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The present investigation deals with Taylor dispersion of reactive species in Casson liquid in 

an oscillatory flow because of the pulsatile pressure gradient. The solute is considered to be 

chemically active at the boundary and also participate a first order reaction within the bulk 

flow. To evaluate transport coefficients, Aris-Barton moment technique is considered. The 

solute transport process is discoursed in detailed with respect to yield stress, chemical 

reaction parameter, Womersly number etc. The study reveals that both wall absorption and 

bulk flow reaction have a significant response on dispersion phenomena. Both the chemical 

reactions agree to diminish the negative exchange coefficient and the apparent dispersion 

coefficient, however, increases the negative convection coefficient. The negative exchange 

coefficient is independent of yield stress but a significant variation is observed due to yield 

stress in the cases of negative convection coefficient and the apparent dispersion coefficient. 

The axial distribution of mean concentration is approximated by using the Hermite 

polynomial representation of central moments as a function of reaction rate parameters, wall 

absorbing parameter, yield stress etc. The present article may be useful for the studies related 

to physiological blood flow analysis. 
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1. INTRODUCTION

Taylor dispersion is the process of the transportation of a 

cloud contaminant by means of two independent mechanisms, 

convection and molecular diffusion. The Taylor dispersion is 

extensively connected to chemical engineering [1, 2], 

environmental protection [3–7], and physiological 

environment. The conventional endeavor of this sort of 

examination was started by Taylor [8]. Subsequently, Taylor 

dispersion is generalized by Aris [9] by fixing the attention 

on the movement of the center of gravity of the slug and 

growth of its higher order moments. Barton [10] pointed out 

the mistake in the Aris solution methodology and resolved it 

accordingly. However, the solution acquired by Aris is 

satisfactory as it concerned the asymptotic behavior of the 

second moment. Another self-ruling technique is displayed 

by Gill & Sankarasubramanian [11], which is extended by 

more general inlet and boundary conditions in their 

successive papers [12–14]. 

There are a substantial number of reviews on Taylor 

dispersion that consider two independent perspectives in the 

Newtonian framework: (a) flow oscillation, and (b) chemical 

reaction. Both the viewpoints have their own particular 

significance while studying the dispersion process. Flow 

oscillation commonly appears in blood flow, airway gas 

mixing, extraction columns, etc. Scattering of species in the 

oscillatory stream is examined by Purtell [15], Ng [16], and 

Mazumder & Paul [17] etc. In the meantime, chemical 

reaction at the wall and within the bulk flow receives parallel 

attention. A variety of useful issues of mass transport 

involves wall reaction such as, open tube chromatography, 

environmental contaminant transport, and physiological 

transport etc. Again, the reaction at the bulk of the liquid is 

found in the hydrolysis of ester, gas absorption in an agitated 

tank with a chemical reaction etc. Some established work in 

this regard may include, among others, Aris [18], Gupta & 

Gupta [19], Sankarsubramanian & Gill [19], Ng [16] and 

Mazumder & Paul [17] and so forth. 

The study of dispersion through non-Newtonian fluids 

receives less attention regardless of its abundant applications 

in polymers, biochemical processing, and cardiovascular 

flow etc. More specifically, the investigation of scattering in 

Casson liquids has applications in physiological liquid flow, 

as blood behavior mostly characterized by Casson fluid [20] 

under a particular environment. An investigation of scattering 

in non-Newtonian liquid (Bingham, Casson, and Power Law 

Fluids), with a view to understanding the rheology of blood 

on the dispersion process, was conducted by Sharp and then 

by Dash et al. [21]. The theory is extended by Nagarani et al. 

[22] incorporating wall absorption through a pipe, and again,

it has extended to the annular pipe in a subsequent paper [23].

The authors [24] likewise concentrated the dispersion

phenomena in Casson liquid through a conduit by applying

the generalized dispersion model and establishing the

functional relationship of a dispersion coefficient with a

Womersley frequency number, Schmidt number, yield stress,

and fluctuating pressure component. As of late, Rana &

Murthy [25, 26] investigated the large time behavior of the

axial dispersion process in an oscillatory flow in presence of

wall reaction.

In literature, the studies on the combined effect of 

homogeneous and heterogeneous reactions on dispersion 

have been considered only in a Newtonian fluid. To the best 

of our knowledge, there is no attempt to observe the 

dispersion of species under simultaneous chemical reactions 

in the bulk flow and the tube wall in the non-Newtonian fluid. 
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The present work, attempts are made to examine dispersion 

process in Casson liquid through a tube in presence of both 

reactions. In short the present study probably the fresh 

attempt and a generalization of the work of Rana and Murthy 

[26]. The specific objective of the current study: (1) to 

cultivate a mathematical model of Taylor dispersion in 

oscillatory flow field; (2) to illustrate and characterize the 

behavior of dispersion coefficient w.r.t chemically active 

solute; and (3) to study the break through curve in above 

background. 

 

 

2. MATHEMATICAL MODEL  

 

2.1 Momentum equation 

 

A unidirectional, axial, fully-developed laminar flow of an 

incompressible liquid is considered through a circular pipe of 

radius â . The coordinate system is chosen here is cylindrical, 

where the axial and radial co-ordinates are represented by ẑ  

and r̂  (cap denotes dimensional quantity). Axi-symmetry are 

assumed and hence all quantities are independent of  . 

We assume the regions of Casson liquid and the plug flow 

in the Casson region by ˆ
c  and ˆ

p  respectively, where 

 

 ˆ ˆ ˆ ˆˆ ˆ( , ) : 0 , .c r z r a z =   −                    (1) 

 

 ˆ ˆ ˆ ˆˆ ˆ( , ) : 0 , .p pr z r r z =   −                   (2) 

 

The governing equation of motion for the flow in the axial 

direction are given by 

 

ˆ ˆ( )
ˆ ˆ ˆˆ1

ˆ .
ˆ ˆ ˆˆ

r
du dp zr

dt dz r r







= − −


                        (3) 

 

where ̂  is the density of the flowing liquid. The axial 

pressure gradient represented by 
𝑑𝑝

𝑑�̂�
= 𝑝0 + 𝑝1 𝑠𝑖𝑛( �̂��̂�) , 

𝑝0,𝑝1  are the steady and oscillatory part of the pressure 

gradient and �̂� is the frequency of the pressure fluctuation. 

Constitutive equation  
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
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  = + −     


=  

 

                (4) 

 

where ˆ
ˆ

y  is the yield stress and ̂
 the Newtonian viscosity 

of the liquid. From the Eq. (4), it is obvious that whenever

ˆ ˆˆ
ˆ ˆ

z r y  , plug flow will occur.  

The boundary conditions are 

 

ˆˆ
ˆ ˆis finite at 0 ,

.
ˆ ˆ ˆ      0 a  t , 

z r r

u r a

 = 


= = 
                       (5) 

 

The following dimensionless quantities are used 
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Using the scaling as given in Eq. (6), the initial-boundary 

value problem (IBVP) i.e., Eqns. (3)-(5) reduces to. 
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is finite at 0

0 at 1

yz r

u r

 = 


= = 
                       (9) 

 

2.2 Transport Equation 

 

In the uni-directional flow described above, a reactive 

solute with initial concentration ˆ ˆ ˆ(0, , )C r z  is introduced. The 

dimensionless convection-diffusion equation satisfied by the 

solute concentration is 

 
2

2 2

1 1
( , ) ,

C C C C
u r t r C

t z r r r Pe z


     
+ = + − 

     
    (10) 

 

(0, , ) ( ), (0 1)C r z z r=                        (11) 

 

0 at 0 
C

r
r


= =


                          (12) 

 

at 1
C

C r
r




= − =


                         (13) 

 

( , , ) 0 ( , , )
C

C t r t r
z


 = = 


                     (14) 

 

Here 𝜅 (=
�̂��̂�2

�̂�
) is the bulk flow reaction rate, 𝛽(= �̂��̂�) is 

wall absorption and 𝑃𝑒 (=
𝑢0�̂�

�̂�
)  is the Péclet number that 

measures the ratio of the characteristic time of the diffusion 

process to that of the convection process. The Eq. (13) tells 

that the wall of the conduct is permeable whereas Eq. (14) 

reflects the fact that the total amount of solute is finite. 

 

 

3. SOLUTION METHODOLOGY 

 

3.1 Velocity distribution 

 

To solve the coupled Eqns. (7) & (9), we consider regular 

perturbation method by treating 1 Sc  as a perturbation 
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parameter, as. Sc is very large in case of blood flow. The 

velocity distribution [25] is: 

 

( , ),        
( , )

( , ),        

p

c p

u r t r
u r t

u r t r

− 
= 

+  −

                 (15) 

 

where 
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where 𝑢−(𝑟, 𝑡) is the velocity in the plug flow region p

having plug radius 𝑟𝑝 =
𝜏𝑦

𝑝(𝑡)
, (𝑝(𝑡) = 1 +

𝑒 𝑠𝑖𝑛(𝛼2𝑆𝑐 𝑡) , 𝛼2 =
�̂��̂�2

𝜈
, 𝛼  is Womersely frequency 

parameter, e  is the amplitude of the fluctuating pressure 

component) and ( , )u r t+  is the velocity of the remaining 

portion ( )p c −  of the tube.  

 

3.2 Aris-Barton approach 

 

Following the method of integral moment proposed by 

Aris [9] and modified by Barton [10], we define the p -th 

moment of the distribution of the solute in the filament 

through r  at time t  as, 

 

( ) ( ), , , .p

pC t r z C t r z dz





+

−

=                       (18) 

 

and the concentration distribution of the solute over the 

cross-section of the tube is given by,  

 

( )
( )

2

0

p

pd rC t

C

r dr

d rd
t

r













 

 



= 
 

 
                      (19) 

 

So using Eq. (18), the diffusion Eq. (10) subject to initial 

and boundary conditions (11)-(13) can be rewritten as: 

 

( )

( )

1

22
                    

1

1
        1 ,  

p p

p

p p

C C
r pu r C

t r r r

p p C C
Pe



−

−

  
− = − 

   

+ − −

      (20) 

 

With 

 

                    (21) 

 

Eq. (20) subject to initial and boundary condition (21) 

have been solved numerically by applying finite difference 

method based on Crank-Nicholson implicit scheme. At the 

beginning, discretized the Eq. (20) and Eq. (21) in the 

domain (i.e. 0 1r  ). As a result the differential equation 

converted into following difference equation at each grid 

point ( , )i j . 

 

( 1, 1) ( 1, )

                         1 1) .( ,

j p j p

j p j

P C i j Q C i j

R C i j S

+ + + +

+ + − =
          (22) 

 

where , ,  and j jj jP Q R S  are the matrix elements. 

The finite difference form of the initial condition is, 

 

(1, ) 1 for 0
,

0 for 0

pC j p

p

= = 


=  
                        (23) 

 

and that of boundary conditions are 

 

2 2

2

( 1,0) ( 1,2),

( 1, 1) ( 1, 1)

2 ( 1, ).

p p

p p

p

C i C i

C i M C i M

rC i M

+ = +

+ + = + −

−  +

            (24) 

 

The grid i indicating the time and j indicating spatial 

coordinate. Thus i=0 corresponds to the initial time and the 

subsequent time is obtained from the relation ( 1)it t i=   −  

where t  is the time increment. Now to discretize the spatial 

coordinate, we first determine the plug region with the help 

of the relation / ( )p yr p t= , accordingly, we have set two 

different step width 
1r  and

2r , first one for plug core 

region p  and other one for the reaming part ( )c p − . 

where 

 

1

2

      ( 1) i n

( 1) in

p

j

p c p

j r
r

r j r

−  
= 

+ −   −
 

 

Finally, the system of algebraic equations is solved by 

Thomas algorithm [27] with the view of prescribed initial and 

boundary conditions. All these computations are performed 

by devolving a Matlab code. 
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In our analysis, we choose 
1

1

0
0.00001,

1

pr
t r

M

−
 =  =

−
 and

2

2

1

1

pr
r

M

−
 =

−

, where 
1

M  and 
2

M  are a number of grid point in 

the p  and ( )c p − . In all the cases we have taken 

30 .1Pe =  Once the value of ( , )PC i j  is calculated, from 

Eq.(19) one can able to calculate 
pC  by applying any 

suitable method of numerical integration with the known 

values of ( , )u r t  and pC . In the present article, we follow 

Simpson 1/ 3  rule. 

The p -th order central moment of the concentration 

distribution about the mean can be defined as 

 

1 2
( ) ( , , )

0 0( ) ,
1 2

( , , )

0 0

p
r z z C t r z drd dz

g
t

p
rC t r z drd dz









+
−  

−=


  
−

        (25) 

 

where 
1 0

z C C
g
=  is the centroid or first moment of the 

solute and 
0

C  represents the total mass of the reactive solute 

in the whole volume of the tube. The expressions for central 

moments can be obtained from (25) as,  
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
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= −
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
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−






             (26) 

 

 

4. RESULTS AND DISCUSSION 

 

The present analysis deals with the longitudinal dispersion 

of reactive solute in an oscillatory flow when it is introduced 

into a circular tube by modeling the flowing fluid as a Casson 

liquid. In the introduction section, we have underlined the 

significance of reactive solute in dispersion process and 

accordingly, we have modeled the problem. The effect of 

homogeneous and heterogeneous reaction on dispersion is 

highlighted against the foundation of the outcomes in regard 

to inert solute. The whole analysis is performed on the basis 

of Aris-Barton moment method and the higher order moment 

equations are solved numerically. Although the numerical 

scheme adopted in the present review is unconditionally 

stable, but we have validated our result by some existing 

work. The results are found to be in good agreement with 

sankarasubramanian & Gill [28] when 0y = , Nagarani et al. 

[22] when 0e =  and Rana & Murty [25] when 0 = . Before 

going to definite discourse, we have fixed the parameters 

involved in the analysis by considering previous investigation 

and rheological perspective. The table documented below are 

the conceivable range for the involving parameters: 

Table 1. Ranges of controlling parameter considered in the 

present study 

 
Parameter  Range of Value 

y
  

0 0.05−  

  0 20−  

  0.1 4−  

  0 100−  

e  0 0.5−  

 

In the present analysis, we mainly focus our attention in 

three transport coefficients viz. Exchange coefficient, 

Convection coefficient and dispersion coefficient. We also 

study the mean concentration on a similar foundation. All 

three transport coefficient and mean concentration are 

function of central moment defined in Eq. (26). The 

interrelated relationship of the four elements with central 

moment, and the parametric effect on these four element are 

elaborated in the following subsections: 

 

4.1 Exchange coefficient 

 

The exchange coefficient 
0

K  appears due to reaction and 

can be figured from the analogy that the total mass decays 

exponentially with time as per the following relation: 

 

0 0

( )00( ) (0)
t K t dt

K t C e


=                            (27) 

 

From Eq. (27) it is clear that 
0K  is function of   and 

only. The variation of 
0K  with time for different   and   

is portrayed in Figure 
0K−  is an increasing function of time 

but an equilibrium gradually set up between solute transfer 

from the boundary to the central core region due to molecular 

diffusion and solute transfer from boundary into wall. Also 

0K− increases with the increment of  , as an increase in   

consumes material more rapidly than it can be supplied by 

molecular diffusion, consequently, the system becomes 

diffusion controlled and reaches to its steady state for large 

 . In like manner, increase in   results increase in 
0K− . 

The above perception furthermore maintained by Figure 2 

and Figure 3. When 0 = , the negative exchange curve w.r.t 

time qualitatively and quantitatively agree with 

sankarasubramanian & Gill [28], Nagarani et al. [22] and 

Rana & Murty [25]. 

 

4.2 Convection coefficient 

 

Convection coefficient arises naturally in the study due to 

the fluid movement. As the center of mass moves with fluid 

velocity, the Convection coefficient 1K  is given by, 

 

1

gdz
K

dt
=                                    (28) 

 

Convection coefficient is the function of y , e ,   and  . 

The first two parameters are due to fluid velocity and last two, 

because of the consideration that the species is reactive. The 

behavior of 1K−  is pulsatile in nature, initially, species is 

convected with the velocity of the fluid along the flow, hence 
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the underlying speed of the species relies on 
y  [Figure 

4(a)].The amplitude of fluctuation of 
1K−  initially varies 

with time and reaches to the constant value in the developed 

time [Figure 4(a, b)].This non-transient state depends on 

other parameters also. By increasing e , one can also increase 

the amplitude 
1K−  [Figure 5(a, b)]. As expected, increase in 

y  decreases the convection coefficient 
1K−  [Figure 4(a, b)]. 

Figure 6(a, b) and Figure 7, uncovers the reliance of wall 

observation on negative convection coefficient 
1K−  at a 

small and large time. From Figure 6(a, b) it is observed that 

with the increase in   negative convection coefficient 
1K−  

increases, as the wall reaction enhance the transport of cloud 

contaminant towards the wall, subsequently 
1K−  increases, 

with  . An identical behavior is observed for   [Figure 8 

and Figure 9(a, b)] 

 

 
 

Figure 1. Variation of negative exchange coefficient with 

time 

 
 

Figure 2. Variation of negative exchange coefficient -K 

against   at t=1 

 
 

Figure 3. Variation of negative exchange coefficient -K0 

against k at t=1 

4.3 Dispersion coefficient 

 

Because of velocity shear, the axial diffusion is negligible 

compare to radial diffusion. Aris [9] showed that the rate of 

change of variance is proportional to the sum of molecular 

diffusion coefficient along the axial direction and apparent 

dispersion coefficient (Taylor dispersion coefficient). Since 

the axial diffusion is negligible compared to the lateral 

diffusion, the apparent dispersion coefficient effD  can be 

written as 

 

21
.

2
eff

d
D

dt


=                               (29) 

 

The apparent dispersion coefficient depends on yields 

stress y , the amplitude of pressure fluctuation e , wall 

absorption parameter  , womersly number   and bulk flow 

reaction parameter . As like negative convection coefficient, 

dispersion coefficient is also oscillatory in nature, and 

varying its amplitude initially, and gradually reaches to its 

non-transient state. As mentioned above this non-transient 

state depends on other factors like y , e ,   etc. Figure 10(a, 

b) and Figure 11(a, b) attracted to underscore the impact of 

yield stress  y  on dispersion coefficient and is seen that the 

apparent dispersion coefficient effD  is decreasing with  y  at 

a small as well as large time. The reason behind the 

decrement is velocity, the increase in yield stress, velocity 

decrease which, in turns decrease the dispersion coefficient. 

To observe the effect of wall absorption parameter, Figure 12 

is presented and noticed that the wall absorption   helps to 

diminish the effective dispersion coefficient effD . Variation 

of asymptotic dispersion coefficient effD  with respect to   

for different values of yield stress is also examined [Figure 

16] at time t=1. The physical explanation for this effect is 

identical to that of Sankarasubramanian and Gill [28] Notable 

that a similar kind of trend is observed in the case of bulk 

flow reaction parameter in Figure 13 and Figure 17. This 

decrease in the dispersion coefficient with the increase in the 

reaction rate constant is based on the sound physical ground. 

The increase in   leads to the growth in the number of moles 

of solute undergoing chemical reaction resulting in a drop-in 

dispersion coefficient. It is worth noting that the value of 

dispersion become negative for the high value of Womersly 

number and amplitude of pressure pulsation [Figure 14(a, b) 

and Figure 15(b)], i.e. species move back with the flow, and 

the reason is quite natural as back flow appears in the motion 

due to pulse. 

 

4.4 Mean concentration 

 

The moment method no longer gives any immediate 

expression for mean concentration but it is conceivable to 

surmise the mean concentration which can also be achieved 

by means of Hermite polynomials for the representation of 

non-Gaussian curve [29, 30] with the aid of first four central 

moments as follows, 

 

2

0

0

( , ) ( ) ( ) ( ) ,m n n

n

C z t C t e a t H 


−

=

=                    (30) 
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where 𝜂 =
(𝑧−𝑧𝑔)

√2𝜇2
,   𝑧𝑔 =

�̄�1

�̄�0
 and 𝐻𝑖 , the Hermite polynomials, 

satisfy the recurrence relation  

 

1 1( ) 2 ( ) 2 ( ), 0,1,2 ,i i iH H iH i   + −= − =          (31) 

 

in which 0 ( ) 1.H  =  

The coefficients ia 's are  
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Figure 4. Variation of negative convection coefficient with time for different values of yield stress when 1 = , 0.5e = , 0.5 = , 

10 = . (a) Small time (b) Large time 

 

 
 

Figure 5. Variation of negative convection coefficient with time for different values of amplitude of pressure fluctuation when 

1 = , 0.05y = , 0.5 = , 10 = . (a) Small time (b) Large time 

 

 
 

Figure 6. Variation of dispersion coefficient with time for different values of absorption parameter when 0.05y = , 0.5e = , 

0.5 = , 10 = . (a) Small time (b) Large time 
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Figure 7. Variation of negative convection coefficient 
1K−  against   when 10 =  and 0.02y =  at 0e =  

 

 
 

Figure 8. Variation of negative convection coefficient against   when 1 =  and 0.02y =  at 0e =  

 

 
 

Figure 9. Variation of negative convection coefficient with time for different values of reaction parameter when
 

1 = , 0.5e = , 

0.5 = , 0.05y = . (a) Small time (b) Large time 

 
 

Figure 10. Variation of negative Dispersion coefficient with time for different values of yield stress when 1 = , 0.5e = , 

0.5 = , 10 = . (a) Small time (b) Large time 
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Figure 11. Variation of Dispersion coefficient with time for different values of e  when 1 = , 10 = , 0.5 = . (a) Small time 

(b) Large time 

 

 
 

Figure 12. Variation of dispersion coefficient with time for different values of absorption parameter when 0.05y = , 0.5e = , 

0.5 = , 10 =  (a) Small time (b) Large time 

 

 
 

Figure 13. Variation of Dispersion coefficient with time for different values of reaction parameter when 0.05y = , 0.5e = , 

0.5 = , 1 = . (a) Small time (b) Large time 

 

 
 

Figure 14. Variation of Dispersion coefficient with time for different values of absorption parameter when 10 = , 0.5e = , 

0.5 = , 0.05
y

 = . (a) Small time (b) Large time 
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Figure 15. Variation of dispersion coefficient with time for when, 0.5e = , 10 = ,  0.05y = . (a) 1 =   (b) 4 =  

 

 
 

Figure 16. Variation of Dispersion coefficient effD  against    at 1t =  when  0.5e = , 0.5 = . 

 

 
 

Figure 17. Variation of Dispersion coefficient effD  against   at 1t =  when 1 = , 0.5e = , 0.05y =  
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Figure 18. Distribution of mean concentration against the axial distance for (a) different values of the absorption parameter when

0.05y = , 10 = , 0.5e = , 0.5 = . (b) different values of the reaction parameter when 0.05y = , 1 = , 0.5e = , 0.5 = . (c) 

different values of yield stress when 10 = , 1 = , 0.5e = , 0.5 = . (d) different time when 10 = , 1 = , 0.5e =  

 

Therefore, given the statistical parameters (26), the 

concentration distribution can be estimated from (30) at any 

given location in the axial direction and time. The variations 

of mean concentration distribution have been displayed in 

Figure 18 against the axial distance for different factors viz., 

yield stress, wall absorption, bulk flow reaction parameter etc. 

The peak of the mean concentration is essentially impacted 

by these elements. The Peak of the breakthrough curve 

decrease w.r.t yield stress, wall absorption parameter, and 

reaction parameter [Figure 18]. As we see the increase in 

yield stress results decrease in the effective dispersion 

coefficient and hence the mean concentration decreases in the 

axial direction. Again presence of boundary absorption at the 

wall, tracer’s material continuously depleted at the wall. So 

the increase in both types of reaction ensures the exhaustion 

of the reactive material in bulk of the fluid and at the wall 

boundary. Moreover, as time passes the dispersion is largely 

controlled by molecular diffusion and peak of the mean 

concentration deteriorate with time [Figure 18]. 

 

 

5. CONCLUSION 

 

In this work, longitudinal dispersion of pulsatile stream of 

reactive species in presence of homogeneous and 

heterogeneous reaction are examined. The flow pulsation is 

arisen due to a periodic pressure gradient. It is found that for 

homogeneous reaction in the bulk of the liquid, the apparent 

dispersion coefficient and negative exchange coefficient 

decrease with increase in the reaction rate constant, the effect 

similar to the irreversible reaction in the boundary. In any 

case, both the reaction enhances the negative convection 

coefficient. The negative convection coefficient and apparent 

dispersion coefficient function of wall absorbing parameter 

yield stress while exchange coefficient is independent of 

yield stress. It is found that yield stress is in favor of 

decrement of the negative convection coefficient and the 

apparent dispersion coefficient. The present work clarifies 

the impacts of pulsatility, first order homogeneous and 

heterogeneous chemical reaction in Casson liquid, 

considerably nearer to that in a physiological circumstance in 

contrast with literature, yet far away to merit use with regards 

to a clinical circumstance. 
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NOMENCLATURE 

 

α  radius of the pipe 

𝜏𝑦 yield stress 

u   axial velocity 

    Newtonian viscosity 

C   solute concentration 

D   molecular diffusivity 

   bulk flow reaction parameter 
   dirac delta function 

   absorption parameter 

Pe   Péclet number 

Sc   Schmidt number 

Hi
 

Hermite polynomials 

rp
 

plug core radius 

Cp
 

 moment of the solute concentration 

p  
 p-th order central moment of the solute 

concentration 

0K   exchange coefficient 
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