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 A single most immense abiotic stress globally affecting the productivity of all the crops is 

water stress. Hence, timely and accurate detection of the water-stressed crops is a necessary 

task for high productivity. Agricultural crop production can be managed and enhanced by 

spatial and temporal evaluation of water-stressed crops through remotely sensed data. 

However, detecting water-stressed crops from remote sensing images is a challenging task 

as various factors impacting spectral bands, vegetation indices (VIs) at the canopy and 

landscape scales, as well as the fact that the water stress detection threshold is crop-specific, 

there has yet to be substantial agreement on their usage as a pre-visual signal of water stress. 

This research takes the benefits of freely available remote sensing data and convolutional 

neural networks to perform semantic segmentation of water-stressed sugarcane crops. Here 

an architecture ‘DenseResUNet’ is proposed for water-stressed sugarcane crops using 

segmentation based on encoder-decoder approach. The novelty of the proposed approach 

lies in the replacement of classical convolution operation in the UNet with the dense block. 

The layers of a dense block are residual modules with a dense connection. The proposed 

model achieved 61.91% mIoU, and 80.53% accuracy on segmenting the water-stressed 

sugarcane fields. This study compares the proposed architecture with the UNet, ResUNet, 

and DenseUNet models achieving mIoU of 32.20%, 58.34%, and 53.15%, respectively. The 

results of this study reveal that the model has the potential to identify water-stressed crops 

from remotely sensed data through deep learning techniques.  
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1. INTRODUCTION 

 

Swift increase in the world's population pressurizes the 

availability of fresh water. The population largely survives on 

agricultural products. Agriculture stood first (near 70%) in the 

freshwater consumption sectors among domestic, industries, 

and civil sectors. However, the increase in global warming day 

by day hinders freshwater availability. With this limited 

freshwater, sustainable agriculture and food security become 

significant issues for the next generation. Water deficiency is 

not limited to any growing stage of any crop, but it may arise 

continuously over the entire crop lifecycle. It may be more or 

less in a particular stage; however, it inhibits the overall 

growth and is the primary cause of the reduction in the yield 

(more than 50%) of the crop, which causes significant loss to 

the farmers, industries, and country's economy. The crop yield 

responds to water deficiency differently in different crops and 

is also dependent on surrounding climatic conditions. The 

determination of water stress in crops is a great challenge to 

schedule adequate irrigation to ensure food security. In 

addition, the agriculture domain faces the problem of 

producing more food from this limited water supply. In this 

study, an attempt is made to assess the water stress of the 

sugarcane crop in Karnataka, India. 

Sugarcane (Saccharum officinarum) is a widely grown and 

one of the most important crops cultivated in India under 

varying conditions of the atmosphere, soil types, rainfall, 

temperature regimes, and mainly water availability. Sugarcane 

crop cultivation requires a massive amount of water ranges 

from 1200 to 3500 mm (1200-1800 mm in subtropical and 

1600-2700 mm in tropical zones) that depends on the season 

(time of plantation), crop type, crop duration, yield, climate, 

and soil properties. The average rainfall in Bagalkot and 

Belgavi (study area) is 545 mm and 808 mm, respectively. 

Hence, efficient water management is much needed to better 

yield in sugarcane cultivation which is possible only through 

timely and accurate assessment of the crop water stress. 

This paper proposes a novel architecture to investigate the 

potential of combining encoder-decoder structure, ResNet, 

and DenseNet architectures to gain the advantages of these 

techniques for identifying high water stress, medium water 

stress, and low water stress sugarcane from the satellite 

imagery. The proposed architecture followed UNet's overall 

encoder decoder structure with significant changes in simple 

convolution and decoding paths. Residual units connected 

through dense connection are utilized in place of the plain 

convolutional layers. This study also investigated an attention 

module that concentrates on the dataset's significant features. 

This paper aims to gain acceptable segmentation results for 

water-stressed sugarcane plots. The proposed architecture is 
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evaluated on the developed dataset for water-stressed 

sugarcane crops.  

The remaining paper is organized as follows. Section 2 

gives a literature survey. Section 3 briefs the methodology 

used in this research study. Section 4 presents the experiments 

conducted with the dataset used. The investigation results and 

comparison of the model are given in section 5, followed by 

the research conclusion in section 6. 

 

 

2. LITERATURE SURVEY 

 

Various methods to detect crop water stress have been 

reported in the literature over the years vary from in situ soil 

moisture measurement, methods based on plant responses, 

remote sensing (RS) based methods to machine learning (ML) 

based methods [1]. Earlier, crop water stress detection was 

carried out by taking dry weight and fresh weight of the crop 

leaves, which were very time consuming, destructive, 

laborious techniques and cover a tiny region of the farming. 

Then, a practical, non-destructive technology, the RS 

technology covering a wide area, showed superior 

performance over the laboratory-based techniques for water 

stress detection in crops. The spectral indices of multispectral 

satellite images, especially crop water stress index, 

hyperspectral satellite images, witnessed great success in 

detecting water stress in crops. 

Recent years bring amelioration in deep learning (DL) 

methods (deep neural networks), especially convolutional 

neural networks (CNNs). CNN gained popularity because of 

achieving state-of-the-art results in many computer vision 

tasks such as image classification [2-4], scene recognition [5], 

image annotation and captioning [6, 7], handwritten digits 

classification, object detection [8], and semantic segmentation 

[9]. A review has been presented by Singh [10] on biotic and 

abiotic stress detection using CNN models such as AlexNet, 

ZFNet, GoogLeNet, VGGNet, ExceptionNet, InceptionNet, 

and ResNet in various fruits and vegetables. Stress and non-

stress water condition of maize, soybean, and okra have been 

identified using AlexNet, GoogLeNet, and Inception V3 [11]. 

A review on analyzing crop biotic and abiotic stress using deep 

learning approaches has been reported by Gao et al. [12]. 

Among other approaches, semantic segmentation has been 

evaluated for a few crops' water stress determination. It is also 

called pixel-based segmentation, or per-pixel prediction 

problem that assigns a class to every pixel of an image. CNNs 

are promising for it. An extension of CNN, the fully 

convolutional network (FCN) [9] became one of the most 

successful techniques for image segmentation. FCN removed 

a fully connected layer, and the architecture is made up of 

locally connected layers, convolutional and pooling layers. 

Removal of this dense layer lessens the parameters and, in turn, 

the computation time. FCNs introduced up-sampling layers to 

conventional CNNs to map features to features and obtain 

spatial resolution at the output end. This up-sampling layer 

leads to having an arbitrary size of an image at the input end. 

In addition, identity mapping was introduced, connecting 

contracting and expansive paths that deal with the fine-grained 

spatial content loss that occurred by the pooling layer in the 

contracting path. Over the past few years, many studies have 

been continuously contributed to the architectures to improve 

the semantic segmentation using FCNs. FCNs encoders are 

enhanced [13, 14], and various variants of expansive paths 

resulted in better segmentation [15, 16]. A breakthrough 

architecture, UNet, was proposed by Ronneberger et al. [15] 

with identity mapping against in FCNs, which concatenates 

local features from contracting layers to the corresponding 

expansive layers that proved to be superior against state-of-

the-art to segment biomedical images. After the successful 

performance of UNet on medical image segmentation, many 

researchers reported noticeable advancement in the original 

UNet architecture such as H-DenseUNet [17], Dense-

InceptionUNet [18], ResUNet++ [19] on the medical image 

datasets MICCAI 2017 Liver Tumor Segmentation (LiTS) 

Challenge and 3DIRCADb, lung segmentation in CT datasets, 

blood vessel segmentation and MRI brain tumor segmentation, 

Kvasir-SEG and CVC-ClinicDB datasets respectively. 

Combining RS technology with the DL networks 

outperformed all previous methods for semantic segmentation 

in various domains, including agriculture. Incredibly, road and 

building extraction from high-resolution aerial images 

achieved remarkable performance through deep architectures 

based on UNet architecture. Deep residual UNet, proposed by 

Zhang et al. [20], replaces the plain convolutional blocks into 

residual blocks. The road extraction networks are improved 

with the extraction of fine details of the roads by He et al. [21] 

applying the atrous spatial pyramid pool (ASPP) in the 

encoder-decoder structure. Pre-trained encoders are employed 

instead of plain convolutional layers, and dilated convolutions 

at the decoder side are integrated into the D-LinkNet model 

proposed by Zhou et al. [22], which are suitable for extracting 

narrow, complex roads from high-resolution satellite images. 

UNet has also been modified to automatically detect the center 

pivot irrigation systems [23] and land cover mapping [24] 

from satellite images. To the best of our knowledge, no study 

has been reported yet on detecting the water-stressed 

sugarcane crop using semantic segmentation. 

 

 

3. METHODOLOGY 

 

Encoder-decoder architecture is the best approach among 

various approaches such as convolutional networks with 

graphical models, multiscale and pyramid network-based 

models, R-CNN-based models, dilated convolution, and 

DeepLab family, attention-based models, generative models, 

and adversarial training [25] for semantic image segmentation. 

Based on this encoder-decoder approach, after UNet, various 

research studies such as SegNet [16] and FCN [14] showed 

notable performances. The encoder designed in the UNet 

comprises two convolutional layers followed by the max 

pooling layer, which was enhanced to have pre-trained models 

such as VGG, ResNet that contains convolutional layer, batch 

normalization, ReLU activation, and max pooling layer. The 

decoder structure mainly contributes to the network's 

performance in segmentation which assigns discernible 

features to pixel space. Features extracted at the encoder path 

must be reused at the decoder path to avoid the loss of low-

level details. Reusing low-level details and retaining high-

level semantic information are the critical points in the success 

of semantic segmentation.  

 

3.1 DenseResUNet 

 

This paper proposes a novel neural network architecture that 

reuses the features generated at the encoding path. The 

backbone of this architecture is the classical UNet; however, 

it differs from it in many ways. Firstly, the traditional 
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convolutional layers are replaced with the DenseRes block that 

utilizes the power of deep residual networks [26] and densely 

connected networks [27]. Secondly, the reduction in features 

maps is performed using a down transition block instead of 

max pooling in UNet and restructured the decoder path with 

DenseRes block and Up transition block. In addition, the 

proposed network grasps the benefit of the attention module to 

focus on the essential features of the complex input. The model 

gains benefits of features reusability due to concatenating path 

and dense connection because of the dense block, increase in 

training speed owing to residual networks, and gradient 

degradation smooth information propagation in the network. 

The proposed DenseResUNet architecture consists of an 

encoder path, a bridge, and a decoder path with skip 

connections, as depicted in Figure 1. The encoding represents 

the input images in extracted features form, and decoding 

performs a synthesis task to generate pixel-wise segmentation. 

The encoder path comprises four DenseRes blocks. Each of 

the DenseRes blocks includes five residual blocks that are 

densely connected, as shown in Figure 2. Each of the residual 

blocks contains three consecutive convolutional blocks. Every 

convolutional block applies a full pre-activation residual 

connection. A down transition block follows each DenseRes 

block to reduce the size of feature maps to half. The middle 

part of the network joins the encoder and decoder path with a 

single DenseRes block. The decoder path includes four 

DenseRes blocks with the same architecture as in the encoder's 

block. Each DenseRes block is connected to the attention 

module to focus on the vital area of the image. An up transition 

block follows the attention module to regain the input image 

resolution.  

 

 

 
 

Figure 1. The proposed DenseResUNet architecture 

 

 
(a)                                             (b) 

 

Figure 2. a) DenseRes block b) Layers in the residual block 

 

A final 1x1 convolution layer with sigmoid activation is 

used at the end of the decoder path. This layer assigns the class 

to the pixels that generated a segmentation map. All the 

building blocks of the model are briefly explained in the 

following sections.  

3.2 Residual block  

 

The most common vanishing gradient problem in a deeper 

network was addressed by He et al. [26] with ease in the 

network's training with a deep residual neural network 

(ResNet). The ResNet comprises residual blocks with the 

fundamental idea of an identity mapping that allows 

information flow without compromising the performance of a 

deeper network. It also lessens the network parameters. 

Residual block adds up its output with the identity mapping is 

represented below: 

 

𝑌𝑙 = 𝐻𝑙(𝑌𝑙−1) + 𝑌𝑙−1 (1) 

 

where, 𝐻𝑙 (. ) is a residual function made up of convolutional 

layers, ReLU activation function, and batch normalization. 

The input of this lth residual block is 𝑌𝑙−1 , and the output 

generated by this block is 𝑌𝑙 . It has successfully experimented 

with semantic segmentation [20] and is the reason it is 

employed in the proposed architecture. The residual block uses 

two layers for the ResNet18, ResNet30 and three layers for 

ResNet50, ResNet101, and higher versions. The proposed 

architecture uses three layers in a residual block, as shown in 

1133



 

Figure 2(b). The reason behind choosing these residual layers 

is they do not increase the training error percentage and 

helping in easy network training. Residual units extract 

features with expedite training of the network. These units are 

embedded within the dense block of the proposed architecture 

Figure 2(a), which strengthens the features propagation across 

the network. Residual layers make training faster and dense 

block controls the vanishing gradient problem with fewer 

parameters. 

 

3.3 DenseRes block 

 

After ResNet's skip connection's immense success, another 

CNN architecture, DenseNet, densely connected network 

witnessed great success in computer vision tasks, primarily 

image classification tasks. The core of the DenseNet network 

is that each layer's feature maps are concatenated to every 

other layer in the network. These concatenations lead to easy 

network training and provide accurate results. These all feature 

maps are fed to a composite function, as shown below: 

 

𝑌𝑙 = 𝐻𝑙([𝑌𝑙−1, 𝑌𝑙−2, …, 𝑌0]) (2) 

 

where, 𝐻𝑙 (. )  is a composite function made up of batch 

normalization, ReLU, and a 3x3 convolution. The output of 

the lth layer is which concatenates all precious layers’ feature 
[𝑌𝑙−1, 𝑌𝑙−2, … , 𝑌0]. A classical dense block contains five layers 

connected through the composite function. The idea of 

concatenating the feature maps generated of all previous layers 

to the next layer is borrowed in the proposed architecture. 

However, the composite function differs from the classical 

dense block by the replacement with a residual block (Figure 

2a). The layers of DenseRes block and residual block are given 

in the following algorithm: 

 

Algorithm 1: Algorithmic steps for DenseResBlock 

Input:  x-keras model network  

Output:  x- keras model network  

1:  List ‹- [] 

2:  for i = 0 to NumberOfLayers do  

3:        input ‹- x 

4:        for i = 0 to 2 do 

5:               InputToInnerBlock ‹- x 

6:               x ‹- BatchNormalization(x) 

7:               x ‹- ReLUActivation(x) 

8:               x ‹- 2D convoluton operation with 1x1 kernel(x) 

9:               x ‹- BatchNormalization(x) 

10:             x ‹- ReLUActivat ion{x) 

11:             x ‹- 2D convoluton operation with 3x3 kernel(x)  

12:             if d then dropout 

13:                     x ‹- dropout(x) 

14:             end if 

15:             x ‹- BatchNormalization(x) 

16:             x ‹- ReLUActivation(x) 

17:             res ‹- 2D convoluton operation with 1x1 kerne1(x) 

18:            IdentityMapping ‹- 2D convolution operation with 

1x1kernel (InputToInnerBlock)  

19:   IdentityMapping ‹- BatchNormalization(Identit 

yMapping) 

20:        IdentityMapping ‹- ReLUActivation 

(IdentityMapping) 

21:               x ‹- Add(res, IdentityMapping) 

22:      end for 

23: IdentityMappingOuter ‹- 2D convolution operation with 

1x1 kernel(input) 

24:IdentityMappingOuter ‹- BatchNormalization 

(IdentityMapping) 

25:IdentityMappingOuter ‹- ReLUActivation 

(IdentityMapping) 

26: x ‹- Add (x, IdentityMappingOuter) 

27: ListAppend(x) 

28: x ‹- Concatenate (List) 

29: Update number of filters with growth rate  

30: end for 

31: return x 

 

3.4 Attention mechanism  

 

Attention mechanism (a.k.a. attention module) is an input 

processing unit that makes the network concentrate on specific 

network features at a time. That is, it works on the subset of 

the dataset. An attention mechanism requires continuous 

backpropagation to be effective in the network. The first 

attention mechanism was proposed by Bahdanau et al. [28]. It 

was an advancement in an encoder-decoder recurrent neural 

network / long short term memory (RNN/LSTMs) based 

neural machine translation system. Later, it was successfully 

applied in computer vision tasks [29]. Due to this property of 

the convolution block attention module and its remarkable 

performance in semantic segmentation, the attention module 

is integrated into the proposed architecture at the decoder path 

to focus on essential input aspects.  

 

 
(a)                                                   (b) 

 

Figure 3. a) Down transition block b) Up transition block 

 

3.5 Down and up transitions  

 

The up transition and down transition blocks are described 

in Figure 3. The down sampling block consists of a batch 

normalization layer, ReLU activation, 1x1 convolution layer 

to retain the feature maps generated at the encoding end. Many 

complex connections among the layers refer to the noise in a 

multi-layer network if training data is limited. Referring to the 

noise leads to overfitting, wherein the model learns the details 

and noise to a great extent, adversely affecting the model's 

performance. The widely used successful technique to 

overcome the overfitting problem is called a dropout. Dropout 

is applied in the down transition block after the convolution in 

the proposed architecture as against the original UNet 

architecture. The dropout rate was set to a value of 0.25. Then, 

average pooling is used to bring down the size of the feature 
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maps at the time of encoding. Up transition block uses 

upsampling to bring up the size of the feature map during 

decoding, followed by a transpose convolution.  

4. EXPERIMENTS

4.1 Dataset 

A dataset is created containing water-stressed sugarcane 

crops from a region of four talukas (Gokak, Raibag, 

Jamkhandi, and Mudhol) in the Karnataka state of India with 

coordinates 16.3898° N and 75.0371° E. The region is as 

shown in Figure 4. 

Figure 4. The study area 

The region is dry with a temperature range between 16.20° 

C to 39.00° C. Among main crops such as banana, turmeric, 

and maize, sugarcane is cultivated in large quantities. A cloud-

free Sentinel-2 satellite image captured on 27th May 2019 was 

downloaded from ESA’s Copernicus website 

(www.scihub.Copernicus.eu). The downloaded image was 

pre-processed and analyzed for surface reflectance using the 

QGIS software program (Ver. 3.4.1). Red, near-infrared (NIR), 

and short-wave infrared (SWIR) bands of the imagery are 

utilized in this study (refer Table 1) as in near-infrared (~700 

to 1300 nm) band leaves absorb less radiation and have high 

reflectance and transmission values, primarily influenced by 

leaf structural characteristics and biomass [30, 31]. 

Additionally, canopy reflectance patterns are influenced by the 

structure of the plant canopy and the area of the leaves [32, 33]. 

Water absorbs the most light in the short-wave infrared region 

(SWIR) between 1300 and 2500 nm, followed by other 

organic components present in leaves. The data of sugarcane 

field boundaries and other information such as crop growth 

stage, crop variety, date of planting, vigor, and GPS location 

(latitude, longitude) are collected from multiple locations. The 

water-stressed crop fields are marked manually with a 

handheld GPS device (Montana 680) through a field campaign 

conducted in May 2019. These shape files are rasterized and 

used to generate the corresponding ground truth images. The 

ground truth images are RGB channel images with labels of 

high-stress crops, medium stress crops, low-stress crops, and 

all other objects as background. The labeling is performed in 

LabelMe software. The dataset contains 400 surveyed 

polygons (shape files), and the rest of the labeling is prepared 

on this basis. The input Sentinel-2 image is split into patches 

of 512 x 512 pixels. These image patches are utilized for 

training the proposed model to segment water-stressed 

sugarcane plots. 60% of images are used for training the 

network from total images, 25% are used for validation, and 

15% are used for testing.  

Table 1. Details of Sentinel-2 multispectral bands 

Band 

number 

Band 

Name 

Spatial 

Resolution 

Central 

wavelength (nm) 

B4 
Visible 

Red 
10 665 

B8 NIR 10 842 

B11 SWIR 20 1610 

4.2 Implementation details 

4.2.1 Hyperparameters optimization 

It requires training multiple models with the optimization 

algorithm, learning rate, training batch size, and epochs to 

select an optimal model. The achieved model in this study is 

implemented in the Tensorflow Keras deep learning 

framework. The kernels were initialized to HeUniform [34]. 

Adam was selected as an optimization algorithm after many 

experiments at the time of training. Among various algorithms 

such as SGD, RMSProp, and Adagrad, Adam proved superior 

because of faster convergence and accurate results. The beta 

parameters are kept same as β1 = 0.9, β2 = 0.999 and ԑ = 1x 

10-8. The learning rate was initially set to le-3 with 
exponential decay of 0.996 after every epoch. The learning 
rate is scheduled during the training of the model. Training 
images are resized to 512x512. The model was converged in 
50 epochs. The hardware and software configuration used to 
train the model includes Ubuntu operating system with an 
NVIDIA P100 GPU having 16GB memory, TensorFlow 
version 2.4.1 with Keras 2.4.3.

4.2.2 Data augmentation 

Convolutional networks are data greedy; however, remote 

sensing lacks the labeled data. Generating sugarcane water-

stressed samples is a very tedious, labor, and cost-intensive 

process. The generated dataset in the present study contains 

378 images. Data augmentation technique was adopted to 

generate more training data from limited samples. It enhances 

the training dataset, induces implicit regularization [35], and 

tackles the unbalanced class problem. The training dataset is 

increased through data augmentation by applying six 

operations: horizontal flip, vertical flip, and rotation by 200, 

shifting horizontally with value 0.05, shifting vertically with 

value 0.05, and shear with range 0.05.  

4.2.3 Evaluation metrics 

The model's performance is quantitatively tested using five 

performance metrics: mean intersection over union (IoU), 

accuracy, recall, precision, and F1 score. The IoU is the 

proportion of the cover zone between reality and predicted 

area of interest on the ground to the territory encompassed by 

them, and mean IoU (mIoU) is computed by taking a mean of 

the IoU of each class. Accuracy gives predicted values that 

matches with actual values in percentage. Recall is given by 

the ratio of number of true positives with the number of true 

positives plus false negative. Precision is defined by the ratio 

of number of true positives with the number of true positives 

plus number of false positives. F1 score is defined as the 

harmonic mean of recall and precision. 
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5. RESULTS 

 

DenseResUNet model is trained on the generated dataset of 

water-stressed sugarcane fields with three classes: high-stress, 

medium stress, and low-stress sugarcane crops. All other 

objects present in the surrounding area are considered as 

background. The proposed model achieved mIoU of 61.91% 

dataset. The proposed architecture is compared against three 

models UNet, ResUNet, and DenseUNet. The water-stressed 

sugarcane fields are segmented by UNet architecture with 

mIoU of 32.20%. The ResUNet gave mIoU 58.34% and 

DenseUNet achieved 53.15% mIoU. The other quantitative 

results in terms of accuracy, recall, precision, and F1 score on 

the testing dataset are presented in Table 2.  

 

 

Table 2. Quantitative results of semantic segmentation 

models for water-stressed sugarcane crops dataset 

 
Model mIoU Accuracy Recall Precision F1 

Unet 32.20 55.03 45.69 63.83 53.01 

ResUNet 58.34 77.61 75.07 82.04 78.37 

DenseUNet 53.15 72.65 69.78 76.93 73.15 

DenseResUNet 61.91 80.53 77.98 84.53 81.11 

 

Table 3. Comparison of time required to train the four 

models on the water-stressed sugarcane crops dataset 

 
Model Trainng Time (hrs) 

Unet 2.10 

ResUNet 2.14 

DenseUNet 2.25 

Proposed Model 2.50 

 
(a)                                                                                b) 

 

Figure 5. a) Training meanIoU, accuracy, recall, precision, and F1 score and b) validation meanIoU, accuracy, recall, precision 

and F1 score 

1136



 

 
     (a)                        b)                           c)                          d)                             e)                         f) 

 

Figure 6. Example water-stressed sugarcane crops segmentation results through different models. a) The imagery of land b) 

Ground Truth image corresponding to the land imagery c) UNet model results d) ResUNet model results e) DenseUNet model 

results f) The proposed DenseResUNet model results. (Red color indicates high-stressed crops, green color shows medium-

stressed crops, and yellow indicates low-stressed crops.) 

 

The epoch-wise results of the four models are given in 

Figure 5. Time taken to train all the models is compared in 

Table 3. The DenseResUNet model took more time than all 

other models because of the many layers in it. The qualitative 

results are presented in Figure 6, wherein segmented images 

generated by all four models are compared. As observed from 

the results, the larger size plots with sugarcane crops are 

segmented with more accuracy than the plots with tiny size. 

Most of the high-stressed sugarcane crops and low-stressed 

crops are correctly classified. In medium stressed plots, 

models are confused and misclassified either into high-stress 

or into low-stress plots. For example, in the last row of Figure 

6 (highlighted in a red circle and blue circle), various small 

plots are very close. In this case, UNet produced mixed results. 

ResUNet misclassified few low-stressed plots, whereas 

DenseUNet misclassified all high-stressed plots. 

Comparatively, DenseResUNet produced good results. 

Another example is shown in the first row of Figure 6 where 

DenseResUNet segmented low-stressed plots correctly 

achieved 80.53% accuracy on these water-stressed sugarcane 

crops. The results show the capability of semantic 

segmentation in crop water stress detection through limited 

remote sensing data. As we would increase the training 

samples, the results would be enhanced. 

 

 

6. CONCLUSIONS 

 

This paper presents a novel architecture, DenseResUNet, to 

segment water-stressed sugarcane crops from single date 

Sentinel-2 satellite imagery. The proposed architecture takes 

the benefits of dense connections, residual blocks, and an 

attention module. The dense connection aids accurate 

computation and skip connections between contracting and 

expansive paths, helping recover spatial information loss. In 

addition, features are reused in the architecture. The present 

study results clearly show the effectiveness of an attention 

module in an expansive path with dense blocks. The 

adequately designed architecture can segment the sugarcane 

water-stressed plots with 61.91% mIoU and 80.53% accuracy. 

The architecture is compared with UNet, ResUNet, and 

DenseUNet models. The results of this study reveal its 

suitability in agriculture applications from remote sensing data. 
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