 9-11, it is checked that, primary 

velocity U decreases with the raise of ( )aH  while W  and   

both increases with the raise of ( )aH . Furthermore, U

accelerates with the raise of ( )i  whereas W  and   both 

oppose with the raising values of ( )i . From Figures 12-15, it 

is mentioned that the increasing values of ( )aH  opposes local 

shear stress on contrary growth of ( )aH  causes gradual 

increment in Nusselt number at both the plates. Furthermore, 

improvement in the local shear stress is marked with the 

enhancement of ( )i  elsewhere, the Nusselt number 

monotonically declines when ( )i  raises at both stationary 

and oscillatory plates. 
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Figure 9. Effects of aH  and 
i  on U  

 

 
 

Figure 10. Effects of aH  and 
i  on W  

 

 
 

Figure 11. Effects of aH  and 
i  on   

 

 
 

Figure 12. Impacts of aH  and 
i  on 1w  

 

 
 

Figure 13. Impacts of aH  and 
i  on 

2w  

 

 
 

Figure 14. Impacts of aH  and 
i  on 

1uN  

 

 
 

Figure 15. Impacts of aH  and 
i  on 

2uN  

 

 
 

Figure 16. Impressions of S and  on U  
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Figure 17. Impressions of S and  on W  

 

 
 

Figure 18. Impressions of S and  on   

 

 
 

Figure 19. Impressions of S and   on 
1w  

 

 
 

Figure 20. Impressions of S and   on 2w  

 

 
 

Figure 21. Impressions of S and  on 
1uN  

 

 
 

Figure 22. Impressions of S  and  on 
2uN  

 

Furthermore, the response of both the primary and 

secondary velocities, temperature distributions, local shear 

stress as well as local Nusselt number against the impression 

of Suction parameter ( )S  and phase angle ( )  have been 

represented in Figures 16-22. From Figures 16-18, it is 

detected that, all the profiles U , W  and   decreases with the 

increment of ( )S  and ( )  both. It is observed from Figures 

19-22, that the local shear stress raises subject to the increase 

of ( )S  at the stationary plate while it decreases subject to the 

raise of ( )S  at oscillatory plate. Elsewhere, the Nusselt 

number improves subject to the raise of ( )S  at both stationary 

and oscillatory plates. Furthermore, a decreasing response on 

the local shear stress at the stationary plate is checked when 

the values of ( )  develops whereas it increases at oscillatory 

plate with ( ) . On the other hand, at both the plates, the 

Nusselt number opposes when the values of ( )  raises. 

 

 

7. CONCLUSIONS 
 

A numerical study is presented to describe the non-

Newtonian flow behavior of the Bingham fluid with 

magnetohydrodynamic effects. Bingham fluid is considered 

flowing between two horizontally placed parallel plates where 

U-plate is in oscillation and L-plate is in a static position. The 

Finite difference technique is used as a solution algorithm. The 

discussions of results are kept limited for some significant 

parameters like as, Ion-slip parameter ( )i , Hartmann 

number ( )aH , phase angle ( )  and Suction parameter ( )S . 
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To make the study concise, the impacts of Permeability 

parameter ( )0k , Hall parameter ( )e , Reynolds number ( )eR , 

Bingham number ( )D , Prandtl number ( )rP  and Eckert 

number ( )cE  have not been shown. The salient outcomes of 

this study are given to the following: 

1.  The primary velocity is found to be increased with the 

raise of ( )i  on contrary it decreases when ( )aH , ( )  and 

( )S  increase. 

2.  The secondary velocity profile responses increasingly 

with the raise of ( )aH  while it decreases with the raise of ( )i , 

( )  and ( )S . 

3.  The temperature increases with the enlargement of ( )aH  

while it decreases with the enlargement of ( )i , ( )  and ( )S . 

4.  At the L-plate (stationary one), the rise of local shear 

stress happens with the improvement of ( )i and ( )S  while 

the improvement of ( )  and ( )aH  pull it down. 

5.  At the U-plate (oscillatory one), the rise of local shear 

stress happens with the improvement of ( )i and ( )  while 

the improvement of ( )S  and ( )aH  pull it down. 

6.  At both the plate, the local Nusselt number raises with the 

raise of ( )aH  and ( )S  while increment on ( )i and ( )  

cause fall on it.  
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NOMENCLATURE 

 

,u w  primary and secondary velocity components  

1 2,  T T  temperatures at lower and upper plates 

  density of the fluid 
p  Pressure of the fluid 

0B  Uniform magnetic field  

  Viscosity 

  electric conductivity of the fluid 

'k  magnetic permeability 

  thermal conductivity 

pc  specific heat at the constant pressure 

  frequency of the plate oscillation 

,U W  dimensionless Primary and secondary velocity 

components  
  dimensionless temperature 
  dimensionless time 

1w  dimensionless local shear stress at stationary 

plate 

2w  dimensionless local shear stress at oscillatory 

plate 

1uN  dimensionless local Nusselt number at 

stationary plate 

2uN  dimensionless local Nusselt number at 

oscillatory plate 

mT  non-dimensional mean fluid temperature 

D  Bingham number or dimensionless yield stress 

e  Hall parameter  

i  Ion-slip parameter 

eR  Reynolds number 

rP  Prandtl number 

CE  Eckert number 

Ha  Hartmann number 

S  suction Parameter 

0k  permeability parameter 

  phase angle 
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