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The current target tracking and detection algorithms often have mistakes and omissions 

when the target is occluded or small. To overcome the defects, this paper integrates bi-

directional feature pyramid network (BiFPN) into cascade region-based convolutional 

neural network (R-CNN) for live object tracking and detection. Specifically, the BiFPN 

structure was utilized to connect between scales and fuse weighted features more efficiently, 

thereby enhancing the network’s feature extraction ability, and improving the detection 

effect on occluded and small targets. The proposed method, i.e., Cascade R-CNN fused with 

BiFPN, was compared with target detection algorithms like Cascade R-CNN and single shot 

detection (SSD) on a video frame dataset of wild animals. Our method achieved a mean 

average precision (mAP) of 91%, higher than that of SSD and Cascade R-CNN. Besides, it 

only took 0.42s for our method to detect each image, i.e., the real-time detection was 

realized. Experimental results prove that the proposed live object tracking and detection 

model, i.e., Cascade R-CNN fused with BiFPN, can adapt well to the complex detection 

environment, and achieve an excellent detection effect. 
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1. INTRODUCTION

In recent years, significant progress has been made in the 

detection of live objects like human and other animals, which 

provides technical support to semantic segmentation, cross-

border tracking, and behavioral analysis. The relevant 

detection technologies have been widely applied in multiple 

fields, such as public security, image retrieval, as well as 

animal tracking and protection. However, the detection 

accuracy might be dragged down, if the target is occluded or 

small. To improve detection accuracy, target detection 

researchers are striving to mitigate the mistakes and omissions 

of live object detection [1]. 

Traditional target detection methods mainly rely on 

machine learning. The detection algorithms can be 

decomposed into three phases: region selection, feature 

extraction, and target classification. During region selection, 

multiple candidate regions are obtained through sliding 

window operation or selective search. During feature 

extraction, the features of each candidate region are extracted 

through scale-invariant feature transform (SIFT) [2], and 

histogram of oriented gradients (HOG) [3]. During target 

classification, the targets are classified according to the 

features extracted in the second phase. The main classifiers are 

to support vector machine (SVM) [4], and adaptive boosting 

(AdaBoost) [5]. For live object detection, the quality of feature 

extraction directly determines the detection accuracy of small 

or occluded targets. The traditional target detection methods 

are inaccurate, and time-consuming, with a high omission rate. 

Considering the actual needs of live object detection, this 

paper tries to improve the phase of feature extraction. 

The further development of deep learning (DL) enables the 

continuous improvement of the accuracy and speed of target 

detection algorithms, with the aid of multi-layer computing 

networks. More and more target detection methods have 

emerged based on deep convolutional neural networks 

(DCNNs) [6-9]. There are mainly two types of DL-based 

target detection networks: one-stage detection algorithms, and 

two-stage detection algorithms. One-stage detection 

algorithms directly generate the class probability and 

coordinates of the object, without needing region selection. 

Typical examples include single shot detection (SSD) and its 

derivatives [10], you only look once (YOLO) series [11], etc. 

Two-stage detection algorithms first perform region selection, 

and then classify candidates regions. Typical examples include 

region-based CNN (R-CNN) series [12], and various 

improved versions of R-CNN, namely, Fast R-CNN [13], and 

Faster R-CNN [14]. Cascade R-CNN [15] is a multistage 

extension of Faster R-CNN. Two-stage algorithms have lower 

error rate and omission rate than one-stage algorithms. 

Nevertheless, the above algorithms do not make full use of the 

context of the region of interest (ROI), and ignore the 

importance of shallow position information to the detection of 

small or occluded targets. 

Taking Cascade R-CNN as the basic algorithm, this paper 

integrates bi-directional feature pyramid network (BiFPN) to 

enhance the bidirectional feature fusion. The integrated 

network fully utilizes shallow position information, which 

facilitates the detection of small or occluded targets, to 

improve the detection accuracy of occluded or small targets, 

and to reduce detection mistakes and omissions [16]. The 

proposed algorithm was compared with original Cascade R-
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CNN algorithm on a dataset of complex video frames taken in 

a natural reserve. The results show that our algorithm achieved 

a much higher mean average precision (mAP) than the original 

Cascade R-CNN. 

 

 

2. CASCADE R-CNN TARGET DETECTION 

ALGORITHM 

 

Cascade R-CNN cascades three detection networks to 

constantly optimize the prediction result. Unlike ordinary 

cascade, the three detection networks of Cascade R-CNN are 

obtained through training on positive and negative samples, 

which is determined based on different intersection over union 

(IoU) thresholds. For different detectors and different 

benchmark networks, the cascade process steadily improves 

the average precision (AP). The improvement increases with 

the IoU threshold.  

The target detection model based on Cascade R-CNN is 

illustrated in Figure 1, where H1-3 represents the detection and 

classification header of Faster R-CNN, B1-3 represents the 

detection boxes after regression. The network operation can be 

summarized as: B1 regression outputs a detection box, which 

is imported to H2; Then, B2 regression outputs another box, 

which is imported to H3; Finally, C1-3 outputs the specific 

classes of the samples [15]. The three cascaded classifiers, 

whose threshold increase progressively, steadily improves the 

positive sample quality of each detector through repeated 

classifications and regressions, thereby enhancing detection 

accuracy continuously. 

 

 
 

Figure 1. Structure of target detection model based on 

Cascade R-CNN 

 

 

3. BIFPN MULTI-FEATURE FUSION 

 

The classifiers trained on a single feature cannot fully utilize 

the context of ROI, and ignores the position information to the 

detection of small or occluded targets, bringing a low detection 

accuracy and a high omission rate. What is worse, the 

background noise in the complex environment suppresses the 

quality of feature data, adding to the difficulty in classifier 

training and reducing the classification accuracy. The main 

solution to these problems is to implement feature fusion: 

extracting various features for classifier training, and make up 

for the inherent defect of a single feature through the 

complementarity between features.  

In 2017, Lin et al. [17] proposed a novel detection model 

called FPN, which greatly improves the target detection 

accuracy by combining Faster R-CNN with up-sampling 

structure, and fusing the feature information of high- and low-

level feature maps. FPN is now the most widely used 

multiscale fusion method. Recently, a series of cross-scale 

feature fusion methods have been developed, including path 

aggregation network (PANet) [18] and neural architecture 

search (NAS)-FPN [19].  

The earliest approach of feature fusion simply adds up the 

features. However, different features have different 

resolutions, and make different contributions to the output 

feature. To solve this problem, Tan et al. [20] put forward the 

BiFPN in 2020, in which learnable weight is used to evaluate 

the importance of each feature and learn different features, and 

feature fusion is implemented repeatedly from top to bottom 

and from bottom to top. 

Following the idea of two-way fusion, BiFPN constructs a 

top-down channel, and a bottom-up channel. For the 

multiscale information from the backbone network, the 

resolution scales of the features are unified through up-

sampling and down-sampling. Besides, horizontal connections 

are added between features of the same scale to ease the 

feature information loss induced by the excessive number of 

network layers. The BiFPN structure is explained in Figure 2. 

 

 
 

Figure 2. BiFPN structure 

 

 

4. MODEL IMPROVEMENT 

 

 
 

Figure 3. Algorithm’s structure 

 

BiFPN fully fuses various features, especially those of 

occluded or small live objects in a complex background. The 

top-down feature fusion is combined with bottom-up feature 

fusion to embed bottom-level environmental features in high-

level features. In this way, the loss of shallow features is 

prevented, and the foreground is effectively differentiated 
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from the background. As a result, BiFPN can detect small or 

occluded targets at a high accuracy, and achieve a good result 

by integrating segmentation task with detection task. 

Figure 3 shows the structure of our target detection module, 

which integrates BiFPN into Cascade R-CNN. In the backbone 

phase, five strides (8, 16, 32, 64, and 128) are selected to 

constitute an FPN. The resulting features of different 

resolutions are imported into BiFPN model as inputs P3, P4, 

P5, P6, and P7. 

The BiFPN model first up-samples P7, and stacks the result 

with P6 to obtain P6a; next, the model up-samples P6a, and 

stacks the result with P5 to obtain P5a; after that, the model 

up-samples P5a, and stacks the result with P4 to obtain P4a; 

then, the model up-samples P4a, and stacks the result with P3 

to obtain P3b. Hence, P3b realizes the cross-scale connection 

and weighted feature fusion between P3 and P4a. 

After P3b, P4a, P5a, and P6a are obtained, P3b is down-

sampled, and the result is stacked with P4a and P4 to obtain 

P4b. Thus, P4b realizes the cross-scale connection and 

weighted feature fusion between P3b, P4, and P4a. Next, P4b 

is down-sampled, and the result is stacked with P5a and P5 to 

obtain P5b. Then, P5b realizes the cross-scale connection and 

weighted feature fusion between P4b, P5 and P5a. After that, 

P5b is down-sampled, and the result is stacked with P6 and 

P6a to obtain P6b. Then, P6b realizes the cross-scale 

connection and weighted feature fusion between P5b, P6 and 

P6a. Thereafter, P6b is down-sampled, and the result is 

stacked with P7 to obtain P7b. Then, P7b realizes the cross-

scale connection and weighted feature fusion between P6b, P7 

and P7a. 

The feature maps on the layers of P3-7 are subjected to 

cross-scale connection and weighted feature fusion in BiFPN. 

In this way, the multiscale features are extracted from the input 

image. BiFPN implements rapid normalized fusion: 

 

𝑂 = ∑
𝑤𝑖

𝜀+∑ 𝑤𝑗𝑗
𝑖 ∙ 𝐼𝑖  (1) 

 

where, 𝜀 =0.0001; wi is a nonnegative learnable weight. 

Rectified linear unit (ReLU) is adopted to ensure the data 

stability. Each normalized weight falls between 0 and 1. 

Taking the sixth layer of BiFPN as an example, the 

intermediate layer P6
td in the top-down direction of P6 outputs 

the following feature: 

 

𝑃6
𝑡𝑑 = 𝐶𝑜𝑛𝑣 (

𝑤1∙𝑃6
𝑖𝑛+𝑤2∙𝑅𝑒𝑠𝑖𝑧𝑒(𝑃7

𝑖𝑛)

𝑤1+𝑤2+𝜀
)  (2) 

 

The output layer P6
out in the bottom-up direction of P6 

outputs the following feature: 

 

𝑃6
𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣 (

𝑤1
′ ∙𝑃6

𝑖𝑛+𝑤2
′ ∙𝑃6

𝑡𝑑+𝑤3
′ ∙𝑅𝑒𝑠𝑖𝑧𝑒(𝑃5

𝑜𝑢𝑡)

𝑤1
′+𝑤2

′+𝑤3
′+𝜀

)  (3) 

 

The other layers of BiFPN are constructed in a similar 

manner. 

When it comes to the ROI proposal phase, multiple feature 

maps of different sizes are screened on different layers, and 

imported into Cascade R-CNN. In Cascade R-CNN model, the 

least absolute deviation (LAD) loss function is the same as 

Fast R-CNN: 

 

𝑅𝑙𝑜𝑐[𝑓] = ∑ 𝐿𝑙𝑜𝑐(𝑓(𝑥𝑖 , 𝑏𝑖), 𝑔𝑖)
𝑁
𝑖=1   (4) 

 

Through continuous iteration, B2 is initialized with B1, and  

B3 is initialized with B2:  

 

𝑓′(𝑥, 𝑏) = 𝑓 ∘ 𝑓 ∘ ⋯ ∘ 𝑓(𝑥, 𝑏)  (5) 

 

Setting the initial threshold to 0.5, detectors with a 

progressively increasing threshold are adopted for repeated 

classifications and regressions, such that the positive sample 

quality steadily improves for each detector. 

The cross-entropy loss is chosen as the classification loss 

function: 

 

𝑅𝑐𝑙𝑠[ℎ] = ∑ 𝐿𝑐𝑙𝑠(ℎ(𝑥𝑖), 𝑦𝑖)
𝑁
𝑖=1   (6) 

 

The loss function after cascading can be expressed as: 

 

𝐿(𝑥𝑡 , 𝑔) = 𝐿𝑐𝑙𝑠(ℎ𝑡(𝑥
𝑡), 𝑦𝑡) 

+𝜆[𝑦𝑡 ≥ 1]𝐿𝑐𝑙𝑠(𝑓𝑡(𝑥
𝑡 , 𝑏𝑡), 𝑔),𝑏𝑡 = 𝑓𝑡−1(𝑥

𝑡−1, 𝑏𝑡−1) 
(7) 

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

5.1 Experimental environment and parameter setting 

 

Our experiments were carried out with NVIDIA Tesla V100 

SXM2 graphics processing unit (GPU), Ubuntu Linux Server 

16.04, and PyTorch 1.2 with CUDA Toolkit 10.1. The training 

set is in VOC format. The batch size was set to 8, momentum 

to 0.9, non-maximum suppression to 0.5, and maximum epoch 

to 24. The learning rate was configured by the on-demand 

adjustment strategy. During the experiments, the learning rate 

was initialized as 0.005, and attenuated in the 16th and 22nd 

epochs with an attenuation coefficient of 0.001. The network 

parameters were optimized through stochastic gradient 

descent, with a weight attention coefficient of 0.0001. The 

model detection effect was evaluated by mAP. 

 

5.2 Experimental process 

 

To evaluate the performance of our algorithm in complex 

environments, this paper prepares a dataset with the tracking 

and monitoring video frames of wild animals. A total of 4,000 

images on 10 types of animals were selected, and randomly 

divided into a training set (3,200) and a test set (800) at the 

ratio of 4: 1. 

The individual animals were labeled in the sample images 

with the open annotation tool LabelMe, including occluded 

animals, small targets like birds, and nocturnal animals.  The 

brightness of the sample images was randomly adjusted to 

create more samples with different light conditions. Besides, 

the sample images were rotated by different degrees to 

simulate the shooting effect of cameras from different angles. 

Further, the sample images were mosaiced randomly to 

emulate the occlusion of animals. 

After that, a target detection model was established by 

integrating BiFPN structure into Cascade R-CNN. Then, the 

labeled training set was imported to Cascade R-CNN. The 

convergence of each training was judged against the training 

loss. The calculation was performed iteratively until the loss  

converged, producing the final model. 

 

5.3 Results analysis  

 

SSD was chosen as the representative of traditional target 

detection algorithm. Both Cascade R-CNN and SSD rely on 
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the backbone network of VGG-16. Then, the detection results 

of SSD, Cascade R-CNN, SSD coupled with BiFPN, and 

Cascade R-CNN coupled with BiFPN (our algorithm) are 

compared in Table 1. It can be inferred that the network 

models centering on Cascade R-CNN were superior in mAP 

than SSD-centered models. The mAP of the original Cascade 

R-CNN was 86.4%, while that of BiFPN Cascade R-CNN rose 

to 91%; it only took 0.42s for BiFPN Cascade R-CNN to 

detect an image. The comparison demonstrates the good 

recognition effect, detection accuracy, and real-time 

performance of BiFPN Cascade R-CNN for live object 

tracking and detection. Figure 4 compares the detection results 

of Cascade R-CNN and BiFPN Cascade R-CNN on animal 

images. Figures 5-7 present the recognition results on small 

animals, partly occluded animals, and nocturnal animals, 

respectively. 

 

Table 1. Detection results of SSD, Cascade R-CNN, SSD coupled with BiFN, and Cascade R-CNN coupled with BiFPN 

 
Model Backbone network mAP Detection time 

SSD VGG-16 82.6% 0.3s 

BiFPN SSD VGG-16 83.8% 0.41s 

Cascade R-CNN VGG-16 84.6% 0.36s 

BiFPN Cascade R-CNN VGG-16 91% 0.42s 

 

   
(a) Original image (b) Result of Cascade R-CNN (c) Result of BiFPN Cascade R-CNN 

 

Figure 4. Detection results of Cascade R-CNN and BiFPN Cascade R-CNN on animal images 

  
 

Figure 5. Recognition results on small animals 

 

  
 

Figure 6. Recognition results on partly occluded animals 

 

  
 

Figure 7. Recognition results on nocturnal animals 
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6. CONCLUSIONS 
 

The current target tracking and detection algorithms often 

have mistakes and omissions when the target is occluded or 

small. To solve the problems, this paper integrates BiFPN into 

Cascade R-CNN for live object tracking and detection. The 

addition of BiFPN strengthens the fusion of two-way features, 

and makes full use of shallow position information, which 

benefits the detection of small or occluded targets. In this way, 

the detection accuracy is improved for occluded and small 

targets. Specifically, the mean precision and speed of detection 

and classification are improved, and the problems of classifiers 

trained on a single feature are overcome (low precision, high 

false positives, and high omission rate). Finally, the proposed 

live object tracking and detection model, i.e., BiFPN Cascade 

R-CNN, was applied to detect wild animals, and compared 

qualitatively with SSD, Cascade R-CNN, etc. The 

experimental results show that the proposed live object 

tracking and detection model, i.e., Cascade R-CNN fused with 

BiFPN, can adapt well to the complex detection environment, 

realize a higher mAP (91%) than other algorithms, and satisfy 

the demand for real-time detection. 
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