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Accurate and automatic detections of brain tumors are vital. The aim of this study is to detect 

brain tumors in Magnetic Resonance (MR) images and to classify these tumors with a high 

degree of accuracy. After removing skull, the suspicious regions including tumors in the MR 

images were detected by using K-means clustering, K-means clustering in Lab color space, 

and the Chan-Vese without edges algorithm. At this stage, a performance evaluation of these 

three different methods was investigated, and it was seen that the best result was obtained 

in the Chan-Vese active contour without edges algorithm. For the classification stage, 

various features such as shape-based features, gray level co-occurrence matrix features, 

histogram of oriented gradients features, local binary pattern features, and statistical features 

were extracted from the detected suspicious regions. Finally, the suspicious regions were 

classified by k-nearest neighbor (k-NN), Fisher’s linear discriminant analysis (FLDA), 

random forest, decision tree, support vector machines (SVM), logistic linear classifier 

(LLC), and Naive Bayes classification methods. As a result of this study, it was determined 

that the FLDA classifier provided the best results with 93.01% accuracy, 93.46% sensitivity, 

and 96.50% specificity rates in classification for benign tumors, malignant tumors, and 

healthy (without tumor) cases.  
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1. INTRODUCTION

Tumors consist of brain cells, glands, and nerves around the 

cerebral cortex. A brain tumor occurs due to the abnormal 

growth of cells. Brain tumors can directly destroy brain cells, 

and they can damage the cells by applying pressure to the skull 

[1]. A benign tumor grows slowly. Even if it is not cancerous, 

it can cause serious problems by putting pressure on some 

parts of the brain when it reaches a certain size. In rare cases, 

it can turn into a malignant tumor over time. A malignant 

tumor grows very quickly; it extends into the healthy 

structures around it and seriously damages these structures. It 

consists of cells that grow uncontrollably and is often referred 

to as cancer [2]. Brain tumor is one of the brain diseases that 

cause death the most frequently; therefore, early diagnosis of 

brain tumor is very important. The most commonly used 

imaging technique in the detection of brain tumors is magnetic 

resonance imaging (MRI). MRI scans the organs and soft 

tissues in the body in detail using a strong magnetic field and 

radio waves, and it is more useful because it does not use 

radiation [3].  

Today, the detection of tumors is done by radiologists and 

doctors via MRI. However, this method is not always fast and 

accurate. For this reason, Computer Aided Detection (CAD) 

systems have been developed to minimize the errors caused by 

imaging techniques and radiologists [4]. 

The similarity of the density of skull and brain tissue in MRI 

images makes difficult tumor detection; therefore, the skull 

needs to be removed from MRI images, and there are many 

studies on this subject [5, 6]. Arakeri and Reddy stated that 

removing the skull from the MRI image is an important step 

in segmentation, and they converted the original T2-weighted 

MRI image to a binary image using a threshold value 

calculated automatically using Otsu’s method. The resulting 

image consists of connected components. Then, they searched 

for the largest connected component corresponding to the 

brain and eliminated the skull region by holding only the 

pixels in the largest connected component [7]. Anitha and 

Murugavalli extracted the brain region from the skull using the 

skull stripping technique after completing the de-noising 

process for MRI images [8]. They first converted the original 

MR images to a binary image using a low threshold value via 

Otsu’s method. Finally, the authors applied mathematical 

morphology operations including erosion, dilation, and region 

filling to the resultant image. 

Suspicious region detection is an important segmentation 

process for an accurate classification stage, and various 

methods are used for detection. Sehgal et al. [1] proposed a 

fully automatic method to detect brain tumors in MRI images. 

They segmented the images using the fuzzy C-means 

technique. For tumor extraction, the authors used area and 

circularity as criteria. Finally, they verified the results by 

comparing with the manually segmented ground truth. Amin 

et al. presented an automated system for detecting brain tumor 

at lesion and image levels in MRI [3]. At the image level, they 

used the Gaussian filter for image smoothing and applied the 

optimal threshold value and various morphological operations. 

At the lesion level, they converted the input image to Lab color 

space. Then, the authors applied the K-means clustering 

method and some morphological operations. Mandwe and 
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Anjum proposed a computer aided system for brain MRI 

image segmentation. In this system, they used clustering 

techniques such as K-means clustering and fuzzy C-means 

clustering [9]. Zawish et al. suggested an advanced image 

segmentation technique based on variation methods to 

accurately segment tumors from the brain MRI. This technique 

is based on the Chan-Vese active contour without edges 

algorithm. They tested and verified the effectiveness of the 

algorithm on different brain MRI images [10]. 

The choice of classifiers is very important in classification 

problems, and here are many studies on classification in the 

literature. Sachdeva et al. used principal component analysis 

(PCA) to reduce the feature space dimension and artificial 

neural network (ANN) for classification [11]. They first 

classified feature vectors using ANN and subsequently 

classified them using the PCA-ANN approach. It was seen that 

the classification accuracy rate increased from 77 to 91%. 

Praveen and Agrawal presented hybrid approach for brain 

tumor classification. They classified normal and abnormal 

MRI images using the least squares SVM classifier with a 

classification accuracy of 96.63% [12]. Wasule and Sonar 

classified extracted GLCM features using the SVM and k-NN 

methods. The accuracy rate achieved was 96% and 86% for 

SVM and KNN, respectively, for the clinical database [13]. 

Asodekar and Gore extracted shape-based features for the 

classification of benign and malignant tumors. Then, they 

classified them using random forest with an accuracy of 

81.90% and SVM with an accuracy of 78.57% [14]. 

In this study, an automatic system that detects brain tumors 

in MRI images and classifies these tumors was presented. This 

system consisted of four phases, skull removal, suspicious 

region detection, feature extraction and classification. The 

skull was removed by utilizing binarization method and 

morphological operations. Different algorithms such as K-

means clustering, K-means clustering in Lab color space and 

Chan-Vese active contour without edges were applied to 

detect suspicious regions, and it was seen that the Chan-Vese 

active contour without edges algorithm gives the best 

performance for the detection of suspicious regions. Then 

intensity, texture, and shape-based features were extracted 

from suspicious regions detected in the MRI images. Seven 

different classifiers were applied for classification. Finally, the 

suspicious regions were classified into three classes, benign 

tumor, malignant tumor, and normal. 
 
 

2. SKULL REMOVAL 
 

Removing of the skull is an important step in the detection 

of a brain tumor in MR images [6]. The similarity in density 

of the skull and brain tissue in the MR images of the brain 

makes it difficult to detect suspicious regions. For this reason, 

the skull is removed to accurately determine the tumor region. 

In this study, the binarization method, different morphological 

operations and image masking were used to remove the skull. 

Image binarization is a method used as a preprocessor that 

converts grayscale image to a binary image (black or white) at 

a certain threshold value [15]. 
 

 

3. SUSPICIOUS REGION DETECTION IN MR 

IMAGES 
 

3.1 K-means clustering 
 

Clustering methods group objects according to some 

qualities and characteristics. K-means clustering is one of the 

most commonly used clustering methods to segment an image. 

K-means clustering aims to segment images into K clusters 

by minimizing error of square [16]. In the K-means algorithm, 

the number of clusters K is initially defined. Then, K centers 

are selected randomly for each cluster. The distance between 

each data point and each cluster center is calculated by using 

Euclidean measurement method. The distances of a single data 

point to each cluster center are compared with each other, and 

this data point is assigned to a cluster whose distance is 

minimum among all clusters. The center of each cluster is then 

recomputed. The distances are recalculated and compared with 

each other again. The process is continued until the data point 

is not assigned to the cluster [17]. The new centers of the 

clusters are determined by calculating the averages. 

In the K-means clustering algorithm, the distance between 

the data and the cluster centers is calculated as shown in Eq. 

(1). The error sum of squares (SSE) is the Euclidean distance 

of the data points to 𝑥  center. 𝑐𝑖  denotes ith center, and K 

denotes the number of cluster centers. 

 

𝑆𝑆𝐸 = ∑ ∑ 𝑑𝑖𝑠𝑡2(𝑐𝑖 , 𝑥)

𝑥∈𝑐𝑖

𝐾

𝑖=1

 (1) 

 

3.2 K-means clustering in Lab color space 

 

Color space is identified as a set of possible colors in a 

particular color organization. In general, three basic colors 

(red, green, blue) are used. A variety of colors is provided 

when these basic colors are changed at different rates [18]. 

Lab color space is one of the color spaces that have separate 

brightness and color channels. Components of the Lab color 

space are denoted as L (lightness), a (red/green axis) and b 

(yellow/blue axis). This color space has three coordinates. The 

L value represents the lightness or brightness of the color in 

the image, and the value of L ranges from 0 (black) to 100 

(white). As L value increases, the colors become brighter. a 

and b values range from -128 to +127. a represents the amount 

of green (−) or red (+) components in the image. b represents 

the amount of blue (−) or yellow (+) components in the image 

[19]. 

In K-mean clustering in Lab color space, input image is 

converted to the Lab color space. Input RGB-colored image is 

first converted to XYZ color space; then, XYZ color space is 

converted to Lab color space with Eq. (2) and Eq. (3). In Eq. 

(3), 𝑓 is a function which defines L, a and b components. In 

this paper, the Illuminant D65 Standard is used and 𝑋𝑛, 𝑌𝑛, 𝑍𝑛 

are selected as 95.0489, 100, 108.8840, respectively. 

 

𝐿 = 116 𝑓 (
𝑌

𝑌𝑛

) − 16 

𝑎 = 500 [𝑓 (
𝑋

𝑋𝑛

) − 𝑓 (
𝑌

𝑌𝑛

)] 

𝑏 = 200 [𝑓 (
𝑌

𝑌𝑛

) − 𝑓 (
𝑍

𝑍𝑛

)] 

(2) 

 

𝑡 =
𝑋

𝑋𝑛

,
𝑌

𝑌𝑛

𝑜𝑟 
𝑍

𝑍𝑛

, 𝛿 =
6

29
  

𝑓(𝑡) = {
√𝑡
3

 𝑖𝑓 𝑡 > 𝛿3 

𝑡

3𝛿2
+

4

29
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3) 
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Then, the image is segmented by applying the K-means 

clustering algorithm. Lab color space is preferred in many 

image analyses because it is a color space with a perceptually 

uniform distribution [3, 18]. 

 

3.3 Chan-Vese active contour model without edges 

 

The Chan-Vese active contour model without edges is a 

region-based segmentation method. This model uses curve 

(contour) evolution and level set method. It does not depend 

on the gradient of the image to end the contour evolution on 

the boundaries of the region of interest [20]. The Chan-Vese 

algorithm is based on the Mumford-Shah model that uses 

energy function for image segmentation [21]. 

In the Chan-Vese active contour algorithm, the energy 

function formularized for the intensity of the 𝑢0 image in the 

point (𝑥, 𝑦) separated by C contour into two regions is given 

in Eq. (4) [20].  

 

𝐹(𝑐1, 𝑐2, 𝐶)
= 𝜇. 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶)

+ 𝜈. 𝐴𝑟𝑒𝑎(𝑖𝑛𝑠𝑖𝑑𝑒(𝐶))+𝜆1 ∫ |𝑢0(𝑥, 𝑦)

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

− 𝑐1|2𝑑𝑥𝑑𝑦 +𝜆2 ∫ |𝑢0(𝑥, 𝑦) − 𝑐2|2𝑑𝑥𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

 

(4) 

 

In the equation, 𝜇 ≥ 0, 𝜈 ≥ 0, 𝜆1, 𝜆2 > 0  are fixed 

parameters. Chan and Vese fix 𝜆1 = 𝜆2 = 1  and 𝜈 = 0  in 

their algorithms. Thus, the energy function is minimized as 

shown in Eq. (5). 𝑐1 is the average intensity value of the region 

inside the C contour, and 𝑐2 is the average intensity value of 

the region outside the C contour. 𝐹1(𝐶) and 𝐹2(𝐶) are defined 

as force terms. 

 

𝐹𝑚𝑖𝑛(𝑐1, 𝑐2, 𝐶) = 𝜇. 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶)     

+ ∫ |𝑢0(𝑥, 𝑦) − 𝑐1|2𝑑𝑥𝑑𝑦

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

+ ∫ |𝑢0(𝑥, 𝑦) − 𝑐2|2𝑑𝑥𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

= 𝜇. 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶) + 𝐹1(𝐶) + 𝐹2(𝐶) 

(5) 

 

In the Chan-Vese model without edges, 𝜙(𝑥, 𝑦) is the level 

set function that shows contour values. The mathematical 

notation of the C contour is shown in Eq. (6), and the change 

of this contour over time according to the 𝜙(𝑥, 𝑦) function is 

shown in Eq. (7). 

 

𝐶 = {(𝑥, 𝑦): 𝜙(𝑥, 𝑦) = 0}, ∀(𝑥, 𝑦)𝜖𝑢0 (6) 

 
𝜕𝐶

𝜕𝑡
=

𝜕𝜙(𝑥, 𝑦)

𝜕𝑡
 (7) 

 

In the 𝐹(𝑐1, 𝑐2, 𝐶) energy function, the 𝐹1(𝐶) force term 

shrinks the contour while the 𝐹2(𝐶) force term expands the 

contour. When the contour reaches the boundary of the regions 

of interest, these two forces are balanced, thus allowing the 

contour of the region to be found. The operating logic of the 

Chan-Vese algorithm is illustrated in Figure 1. In the figure, 

black places indicating the region of interest are denoted with 

a value of -1 and gray places indicating places outside the 

region of interest are denoted with a value of +1. A white curve 

represents the contour. In case 1, the contour covers the whole 

region of interest (-1) and some gray places (+1). Thus, 𝑐1 ≅
0 and 𝑐2 = 1. According to the 𝐹(𝑐1, 𝑐2, 𝐶) energy function, 

𝐹1 > 0  and 𝐹2 ≈ 0 are obtained. Therefore, the algorithm 

shrinks the contour. Similar operations occur in other cases. 

Finally, when the contour reaches the boundary of the region, 

as in case 4, 𝐹1 ≈ 0 and 𝐹2 ≈ 0, the forces are balanced and 

contour of the region is found. 

 

 
 

Figure 1. The operating logic of the Chan-Vese algorithm 

[20] 

 

 

4. FEATURE EXTRACTION  

 

4.1 Shape-based features 

 

Brain tumors can vary greatly in terms of size, the diversity 

of their borders, and regularity or irregularity [22]. Shape-

based features have a distinctive property in the analysis of 

these brain tumors. The largest interconnected object is found 

in a detected suspicious region. For each the largest 

interconnected object in a binary image, eleven different 

shape-based features are extracted. These features are 

described below. 

The perimeter is the total number of pixels on the boundary 

of the object. The area is the total number of pixels in the 

object. The convex area is the total number of pixels in the 

smallest convex containing the object. The solidity is 

computed by the ratio of area to convex area. The fullness ratio 

is found by the ratio of the total number of pixels (area) in the 

object to the total number of pixels in the smallest rectangle 

containing the object. The major axis length is the number of 

pixels in the longest diameter of the ellipse containing the 

object. The minor axis length is the number of pixels in the 

shortest diameter of the ellipse containing the object. 

Eccentricity is found by the ratio of the distance between the 

focal points of the ellipse and the major axis length. 

Orientation is the angle between the major axis of the ellipse 

and x axis. The diameter (D) is computed by the diameter of a 

circle that has an area equal to the area of the object. It is found 

as in Eq. (8). 
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𝐷 = √
4 ∗ 𝐴𝑟𝑒𝑎

𝛱
 (8) 

 

Roundness (Y) represents the degree of an object's similarity 

to a circular shape. It is found as in Eq. (9). r is the ratio of the 

major axis length to the minor axis length [23]. 

 

𝑌 =
𝐴𝑟𝑒𝑎

𝛱𝑟2
 (9) 

 

4.2 Gray level co-occurrence matrix (GLCM) features 

 

Second order statistical features extracted by using GLCM 

are defined as texture features [24]. GLCM indicates the 

spatial relationship between pixels with different gray levels.  

The GLCM matrix is based on the function 𝑃(𝑖, 𝑗|𝑑, 𝜃) 

which expresses the probability of gray levels at random 

distances and in whole image orientations. It is calculated by 

finding out how different a pixel with a specific intensity i is 

in relation to another pixel j in a specific distance d and 

orientation θ. Each element (i, j) in the GLCM matrix is the 

total number of times of occurrence of i and j pixel values 

according to one another in the specified relationship [25]. 

In the study, 22 different texture features suggested from the 

GLCM matrices calculated are extracted [24, 26-28]. 

Equations used for feature extraction are given in Table 1. 

𝑃(𝑖, 𝑗)  is the gray level co-occurrence matrix. 𝜇𝑥  and 𝜇𝑦 

represent the average of the rows and columns of the GLCM 

respectively, and 𝜎𝑥 and 𝜎𝑦 represent the standard deviation of 

the rows and columns of the GLCM, respectively. The texture 

features and their mathematical representations are given in 

Table 2. 

 

Table 1. Required equations 

 

𝑃(𝑖, 𝑗): 𝐺𝐿𝐶𝑀 = [

𝑃(1,1) ⋯ 𝑃(1, 𝑁𝑔)

⋮ ⋱ ⋮
𝑃(𝑁𝑔, 1) ⋯ 𝑃(𝑁𝑔, 𝑁𝑔)

] 

𝑃𝑥(𝑖) = ∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

, 𝑃𝑦(𝑖) = ∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑖=1

 

𝑃𝑥+𝑦(𝑘) = ∑ ∑ 𝑃𝑖+𝑗=𝑘(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 , 𝑘 = 2,3, … ,2𝑁𝑔 

 

𝑃𝑥−𝑦(𝑘) = ∑ ∑ 𝑃|𝑖−𝑗|=𝑘(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 , 𝑘 = 0,1, … , 𝑁𝑔 − 1 

𝜇𝑥 = ∑ ∑ 𝑖. 𝑃(𝑖, 𝑗),
𝑗𝑖

 𝜇𝑦 = ∑ ∑ 𝑗 .  𝑃(𝑖, 𝑗)
𝑗𝑖

 

𝜎𝑥 = ∑ ∑ (𝑖 − 𝜇𝑥)2 .  𝑃(𝑖, 𝑗),
𝑗𝑖

 

𝜎𝑦 = ∑ ∑ (𝑗 − 𝜇𝑦)
2

 .  𝑃(𝑖, 𝑗)
𝑗𝑖

 

 

4.3 Histogram of oriented gradients (HOG) features 

 

HOG was first proposed for object detection purposes [29]. 

Then, it was also used for feature extraction purposes in 

computer vision and image processing [30]. 

Before the HOG features are extracted, an image is divided 

into cells. Then the edge direction and gradient values of the 

cells are evaluated. The main purpose here is to obtain local 

histograms of the image cells. The local histograms consist of 

gradient orientations. At first, the horizontal and vertical 

gradient values of the cells are calculated as in Eq. (10) and 

Eq. (11), respectively. Various edge detection masks are used 

in the x and y directions to calculate these values. 𝑓𝑥(𝑥, 𝑦) and 

𝑓𝑦(𝑥, 𝑦) refers to the brightness change on the horizontal axis 

and the vertical axis, respectively. 

 

𝑓𝑥(𝑥, 𝑦) =  𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦) (10) 

 

𝑓𝑦(𝑥, 𝑦) =  𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1) (11) 

 

Then, the magnitudes and orientations of the gradients are 

calculated by using the Eq. (12) and Eq. (13), respectively. 

𝑚(𝑥, 𝑦)  represents the gradient magnitude, and 𝜃(𝑥, 𝑦) 

represents the gradient orientation. In this paper, the HOG 

features are extracted within the cells with the size of 9 x 9, 

and 9 different orientations are applied to these cells. 

 

𝑚(𝑥, 𝑦) = √𝑓𝑥(𝑥, 𝑦)2 + 𝑓𝑦(𝑥, 𝑦)2 (12) 

  

𝜃(𝑥, 𝑦) = tan−1
𝑓𝑥(𝑥, 𝑦)

𝑓𝑦(𝑥, 𝑦)
 (13) 

 

4.4 Local binary pattern (LBP) features 

 

The basis of the LBP method is the texture analysis based 

on the texture units representing the local texture aspect in the 

image [31]. Texture features are obtained by using the LBP 

method. LBP creates a descriptor or texture model using the 

knowledge of the local texture neighbors surrounding each 

pixel [32]. 

The LBP operator generates a binary code by comparing 

each pixel with its neighbor pixels around it and creates a new 

pixel value. Each center pixel is compared with a certain 

number of neighbors in its neighborhood. If the neighbor pixel 

is greater than or equal to the center pixel, it has a value of 1, 

but if the neighbor pixel is smaller than the center pixel, it has 

a value of 0. The decimal value of the binary code created with 

these values becomes the new value of the center pixel. 

The mathematical representation of LBP is given in Eq. (14). 

In the equation, 𝑃 represents the number of pixels in a circular 

neighborhood, and 𝑅 represents the radius of the circle. 𝑠 is 

the unit step function. 𝑔𝑝 (𝑝 = 0, … , 𝑃 − 1) and 𝑔𝑐 denote the 

intensity value of the 𝑝th  neighbour pixel in the circular 

neighborhood and the intensity value of the center pixel, 

respectively. 

 

𝑥 = 𝑔𝑝 − 𝑔𝑐 

𝑠(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 

𝐿𝐵𝑃(𝑃, 𝑅) = ∑ 𝑠(𝑔𝑝

𝑃−1

𝑝=0

− 𝑔𝑐) ∙ 2𝑝 

(14) 

 

Table 2. GLCM texture features and their mathematical 

representations 

 
GLCM texture 

features 

Mathematical representations 

Autocorrelation 

[26] 
∑ ∑(𝑖. 𝑗)

𝑗𝑖

. 𝑃(𝑖, 𝑗) 
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Contrast [24, 26] 

∑ 𝑛2 {∑ ∑ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1
|𝑖−𝑗|=𝑛

𝑁𝑔

𝑖=1

}

𝑁𝑔−1

𝑛=0

 

Correlation 

(MATLAB Suite) 
∑ ∑ (𝑖 − 𝜇𝑥). (𝑗 − 𝜇𝑦). (𝑃(𝑖, 𝑗))𝑗𝑖

𝜎𝑥  . 𝜎𝑦
 

Correlation [24, 26] ∑ ∑ (𝑖 .  𝑗). 𝑃(𝑖, 𝑗) − 𝜇𝑥 . 𝜇𝑦𝑗𝑖

𝜎𝑥  . 𝜎𝑦
 

Cluster Prominence 

[26] ∑ ∑ {𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦}
4

.

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 𝑃(𝑖, 𝑗) 

Cluster Shade [26] 

∑ ∑ {𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦}
3

.

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 𝑃(𝑖, 𝑗) 

Dissimilarity [26] ∑ ∑|𝑖 − 𝑗|

𝑗𝑖

. 𝑃(𝑖, 𝑗) 

Energy [24, 26] ∑ ∑{𝑃(𝑖, 𝑗)}2

𝑗𝑖

 

Entropy [26] 

− ∑ ∑  𝑃(𝑖, 𝑗). log{𝑃(𝑖, 𝑗)}

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

Homogeneity 

(MATLAB Suite) 
∑ ∑

1

1 + |𝑖 − 𝑗|2
.

𝑗𝑖

𝑃(𝑖, 𝑗) 

Homogeneity [26] 
∑ ∑

1

1 + (𝑖 − 𝑗)2
.

𝑗𝑖

𝑃(𝑖, 𝑗) 

Maximum 

Probability [26] 
max

𝑖,𝑗
𝑃(𝑖, 𝑗) 

Variance [24] ∑ ∑(𝑖 − 𝜇)2.

𝑗𝑖

𝑃(𝑖, 𝑗) 

Sum Average [24] 

∑ 𝑖. 𝑃𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

Sum Variance [24] 

∑(𝑖 − 𝑆𝑢𝑚 𝐴𝑣𝑒𝑟𝑎𝑔𝑒)2. 𝑃𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

Sum Entropy [24] 

− ∑ 𝑃𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

. log{𝑃𝑥+𝑦(𝑖)} 

Difference 

Variance [24] 
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑃𝑥−𝑦  

Difference Entropy 

[24] − ∑ 𝑃𝑥−𝑦(𝑖)

2𝑁𝑔

𝑖=2

. log{𝑃𝑥−𝑦(𝑖)} 

Information 

Measure of 

Correlation1 [24] 

𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑚𝑎𝑥{𝐻𝑋; 𝐻𝑌}
 

𝐻𝑋𝑌 = − ∑ ∑ 𝑃(𝑖, 𝑗). log(𝑃(𝑖, 𝑗))

𝑗𝑖

 

𝐻𝑋𝑌1

= − ∑ ∑ 𝑃(𝑖, 𝑗). log (𝑝𝑥(𝑖). 𝑝𝑦(𝑗))

𝑗𝑖

 

𝐻𝑋 and 𝐻𝑌 are entropies of 𝑝𝑥 and 𝑝𝑦 

Information 

Measure of 

Correlation2 [24] 

(1 − exp [−2. (𝐻𝑋𝑌2 − 𝐻𝑋𝑌)])1 2⁄  

𝐻𝑋𝑌2

= − ∑ ∑ 𝑃𝑥(𝑖). 𝑃𝑦(𝑗). log{𝑃𝑥(𝑖). 𝑃𝑦(𝑗)}

𝑗𝑖

 

 

Inverse Difference 

Normalized [27] ∑ ∑
1

1 + |𝑖 − 𝑗|2/𝑁𝑔
2 .

𝑁𝑔

𝑗

𝑁𝑔

𝑖

𝑃(𝑖, 𝑗) 

Inverse Difference 

Moment 

Normalized [27] 
∑ ∑

1

1 + (𝑖 − 𝑗)2/𝑁𝑔
2 .

𝑁𝑔

𝑗

𝑁𝑔

𝑖

𝑃(𝑖, 𝑗) 

 

 

4.5 Statistical features 

 

Statistical features are intensity-based features [33]. 

Statistical features used for an accurate classification are 

preferred in many studies. In this study, eight different 

statistical features were extracted from the suspicious regions 

detected in MR images. These features and their mathematical 

representations are given in Table 3. 

 

Table 3. Statistical features and their mathematical 

representations 

 
Statistical features Mathematical representations 

Energy 

∑ 𝑥𝑖
2

𝑁

𝑖=1

 

Mean 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

Variance 1

𝑁 − 1
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 

Skewness 𝜎 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √𝜇 

1
𝑁

∑ (𝑥𝑖 − 𝜇)3𝑁
𝑖=1

𝜎3  

Kurtosis 1
𝑁

∑ (𝑥𝑖 − 𝜇)4𝑁
𝑖=1

𝜎4  

Entropy 

∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔2

𝑁

𝑖=1

𝑝(𝑥𝑖) 

Mean Energy 

𝜇𝐸𝑛𝑒𝑟𝑔𝑦 =
1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 

Energy Variance 1

𝑁 − 1
∑(𝑥𝑖

2 − 𝜇𝐸𝑛𝑒𝑟𝑔𝑦)2

𝑁

𝑖=1

 

 

 

5. EXPERIMENTAL STUDY 

 

5.1 Database 

 

The Harvard database was used in the study [34]; it consists 

of 141 brain MR images, 41 of which are normal (healthy) and 

100 of which contain tumors. Of the 100 images containing 

tumors, 59 of these are benign and 41 of these are malign. All 

the brain MR images used in the study have a 256 × 256-pixel 

size and an 8 bits depth. 

 

5.2 Skull removal in MR images 

 

Skull removal in MR images is shown in Figure 2. Firstly, 

a random original input image in RGB format is converted to 

a grayscale image shown in Figure 2 a). Then, the binarization 

method is used [15]. The grayscale image is converted to a 

binary image using a selected the threshold value 55. The 

binary image is shown in Figure 2 b). The largest 

interconnected component in the binary image is obtained as 

seen in Figure 2 c). The skull and brain are connected to each 

other with small components. Opening, which is a 

morphological operation is applied to disconnect [35]. The 

resulting image is given in Figure 2 d). After the opening 

operation, the largest interconnected component is achieved 

again as shown in Figure 2 e). Thus, only the brain region is 

found. Then, the hole filling operation is applied to obtained 

the image, and the holes are filled as in Figure 2 f). To expand 

971



 

details and increase size, a dilation operation [36] is applied to 

the obtained image, as seen Figure 2 g). Thus, the necessary 

mask is found by stripping the skull. Finally, masking is 

performed to the grayscale image by using this mask and the 

skull is removed from the brain. The skull-stripped image is 

given in Figure 2 h). 

 

 
 

Figure 2. Skull removal: a) grayscale image, b) binary 

image, c) the largest interconnected component, d) opening 

operation applied image, e) brain image, f) hole filling 

operation applied image, g) dilation operation applied image, 

h) skull-stripped image 

 

5.3 Suspicious region detection in MR images 

 

After the skull is removed, the suspicious region is detected 

in all MR images by using K-means clustering, K-means 

clustering in Lab color space, and the Chan-Vese active 

contour without edges algorithms. 

 

 
 

Figure 3. Suspicious region detection with K-means 

clustering algorithm: a) a sample image, b) segmentation of 

suspicious region 

 

 
 

Figure 4. Suspicious region detection with K-means 

clustering in Lab color space algorithm: a) image converted 

to Lab color space, b) segmentation of suspicious region 

In the K-means clustering, each of the images in the training 

data is segmented using different number of clusters. Because 

of this reason, the mean of the number of clusters providing 

the best segmentation results is evaluated. The calculated 

value is approximately three. Therefore, the number of clusters 

is preferred as three. The K-means clustering algorithm is 

applied to a sample image given in Figure 3 a) and suspicious 

region detection is performed as in Figure 3. The white areas 

in Figure 3 b) indicate the suspicious region found by the 

algorithm. 

In the K-means clustering in Lab color space, a sample 

image is converted to Lab color space, as shown in Figure 4 a). 

Then, the K-means clustering algorithm with three clusters is 

applied to the obtained image and the suspicious region 

detection is performed as in Figure 4. The red areas in Figure 

4 b) indicate the suspicious region found by the algorithm. 

 

 
 

Figure 5. Suspicious region detection with Chan-Vese active 

contour without edges algorithm 

 

In the Chan-Vese active contour without edges, the initial 

contour and number of iterations are determined. The Chan-

Vese active contour without edges algorithm is applied to the 

input image, and suspicious region detection is performed as 

in Figure 5. The number of iterations is 125, and the weight of 

length term is selected as 0.9 in the Chan-Vese active contour 

without edges algorithm. The initial mask is a rectangular area 

and the x-coordinates of this area are between the pixels 

numbered as 145 and 190 whereas the y-coordinates of this 

area are between the pixels numbered as 130 and 165. 

Therefore, the size of mask is 46x36. 

In the study, evaluation criteria given in Table 4 were used 

to measure the success in the suspicious region detection and 

classification stages. 

 

Table 4. Performance evaluation criteria 

 
TP: True Positive FP: False Positive 

FN: False Negative TN: True Negative 

Sensitivity - (SNS) = 
𝑻𝑷

(𝑻𝑷+𝑭𝑵)
 

Specificity - (SPC) = 
𝑻𝑵

(𝑻𝑵+𝑭𝑷)
 

Accuracy - (ACC) = 
𝑻𝑷+𝑻𝑵

(𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵)
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Table 5. Confusion matrices and successes of algorithms 

 
K-means clustering K-means clustering in Lab color space Chan-Vese active contour without edges 

TP=165281 FN=43848 

FP=511107 TN=5833364 
 

TP=148087 FN=61042 

FP=391016 TN=5953455 
 

TP=175131 FN=33998 

FP=291571 TN=6052900 
 

Sensitivity = 0.79 Sensitivity = 0.71 Sensitivity = 0.84 

Specificity = 0.92 Specificity = 0.94 Specificity = 0.95 

Accuracy = 0.92 Accuracy = 0.93 Accuracy = 0.95 

 

A confusion matrix was found for each algorithm to 

measure the performance of the algorithms used. A 

performance evaluation of three different algorithms was 

made using these matrices. The confusion matrices and 

successes of the algorithms was given in Table 5. As a result, 

it is seen that the best result in the suspicious region detection 

belongs to the Chan-Vese active contour without edges 

algorithm. 

 

5.4 Feature extraction on suspicious regions detected in 

MR images 

 

Regions with the size of 64 x 64 were selected from the 

suspicious regions detected by three different algorithms, and 

feature extraction was obtained from these regions. All five 

different features (shape based, GLCM, HOG, LBP, statistical) 

were extracted separately, and feature vectors were created. 

The classification result of each feature vector was found. 

Then, the classification results of new feature vectors created 

in different combinations of the feature vectors obtained from 

suspicious regions determined by Chan-Vese active contour 

method were examined. 

Shape-based features described in subsection 4 were 

extracted from the region 64 x 64 in size. The shape-based 

feature vector is created by using each of the three suspicious 

region detection algorithms and it is size 1 x 11. The GLCM 

matrix was calculated by taking 𝑑 = 2 and 𝜃 = 0° from the 

region of 64 x 64 in size. Then, the texture features given in 

Table 2 were extracted from the GLCM matrix. The GLCM 

feature vector is created by using each three suspicious region 

detection algorithms and it is 1 x 22 in size. The HOG feature 

vector is created by using K-means clustering and K-means 

clustering in Lab color space algorithms and it is 1 x 3136 in 

size. The HOG features were extracted within the cells with 

the size of 8 x 8, and 16 different orientations were applied to 

these cells. The HOG feature vector is also created by using 

the Chan-Vese active contour algorithm and it is 1 x 1216 in 

size. The HOG features were extracted within the cells with 

the size of 9 x 9, and 9 different orientations were applied to 

these cells. The LBP feature vector is created by using each 

three suspicious region detection algorithms and it is 1 x 944 

in size. The LBP features were extracted from a region with 

the size of 64 x 64 obtained by using the K-means clustering 

algorithm. The radius of the circle is 2, and the number of 

neighbors is 8. The LBP features were extracted from a region 

with the size of 64x64 obtained by using K-means clustering 

in Lab color space and Chan-Vese active contour algorithms. 

The radius of the circle is 5, and number of neighbors is 8. To 

extract the statistical features, a matrix with the size of 64 x 64 

was converted into a vector with the size of 1 x 4096. Energy, 

mean, variance, skewness, kurtosis, entropy, average energy, 

and energy variance features were extracted from a region with 

the size of 1 x 4096 obtained by using the K-means clustering 

algorithm. The created feature vector is 1 x 8 in size. Energy, 

mean, variance, skewness, kurtosis, and entropy features were 

extracted from a region with the size of 1 x 4096 obtained by 

using K-means clustering in Lab color space and Chan-Vese 

active contour algorithms. The created feature vector is 1 x 6 

in size. 

 

5.5 Classification of suspicious regions 

 

The suspicious regions were classified by k-NN (k = 1) [37], 

FLDA [38], random forest (number of trees = 100) [39], 

decision tree [40], SVM [41], LLC [42, 43], and Naive Bayes 

[44] classifiers. This classification has three classes (benign 

tumor, malignant tumor, and normal). 66% of each class was 

chosen as training data and 34% as test data. A 3-fold cross-

validation technique was used for classification. This 

technique has three stages, and, for each stage, a different 34% 

of the classes were used as test data. Accuracy, sensitivity, and 

specificity rates were obtained for each stage to calculate the 

classification result. These obtained values were summed and 

averaged so that general classification result was calculated. 

The classification results of five different feature vectors 

created by using K-means clustering algorithm were 

calculated separately. For each classifier, the classification 

results calculated by using 11-dimensional shape-based 

features, the classification results calculated by using 22-

dimensional GLCM features, the classification results 

calculated by using 3136-dimensional HOG features, the 

classification results calculated by using 944-dimensional 

LBP features, and the classification results calculated by using 

8-dimensional statistical features are given in Tables 6, 7, 8, 9, 

and 10, respectively. 

The classification results of five different feature vectors 

created by using K-means clustering in Lab color space 

algorithm were calculated separately. For each classifier, the 

classification results calculated by using 11-dimensional 

shape-based features, the classification results calculated by 

using 22-dimensional GLCM features, the classification 

results calculated by using 3136-dimensional HOG features, 

the classification results calculated by using 944-dimensional 

LBP features, and the classification results calculated by using 

6-dimensional statistical features are given in Tables 11, 12, 

13, 14, and 15, respectively.

 

Table 6. The classification results (%) calculated by using the shape-based features for K-means clustering algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naïve Bayes LLC Feature Dimension 

ACC% 41.25 57.50 52.55 48.84 34.49 48.94 44.68 

11 SNS% 41.61 58.84 54.32 48.89 34.75 53.96 48.36 

SPC% 69.55 78.22 75.80 74.06 67.23 74.98 72.26 
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Table 7. The classification results (%) calculated by using the GLCM features for K-means clustering algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naïve Bayes LLC Feature Dimension 

ACC% 61.90 82.41 76.67 67.27 72.36 69.72 64.49 

22 SNS% 60.56 82.71 74.96 66.69 73 69.43 63.99 

SPC% 80.21 91.50 87.91 83.29 86.64 84.71 82.71 

 

Table 8. The classification results (%) calculated by using the HOG features for K-means clustering algorithm 

 
  k-NN FLDA Random Forest Decision Tree SVM Naïve Bayes LLC Feature Dimension 

ACC% 71.94 67.96 67.50 38.29 66.76 58.80 70.23 

3136 SNS% 69.79 67.55 67.54 38.47 66.14 60.64 68.62 

SPC% 84.78 83.26 83.07 68.48 82.34 79.64 84.03 

 

Table 9. The classification results (%) calculated by using the LBP features for K-means clustering algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naïve Bayes LLC Feature Dimension 

ACC% 71.67 82.13 71.48 50.23 70 54.54 67.27 

944 SNS% 73.49 83.11 72.90 52.17 70.89 58.44 67.95 

SPC% 85.80 91.90 85.37 75.03 84.59 77.75 83.50 

 

Table 10. The classification results (%) calculated by using the statistical features for K-means clustering algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naïve Bayes LLC Feature Dimension 

ACC% 66.76 74.58 66.85 58.56 37.82 65.28 29.07 
 

8 
SNS% 65.84 75.05 65.49 57.96 34.41 66.13 33.33 

SPC% 83.21 87.52 82.74 78.78 66.95 83.07 66.67 

 

Table 11. The classification results (%) calculated by using the shape-based features for K-means clustering in Lab color space 

algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naïve Bayes LLC Feature Dimension 

ACC% 47.55 46.11 48.38 46.94 39.58 36.25 41.81 

11 SNS% 47.06 45.06 48.51 46.77 37.52 35.81 40.02 

SPC% 73.06 72.37 73.67 73.46 69.09 67.51 69.49 

 

Table 12. The classification results (%) calculated by using the GLCM features for K-means clustering in Lab color space 

algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naive Bayes LLC Feature Dimension 

ACC% 59.12 73.15 78.80 71.62 58.84 57.59 60.37 

22 SNS% 57.41 71.85 75.94 69.73 55.73 56.56 59.80 

SPC% 79.63 86.85 89.05 85.75 79.15 78.64 80.60 

 

Table 13. The classification results (%) calculated by using the HOG features for K-means clustering in Lab color space 

algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naive Bayes LLC Feature Dimension 

ACC% 66.06 65.32 59.44 40.83 63.10 53.70 62.36 

3136 SNS% 63.56 63.99 57.81 41.16 61.72 54.27 61.14 

SPC% 81.78 82.01 78.45 70.53 80.91 76.79 80.19 

 

Table 14. The classification results (%) calculated by using the LBP features for K-means clustering in Lab color space algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naive Bayes LLC Feature Dimension 

ACC% 74.49 65.93 58.52 48.38 58.10 51.67 49.58 

944 SNS% 74.96 65.98 57.79 47.26 59.18 54.15 51.44 

SPC% 87.28 82.41 78.23 73.48 78.91 76.35 74.77 

 

Table 15. The classification results (%) calculated by using the statistical features for K-means clustering in Lab color space 

algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naive Bayes LLC Feature Dimension 

ACC% 51.16 51.90 66.06 67.50 51.81 53.38 41.16 

6 SNS% 50.19 49.59 64.10 63.98 49.37 54.45 44.33 

SPC% 75.29 74.81 82.58 82.83 75.28 77.41 71.84 
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The classification results of five different feature vectors 

created by using the Chan-Vese active contour without edges 

algorithm were calculated separately. For each classifier, the 

classification results calculated by using 11-dimensional 

shape-based features, the classification results calculated by 

using 22-dimensional GLCM features, the classification 

results calculated by using 1296-dimensional HOG features, 

the classification results calculated by using 944-dimensional 

LBP features, and the classification results calculated by using 

6-dimensional statistical features are given in Tables 16, 17, 

18, 19, and 20, respectively. 

When the tables giving classification results are examined, 

it is seen that the highest accuracy rate was obtained from the 

feature vectors created by using the Chan-Vese active contour 

without edges algorithm. The highest classification accuracy 

of 92.92% was achieved by the k-NN classifier using HOG 

features.  

It is seen that the Chan-Vese without edges method gives 

better results when compared to the other two methods. To 

increase the accuracy rate, all the different combinations of the 

five different feature vectors were obtained from the 

suspicious regions found by the Chan-Vese without edges 

method, and twenty-six new feature vectors were created. The 

dimensions and classification accuracy rates of the obtained 

new feature vectors are given in Table 21. 

As seen in Table 21, when HOG and LBP features were 

used together, it was seen that the highest accuracy rate is 

increased to 93.01% with the FLDA classifier. The source files 

which were implemented in order to reach the highest 

accuracy can be downloaded at this link: 

https://drive.google.com/drive/folders/19T0xJD71roPuHfRQ

4u_pUL6NXfNDske6?usp=sharing.

 

Table 16. The classification results (%) calculated by using the shape-based features for Chan-Vese active contour without edges 

algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naive Bayes LLC Feature Dimension 

ACC% 58.80 58.33 67.50 52.87 56.11 44.03 45.65 

11 SNS% 58.21 56.50 67.47 52.45 53.93 43.54 44.41 

SPC% 78.94 79.18 83.65 76.56 77.85 71.94 71.77 

 

Table 17. The classification results (%) calculated by using the GLCM features for Chan-Vese active contour without edges 

algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naive Bayes LLC Feature Dimension 

ACC% 62.41 83.70 88.70 77.18 72.92 54.86 72.55 

22 SNS% 61.34 83.46 88.49 76.70 73.88 54.04 73.08 

SPC% 80.50 91.43 92.24 88.06 86.31 77.25 86.28 

 

Table 18. The classification results (%) calculated by using the HOG features for Chan-Vese active contour without edges 

algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naive Bayes LLC Feature Dimension 

ACC% 92.92 88.61 83.84 51.25 91.48 92.31 90.19 

1296 SNS% 92.12 89.21 83.20 52.38 91.96 92.40 89.96 

SPC% 96.01 94.28 91.61 76.23 95.63 96.09 94.87 

 

Table 19. The classification results (%) calculated by using the LBP features for Chan-Vese active contour without edges 

algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naive Bayes LLC Feature Dimension 

ACC% 85.23 89.44 85.19 68.89 87.45 80.79 88.15 

944 SNS% 85.57 89.64 85 68.01 88.07 82.09 88.86 

SPC% 92.78 94.89 92.23 84.39 93.89 90.27 91.14 

 

Table 20. The classification results (%) calculated by using the statistical features for Chan-Vese active contour without edges 

algorithm 

 
 k-NN FLDA Random Forest Decision Tree SVM Naive Bayes LLC Feature Dimension 

ACC% 64.31 73.33 85.79 76.48 59.35 56.99 49.63 

6 SNS% 63 72.60 84.45 75.90 61.42 54.81 51.96 

SPC% 81.24 87.15 92.45 88.56 80.53 78.74 74.76 

 

Table 21. Dimensions and classification accuracy rates (%) of new feature vectors 

 
New feature vectors k-NN FLDA Random Forest Decision Tree SVM Naive Bayes LLC Feature Dimension 

Shape-based+GLCM 70.09 84.49 80.14 69.31 68.98 58.43 50.09 33 

Shape-based+HOG 58.80 88.61 81.71 49.17 56.62 90.23 41.85 1307 

Shape-based+LBP 62.36 88.75 86.06 69.63 78.98 80.79 41.85 955 

Shape-based+Statistical 68.98 62.36 78.70 71.53 46.99 57.59 55.05 17 

GLCM+HOG 62.41 87.22 86.53 55.05 84.40 91.62 73.15 1318 

GLCM+LBP 72.92 90.93 87.36 63.29 83.80 80.79 83.89 966 
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GLCM+Statistical 74.44 78.06 87.31 75.09 77.36 56.99 69.12 28 

HOG+LBP 85.23 93.01 87.45 57.22 87.45 85 85.37 2240 

HOG+Statistical 65 88.61 86.71 71.39 83.75 89.54 45.65 1302 

LBP+Statistical 72.31 88.75 86.67 71.67 84.58 80.09 43.52 950 

Shape-based+GLCM+HOG 70.09 87.92 85.19 49.12 43.98 90.23 41.85 1329 

Shape-based+GLCM+LBP 71.53 90.23 83.24 55.93 73.06 80.09 41.85 977 

Shape-based+GLCM+ 

Statistical 
71.11 83.29 83.66 72.31 68.33 56.99 53.10 39 

Shape-based+HOG+LBP 62.36 93.01 87.45 51.53 79.72 84.31 41.85 2251 

Shape-based+ 

HOG+Statistical 
68.98 88.61 84.58 68.56 63.98 87.45 44.63 1313 

Shape-based+LBP+Statistical 68.98 90.19 88.15 69.68 78.19 80.09 44.63 961 

GLCM+HOG+LBP 72.92 92.31 87.27 55.05 83.80 85 83.19 2262 

GLCM+HOG+Statistical 74.44 85.83 86.57 80.79 83.01 88.84 44.21 1324 

GLCM+LBP+Statistical 74.49 90.93 87.27 76.44 80.97 80.09 45.60 972 

HOG+LBP+Statistical 72.31 93.01 88.75 70.93 84.58 84.31 46.30 2246 

Shape-based+GLCM+ 

HOG+LBP 
71.53 92.31 88.10 48.43 73.06 85.05 41.85 2273 

Shape-based+GLCM+ 

HOG+Statistical 
71,11 87.22 87.96 78.70 64.81 87.45 41.16 1335 

Shape-based+GLCM+ 

LBP+Statistical 
71.85 90.23 88.80 72.96 69.40 80.09 38.38 983 

Shape-based+HOG+ 

LBP+Statistical 
68.98 93.01 83.19 70.37 78.19 83.61 44.63 2257 

GLCM+HOG+ 

LBP+Statistical 
74.49 91.62 92.36 75.74 80.97 84.35 45.60 2268 

Shape-based+GLCM+ 

HOG+LBP+Statistical 
71.85 91.62 84.58 72.96 69.40 84.35 38.38 2279 

 

 

6. CONCLUSIONS 

 

It is known that most deaths from brain diseases are due to 

brain tumor. For this reason, early diagnosis and detection of 

brain tumor is extremely important. In this study, an automated 

system that detects brain tumors in MR images and classifies 

these tumors was presented. First, the skull was removed from 

MR images. Then, the suspicious region detection was 

performed by using different algorithms. The Chan-Vese 

without edges algorithm provided the best performance in the 

suspicious region detection with a sensitivity rate of 84%. 

Different features giving intensity, texture, and shape 

information were extracted from the detected suspicious 

region, and then feature vectors were created. Finally, the MR 

images were classified as benign tumor, malignant tumor, and 

normal by using seven different classifiers. 

When the classification results were analyzed, the HOG 

features were the most descriptive in terms of defining tumor 

and non-tumor regions, followed by the LBP features. 

Accordingly, the best classification result was obtained with 

the FLDA classifier using the feature vector consisting of the 

combination of HOG and LBP features. The best classification 

result was calculated as 93.01% accuracy, 93.46% sensitivity, 

and 96.50% specificity rates. These results clearly indicated 

that the Chan-Vese method gives much better results in the 

suspicious region detection, and that the new combination 

feature vectors are more descriptive. 
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