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Manual assessment of parotid gland status from magnetic resonance imaging is a subjective, 

time consuming and error prone process. Automatic image analysis methods offer the 

possibility to get consistent, objective and rapid diagnoses of parotid gland tumor. In this 

kind of cancer, a large variety in their characteristics, that brings various difficulties for 

traditional image analysis methods. In this paper, we propose an automatic method to 

perform both segmentation and classification of Parotid gland region in order to give 

quantitative assessment and uniform indicators of PGs status that will help pathologists in 

their diagnostic. The experimental result illustrates the high accuracy of the results of the 

proposed method compared to the ground truth. Furthermore, a comparative study with 

existing techniques is presented in order to demonstrate the efficiency and the superiority of 

the proposed method. 
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1. INTRODUCTION

Parotid gland tumor appears in more than one million, new 

cases each year worldwide [1]. In fact thousands of people die; 

each year due to numerous types of cancer. Here, parotid gland 

tumor represents one of the main causes of death. In addition, 

surgery and radiation therapy (RT) is an important treatment 

of Parotid Gland (PG) lesion, either as an adjuvant treatment 

after surgery or a stand-alone treatment modality, it is 

estimated that RT is agreed to approximately 75% of all 

patients with PG cancer [2]. Classically, PG diagnosis is 

recognized by pathologists via visual examination of 

morphological features extracted through MR image analysis. 

Despite encouraging results, this task stills a challenge due to 

the time consuming and error prone. In fact, the efficiency of 

this method is really dependent on the experience of 

pathologists. Here, an automated analysis of cancer diseases 

was proposed. The automatic analysis does not replace doctors, 

but it may help him or her to get reliable, objective and rapid 

analyses. Therefore, automatic techniques are applied to 

segment and classify MR images to different levels of diseases 

that can potentially make a major contribution to health care. 

The aim of these segmentation methods is to identify the types 

of PG malignancy in order to give quantitative and true 

measures of parotid gland changes in patients before or after 

radiation therapy (RT) [3, 4]. 

In other hand, precocious examination of PG is employed 

to preview numerous information in different tumor stade. 

Clinical acquisition circumstances can include missing 

boundaries, artifacts and speckle noise [5-7]. This leads to 

decrease the resulting image consistency and consequently 

make the preprocessing stage an essential task. It is essential 

to advance computerized classification methods using MRI 

data by extending an additional view to facilitate to 

pathologists the cancer diagnosis process. 

In order to improve the quality of MR images for better 

boundary detection of PG tumor, there are different filtering 

algorithms presented in the literature which can overcome 

speckle noise, which is an inherent factor that degrades the 

image status. In fact, various filtering procedures are presented 

in the literature to overcome noise and enhance the MR images 

quality for significant edge detection of different cervical MRI 

region. In this context, traditional filtering techniques have 

been proposed to remove the presented noise such as temporal 

Wiener filtering [8], median filtering [9], and wavelet 

thresholding [10].  

Except that, in some complex case of MR image analysis, 

the change in appearance across different Parotid gland region 

is still a challenge issue which needs pertinent segmentation 

methods. In order to improve the MR images quality, multiple 

filters are tested whose purpose is to reduce noises in order to 

emphasize the defined image characteristics. Even though, 

most of them have performed a preprocessing stage to solve 

the noising problem in MR images.  

On the other hand, the classification accuracy method is 

mainly relied on the nature of the segmentation technique used 

for PG tumor detection from the MR image. In other words, 

the global and local features (such as: shape, size, texture…) 

provided by the performed segmentation technique must be 

sufficiently relevant and accurate to describe the ROI [11, 12]. 

Indeed, segmentation of PGs is a very hard task because of the 

high variability in their morphological features. Nowadays, 

there are many promising segmentation models presented in 

the literature, which can overcome different type of noise and 

give relevant ROI features to classify tumors in the PGs region. 

Recently, several promising segmentation techniques are 
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proposed in the literature which can reliably overcome 

histological noise and segment PG cancer in CT and MR 

images. In this context, both of active contours and watershed 

algorithms are commonly used for cerebral tumor 

segmentation [13, 14]. In fact, snakes can be divided into two 

categories: geometric active contours and parametric snakes 

[15, 16]. Geometric active contours were introduced recently 

and are based on the theory of the curve evolution and 

geometric flows [17] while parametric snakes are obviously 

characterized as parameterized curves in Lagrange 

formulation [18]. One shortcoming they have is the sensitivity 

to initialization and absence of ability to handle changes in 

different topologies of the evolving curve. In fact, their 

numerical implementation is based on the level set model 

which is proposed by Osher and Paragios [19] and allows 

segmenting various objects at the same time. The classical 

level set methods [20] need to calculate a stopping function 

based on the image gradient, so these models can distinguish 

only the external borders of objects defined by the gradient 

image. Some other geodesic active contour models are 

developed in Ref. [21], which combine the two-region 

segmentation model and the classical active contour model in 

order to increase the segmentation accuracy of color images 

even for fuzzy and discrete edges. None of these algorithms 

can consistently detect desired regions in MR image, and they 

suffer from their computational complexity. Furthermore, the 

level set function applied in the active contour formulations is 

restricted to the detection and separation of two regions. Only 

few works are proposed on level set based segmentation 

approach in the case of multiple regions [22].  

Regarding the assessment of different PG lesion levels, 

significant work has been therefore done to advance the 

accuracy of PG segmentation. In this task, different proposed 

techniques are used for effective automatic detection of PG 

tumors from CT, MR and PET images with several machine 

learning methods [23-25]. In recent years, convolutional 

neural networks (CNNs), a distinctive case of deep learning 

methods, have confirmed higher results in image segmentation 

[26]. Therefore, authors developed and evaluated a 

multimodal PG segmentation method that first registers an MR 

image to a CT image and then uses a CNN method to select 

each voxel from a common image domain related to the 

similarity of its neighborhood appearance in both image 

modalities to that of voxels from other image pairs with known, 

manual labeling. 

In this paper, we propose a fully automatic method that can 

consistently segment PG lesion of MR images. As a first step 

in our proposed methodology, and after a filtering scheme 

using BM3D technique, we applied geodesic active contour 

(GAC) model to detect different PG lesion levels. The 

proposed model is based on the classical level set function. 

Inspired from the work of Pi et al. [27], this function is 

involved in the region term of the energy and the stopping 

function of the model to advance the segmentation accuracy of 

the detected PG lesion. In addition, the initial contour and the 

controlling parameters of the proposed active contour model 

are computed also with this decision function to increase the 

rapidity of convergence of the evolving curve.  

The second part of the proposed work is devoted to classify 

the MRI dataset into two PG levels. This task is considered as 

a serious step for segmentation of MR images since it has a 

great impact on tumor evaluation and diagnosis. In the field of 

MR image segmentation, deep learning algorithm is frequently 

used for clustered MRI region. By this process, the DBN-DNN 

mostly avoids the gradient problem that can occur when 

training a standard neural network (without pre-initialization). 

DBN-DNN pre-training also improves model performance by 

enhancing the model and generalization avoiding over fitting. 

Therefore, we present a comparative study with others 

classification methods using different deep learning 

techniques the DBN-DNN method, the standard convolutional 

neural network (CNN) classifier, U-net method and 

convolutional recurrent neural network (C-RNN) method. In 

fact, U-Net presents a fully convolutional neural network 

structure for pixel semantic classification, offering a rapid and 

accurate object classification of ROI in both of 2D and 3D MR 

images. On other hand, RNN is a class of neural networks that 

makes use of sequential information to process sequences of 

inputs. They maintain an internal state of the network acting 

as a "memory", which allows RNNs to naturally lend 

themselves to the processing of sequential data. Compared to 

CNN architecture, from hidden-to-hidden iteration 

connections, the CRNN unit’s permits contextual spatial 

information collected at previous iteration to be passed to the 

next iteration. This facilitates the optimization of the accuracy 

results to define the class of pixels region. 

The remaining part of the paper is organized as follows: 

Section 2 presents the proposed filtering, segmentation and 

methods in detail. Section 3 describes experimental results on 

two large datasets of MR images. Then, we compare the 

proposed classification method to other methods from the state 

of art. Finally, conclusions are provided in section 4. 

2. MATERIAL AND METHODS

2.1 Database description 

In the current study, the MR images were carried in 

radiology department at La Rabta Hospital of Tunisia. The 

used T1-MR images dataset is divided into two principal 

groups. The first one contains 170 patients affected by Parotid 

Gland lesions L1 (PGLL1) through routine examinations. The 

second group includes 136 patients affected by a parotid gland 

lesion Level 2 (PGLL2) using T1-MR images gathered from 

the hospital archive recordings. 

All MRI examinations were performed with a dedicated 

head and neck coil, with a Signa model HDxt 3-T (Tesla) 

machine (GE Healthcare). T1-MR sequences were obtained 

after an intravenous injection of contrast material 

(gadopentetate dimeglumine). The parameters for the T1-

weighted sequence were TR-TE=6.8-1.2, with 256 x 256 

matrix, maximum voxel resolution of mm3. The employed 

sequences present images in each one having 256 grey levels 

and pixels for each image. Similarly, the device and the 

computer specification resolutions were respectively (inchs) 

and (pixels). Figure 1 exposes some examples of MR images. 

2.2 Description of the proposed method 

In the clinical examination, the PG lesions were completely 

determined by different experts. Nevertheless, the biometric 

measurements (ROI size, perimeter...) are not adequate 

enough to distinguish the large variation of PG lesion. In this 

paper, a new automatic region of interest (ROI) detection 

method combined with pertinent classification scheme is 

proposed for PG status. 
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MR 

images 
(a) (b) 

Figure 1. T1-MRI examples of eight images: (a) PG lesion cases and (b) Normal cases 

In this work, an advanced classification scheme combined 

with applicable textural region characteristics is proposed. The 

first tasks of the proposed method were presented in our 

previous work [28]. In this contribution, a continuation of the 

proposed work [13] is presented where widely of information 

are treated to obtain effective performances in images 

denoising scheme. The proposed method [28] is included a 

chief part. Different images pre-processing strategy is first 

applied by the use of filtering technique to reduce the noise in 

used images. Second strategy, appreciated parotid gland 

segmentation is achieved to detect the lesion region based on 

the GAC. Figure 2 summarizes the overall stages of the 

proposed analysis scheme. 

Figure 2. The proposed methodology 

Hence, the contribution of this work is divided into two 

principle folds:  

• MR Images segmentation: Appreciated Parotid gland

lesion segmentation is achieved to detect the region of interest 

based on the GAC.  

• Intelligent Classification framework: An image

categorization strategy is projected in order to classify the MR 

subjects into two groups: parotid gland lesion level 1 (PGLL1) 

and parotid gland lesion level 2 (PGLL2) datasets. The Deep 

Neural Network (DNN) method is applied for classification 

step. Here, the previous detection results of PG lesion 

boundary are employed to characterize the anomaly using T1-

MR images [13]. The DNN model classifier is performed to 

recognize MR images in different cases. This method is 

primarily recipient for precocious detection of PG defect 

progression using early period assessment. 

2.2.1 Image pre-processing Stage using BM3D technique 

In this phase, a filtering method based on BM3D algorithm 

is implemented to improve the image quality and facilitate 

subsequent work steps. The main structure of the BM3D 

algorithm can be split into two major steps. The first step 

estimates the de-noised image using hard thresholding during 

the collaborative filtering and can be divided into three sub-

steps. These sub-steps start by finding the image patches P(P) 

similar to given ones and grouping them into a 3D block, then 

a 3D linear Wavelet transform and shrinkage of coefficient are 

applied to these blocks. Finally, an inverse 3D transform is 

applied using the following equation. 

1

3 3( ) ( ( ( ( ))))hard hard hard

D DP P P P  −= (1) 

where, γ is a hard thresholding operator with threshold 3

hard

D 

such as σ designates the zero means Gaussian noise variance. 

 30
( )

hard
Dif x

x otherwisex
 




= (2) 

The final 3D block consists of the simultaneously filtered 

2D image patches. The last step is the aggregation operation it 

gives an estimate for each used patch. These estimates are 

saved in a buffer. 

 ,( ) ( ) ( )

( ) ( )
( ), ,

hard hard
P Q P

hard
P

v x v x w u x

x x w
Q P P x Q

 

= +

= +
    (3) 

where: 

- ν and δ designate respectively the numerator and the

denominator part of the basic estimate of the image obtained 

at the end of the grouping step 

- ,

hard

Q Pu designate the estimate of the value of the pixel x

obtained during collaborative filtering. 


1( ) 1

1

hard hard
p pN if Nhard

P otherwisew
− 

= (4) 
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Such as 
hard

PN refer to the non-zero coefficients in the 3D 

block obtained after hard thresholding mentioned above. 

The obtained basic estimate after this first step is given by 

the following equation. 

,

( )

( )

( ) ( )

( )
( )

hard hard

P Q P

P Q P Pbasic

hard

P

P Q p P

w Q x u x

u x
w Q x











=


 

 
(5) 

This estimate is simply obtained by dividing the two buffers, 

which are the numerator and the denominator, element by 

element with respect to the following condition. 

1

0( ) if and only if x Q

otherwiseQ x = (6) 

The second main step is carried out by using Wiener 

filtering. This second step imitates the first one with two 

differences taken into account [2]. The filtered patches are 

compared instead of the original patches. The new 3D group 

is processed by Wiener filtering instead of a simple threshold. 

Three sub steps are carried out in this stage: designated 

grouping, collaborative filtering, and aggregation. During the 

grouping operation, the patch-matching is handled on the basic 

estimate basicu . In fact, a set of similar patches are collected to

form 3D groups. 

 ( ) : ( , )basic wienerP P Q d P Q =  (7) 

where: 

- ( )basicP P and P(P) are respectively obtained after the 

stacking of the similar patches from the basic estimate and the 

original noisy image. 

- wiener is the distance threshold for d under which two 

patches are assumed similar. 

After the grouping operation, which is achieved by finding 

the 3D blocks, the collaborative filtering can be started. The 

filtering operation of P(P) called Wiener collaborative filtering 

is achieved by using Wiener filtering. In fact, the resulting 

image is produced by multiplying element by element the 3D 

transform of the noisy image with the Wiener coefficients 

defined as follow. 

2

3

2
2

3

( ( ))( )
( )

( ( ))( )

wien basic

D

p
wien basic

D

P P
w

P P

 


  
=

+
(8) 

The estimate of the 3D group is obtained by the Eq. (9). 

1

3 3( ) ( . ( ( )))wien wien wien

D P DP P w P P 
−

= (9) 

The last minor step is the aggregation which takes place 

when the collaborative filtering is achieved. This step aims to 

store in a buffer the estimate for every pixel.  

 ,( ) ( ) ( )

( ) ( )
( ), ,

wien wien
P Q P

wien
P

x x w u x

x x w
Q P P x Q

 

 

= +

= +
    (10) 

where: 

- τ and δ designate respectively the numerator and the

denominator part of the final estimate image which is obtained 

in the end of the first step.  

- , ( )wien

Q Pu x  is the estimation of the value of the pixel x

belonging to the patch Q obtained during the collaborative 

filtering of the reference patch P. 

2

2

wien

P Pw w
−

= (11) 

The final estimate image is given according to the Eq. (12): 

,

( )

( )

( ) ( )

( )
( )

wien wien

P Q P

P Q P Pfinal

wien

P

P Q P P

w Q x u x

u x
w Q x









=

 

 
(12) 

Following the first major step, the final estimate is simply 

obtained by dividing the two buffers, which are the numerator 

and the denominator, element by element with respect to the 

condition mentioned in Eq. (12). 

All these steps are summarized in the Figure 3. 

Figure 3. Diagram of the BM3D algorithm 
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2.2.2 PG lesion boundary detection 

The objective of the first stage of the proposed automatic 

PG lesion segmentation technique is the boundary contour 

extraction of the lesion region from the remainder 

(background). This task is based on a geodesic active contour 

model initialized by an elliptic curve that estimates the lesion 

region in the PG.  

The GAC approach [29] is applied to segment the object 

edge in a grayscale image by finding a curve C that decrease 

the following energy function: 

( ) ( )( ) ( )( )
( )

0

L C

CE C g C q ds v g C q dA



= +  (13) 

where, 𝐶(𝑞) = (𝑥(𝑞), 𝑦(𝑞), is a curve in Ω with a position 

parameter 𝑞 ∈ [0,1] and L represents the Euclidean distance. 

The distance ds is the Euclidean metric, dA is the parameter of 

area and v is a parameter which controls the area of the active 

contour. Ωϵ 𝑅2 is the 2D space of the gray level image, and g

is the stopping function of the curve (edge-detector) for gray 

image. The progress of the curve is controlled by the stopping 

function represented by the following form: 

( )

1

1 | * |
g

G I

=
+ 

(14) 

where, I is the image intensity and G represents the Gaussian 

kernel. The curve is categorized by two parameters the normal 

direction N with a convergence parameter F: 

where, Gσ is the Gaussian kernel with standard deviation σ. 

The curve is characterized by two parameters; the normal 

direction N with speed convergence F: 

( )
.

C t
F

t


= 


(15) 

The level set method, introduced by Osher and Sethian [19] 

to find a numerical solution of this problem (Eq. (1)), consists 

on representing the contour C(t) as being the zero level of two 

dimensional Lipchitz continuous function 𝜙(𝑝, 𝑡), called the 

level set function. In other words, the contour C(t) is the set of 

points P(x, y) such as: 

( ) ( ) / , 0C t p p t= = (16) 

where, ϕ is the signed distance function that gives the location 

of a point p with respect to the contour C: 

( )

,

0,

d p is outside C

p p in C

d p is inside C



+


= 
−

(17) 

The level set function ϕ for the contour point must have the 

zero value at each time: 

( ( ), t) 0C t = (18) 

The derivative of the level set function is given by: 

( )( ) ( )( ) ( )( ), , ,
. 0

C t t C t t C t t C

t t C t

     
= + =

   
(19) 

The Eq. (19) is written as: 

. 0
C

t t




 
+ =

 
(20) 

From the Eq. (19), the gradient of ϕ function represents the 

normal N vector of the contour and the evolution rate is a 

direction normal to the curve: 

.
C

F N
t


=


(21) 

The Eq. (15) is integrated in (20), and, we obtain the 

evolution equation given by: 

. 0F
t





+  =


(22) 

The curve evolution is generally a function of the image and 

the curve characteristics [30]. The original formulation of the 

GAC model [19] is given by: 

( ) .g v
t


 


= + 


(23) 

where, the product 𝑔(𝜅 + 𝜈)fixed the evolution speed of level 

sets of 𝜙(𝑝, 𝑡)  along their normal direction and κ is the 

curvature which is used here to accomplish the smoothness of 

the contour.  

The curvature is given by [17]: 

( )

2 2

3/2
2 2

2
div

xx y x y xy yy x

x y

      


  

  − +
= =   + 

(24) 

The mathematical curve solution of the curve evolution 

problem is given by the fast level set formulation proposed in 

[30]: 

( ) ( )( )

( ) ( )0

div div 1 1/

( ), ( ),0 ( ), ( )

g v g
t

x t y t x t y t



 
     



 

    
= + + −            


=

(25) 

 is a positive parameter that controls the penalization 

term 𝑑𝑖𝑣((1 − 1/|∇𝜙|)∇𝜙 which is applied to fix the level set 

function close to the signed distance function during the curve 

evolution (see [17]). Where λ presents a constant controlling 

the curvature term and 𝛿𝜀(𝜙)is a parameter that regularizes the

Dirac function with a width controlled by  [17]. 𝜙0(𝑥, 𝑦)is

the initial contour in each frame of the MR images. 

Finally, the discrete level set function is given by: 

( ) ( ) ( )( )1
, , ,

k k k
x y x y x yL  + = + (26) 

where, 𝐿(𝜙𝑘(𝑥, 𝑦)presents the approximation of the right-

hand side in (24) and τ is the time step. 

The initial curve is constructed by an ellipse mask selected 

with five ellipse parameters (xc, yc, a, b, θ) where 

𝑥𝑐and, 𝑦𝑐  represent the circle centroid, the two ellipse radius (a,

b) and θ is to the ellipse angle, which are achieved from the
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Otsu segmentation method [31]. The idea of this latter method 

is to detect the PG lesion before the initialization of GAC 

model. Since the PG presents a low grayscale level, a 

maximum intensity value is fixed as a threshold based on 

minimizing the intra-class variance and maximizing the ratio 

between the interclass variance and the total variance, each 

frame segmented is composed of two different regions: the 

region of interest ROI (the Lesion in PG) and the background. 

Here, to speed up the convergence of the GAC algorithm, we 

optimized the number of iterations of the curve evolution using 

the ellipse fitting error. The relative function of error 𝑓𝑖𝑡𝑒𝑟 is 

computed as follow:  

 

cover
100

ellip rough

iter

rough

Lesion
f

Lesion

−
=   (27) 

 

where, coverellip represents the area that the initial ellipse 

covers, and the Lesionrough is the rough lesion area obtained by 

fixed thresholding. The iteration number noted Iter was 

computed and reduced as given in the following equations: 

 

20 0.09iteriter if f=   (28) 

 

30 0.09 0.12iteriter if f=    (29) 

 

For the analysis of subsequent MR image frames, the lesion 

region is chosen based on the current frame segmentation 

result. In fact, to remove the influence of background artifacts 

and to limit the computation time of the contour evolution, the 

initial curve is detected based on the current result. 

 

2.2.3 Classification of PG lesion using DBN-DNN classifier 

In this study, the deep neural network method is realized in 

order to classify the extracted PG lesion boundary and to 

distinguish between PG lesion levels (level 1 and level 2). 

Several classification methods can be employed for pattern 

recognition. Nevertheless, for multiple categorization works 

[32, 33], it has been confirmed that DNN presents a high-

quality tool. To acquire authentic classification results, we 

have selected the PG region of different images for assembling 

the training dataset of the network. Consequently, both 

learning and training neural network stage are performed using 

the morphological information (texture, area…) of PGs lesion 

region.  

The DNN classification phase is composed into two diverse 

tasks: (i) the training task that included the greater part of the 

database (184 subjects randomly chosen using two cases 

(PGLL1 and PGLL2) which allow the learning and the training 

of the network. At the same time as (ii) the test task is reserved 

to validation part that involved the smaller part of the database 

(the remaining subjects: 122 subjects) taking into account that 

the examples of the validation set do not belong to the training 

set. In addition, applying the back-propagation (BP) algorithm, 

the network is learned with conjugate gradient training method 

[34, 35]. 

The neural network structure is composed of two inputs 

classes, are either (0.95) for (PGLL1), (-0.95) for (PGLL2). In 

this network, the hyperbolic tangent sigmoid transfer function 

is applied for all neurons as activation function. The maximum 

number of iterations (20 epochs of training) is reached or the 

mean square error (MSE) is decreases to a mean of 8.10-2.  

To improve classification results, all previous works have 

focused their diagnosis on visual inspection of segmented PG 

lesion region. The superiority of this study is highlighted by 

the use of detected ROI by some customized processing tools, 

and the use of the classification technique using deep learning 

strategy which was not detained before. 

(1) Classification using deep neural network 

In this study, the DBN-DNN method is performed to 

differentiate between two categories of parotid gland lesions. 

Yet, for numerous classification works [36, 37], it has been 

proved that DNN represents a high quality methodology for 

pattern recognition. The deep learning step of the network is 

performed using PG lesion characteristics. Taking into 

account the similarity between the characteristics of different 

PG tumor regions, the DNN procedure is considered using the 

feature number in the input learning set to obtain the most 

discriminative features distorted to a suitable illustration of the 

database used (1×(2 output classes)). 

The deep learning step of the network is performed using 

image feature vectors. Taking into account the resemblance 

between different characteristics extracted from each PG class 

in the MR image, the DBN-DNN procedure uses a number of 

features in the input learning set to obtain the most 

discriminative characteristics.  

The cross-validation experiment is used to give the best 

DBN-DNN structure. The training-segment vectors sets are 

divided into five equally-sized sub datasets (five folds). Each 

iteration contains four folds for the training and one fold for 

the validation. The tangent sigmoid transfer function is applied 

for all neurons. Five iterations are achieved for the training and 

validation phase. After the selection of the hyper parameters, 

the DBN-DNN classifier was trained and evaluated using the 

test set (see Figure 4). 

 

 
 

Figure 4. Diagram of the cross-validation and the 

optimisation process 

 

 
 

Figure 5. The structure of the DBN classifier 
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(2) Constructing the DBN classifier 

The architecture of the DBN classifier is shown in Figure 5, 

which is composed of three RBMs (RBM1, RBM2 and RBM3) 

and an output layer which presents the two PG’s lesion levels 

(PGLL 1 and 2). Firstly, we have to train in an unsupervised 

way in order to train the DBN classifier. Then, the trained 

DBN is also combined with the output layer to form the input 

of the deep neural network (DNN). The DBN is obtained and 

the DNN is trained by the back-propagation (BP) algorithm in 

a supervised way. 

(3) Training DBN with RBMs 

1) Training restricted Boltzmann machine (RBM) 

A restricted Boltzmann machine (RBM) is a specific type 

of random neural network design that has two-layer 

architecture. The first input layer is called visible layer, where 

the second layer is called hidden layer. Between two layers, 

nodes are fully connected, nevertheless in the same layer there 

is no connection. Though, we constitute a bipartite structure. 

Figure 6 shows that the bottom layer contains visible variables 

(nodes) and the top layer contains hidden variables (nodes). 

The symmetric interaction terms between the visible variables 

and the hidden variables are represented by the matrix W. 

 

 
Figure 6. The structure of the RBM 

 

The energy function of the joint configuration can be 

defined by: 

 

( , ; )
ij ij j i i j j

ij

E h W h b a h   = − − −    (30) 

 

where, 𝜃 = {𝑊, 𝑎, 𝑏}  represents the model parameters,𝑎𝑖  is 

the bias of visible unit i, and 𝑏𝑖  is the bias of hidden unit j. 

The joint probability distribution of a certain configuration 

is achieved by the Boltzmann distribution (and the energy of 

this configuration): 

 

1
( , ) exp( ( , ; ))

( )
P h E h

Z
   


= −  (31) 

 

where, Z(θ) is the normalization constant. 

If ν=(v1, v2, …, vi) is an input vector to the visible layer, the 

binary state ℎ𝑗  of the hidden unit j is fixed to 1 with the 

probability as follows: 

 

( 1| ) ( )j ij i j

i

P h sigmoid W a = = +  (32) 

 

With the states of the hidden units, the binary state 𝜈𝑖 of 

visible unit i is set to 1 with the probability below: 

 

( 1| ) ( )i ij j i

j

P h sigmoid W h b = = +  (33) 

The RBM structure is frequently trained as follows: 

• Step 1. The states of the visible units are set according 

to the training data. 

•  Step 2. Calculating the binary states of the hidden 

variables by Eq. (31). 

• Step 3. After determining the states of all the hidden 

units, the states of all visible units are determined  

• Step 4. The gradients of W are evaluated by the 

contrastive divergence (CD) learning algorithm, then 

the gradient descent algorithm is carrying out to 

update the parameters 𝑊, 𝑎, 𝑏. 

 

 

3. RESULTS AND DISCUSSION 

 

This section summarizes the T1-MR image filtering, 

segmentation and classification results. In addition, due to the 

classification stage has not been mentioned in other works [38, 

39], this study offers a vital and an attractive ability to 

categorize pathological data related to the degree of malignity 

(PGs Lesion level 1 or PGs Lesion level 2). All experiments 

are verified with those evaluated by experts in term of PG 

lesion boundary segmentation assignment. Three experts, with 

diverse expertise degrees, participated in defining the different 

lesion ground truth at two different statuses, however, 

segmentation approach was provided independently for each 

expert. The resulting manual delineations have no relationship 

with expertise degrees of Experts. 

 

3.1 Results of T1-MR image filtering 

 

The BM3D technique is studied to realize an accuracy 

regarding shape’s continuity and noise removal. The proposed 

filtering methods are displayed in Figure 7 to reveal the 

proposed denoising strategy using the same dataset. Hence, the 

performance of the employed method is validated by the 

evaluation criteria using the Signal-to-Noise Ratio (SNR) and 

the Peak Signal-to-Noise Ratio (PSNR) measures. 

 

 
Figure 7. Overview of the BM3D filtering results 

 

Therefore, the performance of the employed method is 

validated using the Peak Signal-to-Noise Ratio (PSNR) and 

the Signal-to-Noise Ratio (SNR) measures. Here, we noticed 

that the proposed methodology provides the mean of SNR 

(11.05db) and PSNR (about 31.25 db) values for the 30 MR 

images datasets. Therefore, compared to the work of [40], the 

effectiveness of proposed algorithm was determined with 

promised filtering results reducing efficiently the remarkable 

noise in view of MRI dataset. 

 

3.2 Results of PG lesion detection  

 

In this section, we present the PG detection results using the 

GAC model. In Figure 8, we show the fixed blue ellipse that 
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corresponds to the initial mask, established by the MR frames. 

Indeed, the main idea of the proposed GAC procedure is to 

extract the PG lesion region in each frame of the MR images 

before the initialization of GAC model. 

To extract edges of the desired PG lesion from background 

of the processed frame, we used the level set function using 

the proposed GAC model. In addition, Figure 8 reveals the 

evolution of GAC model in an extracted MR image using 

maximum of 30 iterations. In order to prove the performance 

of our method in lesion detection on the MRI database, we 

choose 6 images representing two lesion levels (level 1 and 

level 2). Besides, a good performance of these active contours 

is achieved by an automatic estimation of final curves when 

compared to experts. 

 

 
 

Figure 8. PG lesion contour detection results using the 

proposed GAC algorithm of three MR images 

 

Essentially, the proposed GAC algorithm was tested on 54 

frames randomly chosen from the MRI database compared to 

the manually segmentation results given by Experts. The 

region measure is used to offer the difference between the edge 

detection region (BR) and the ground-truth regions (GTR) 

segmented manually by doctors. 

The evaluation measures used in this work is the region 

accuracy (RA) can be represented as follow: 

 

( )
( ) ( ) ( ) ( )

( ) ( )
% 100 1 ,

A BR A GTR A BR A GTR
RA

A BR A GTR

 −      
=  − 

    

 
(34) 

 

where, A (BR) and A (GTR) present respectively the 

segmented regions areas (BR) and (GTR). As shown in Table 

1, the performance of the proposed GAC model is compared 

to ground truth given by experts from MR image results. As 

mentioned, the performance of the PG lesion detection 

algorithm usually depends on the trade-off between rapidity 

and accurateness. 

Here, a statistical metrics such as: Mean, min, standard 

deviations, max and times of convergence are applied for the 

evaluation of the detection method performance. The average 

of these performance measures in terms of region 

segmentation accuracies using 30 images dataset is computed, 

leading to 97.35% of accuracy with a standard deviation about 

2.74. For the used MRI data sets, the proposed methodology 

is clearly hopeful in terms of region segmentation accuracies. 

Also, the performance of the proposed GAC algorithm is 

qualitatively compared to the ground truth. DSC and JC are 

respectively about an average of 93.54% and 92.89% using the 

GAC model. Furthermore, it gives a rapid mean convergence 

speed (about 1 second for each frame to detect the lesion 

boundary). 

 

Table 1. Comparison of PG lesion segmentation results using 

GAC method in term of ROI detection on MRI 

 
  The proposedGACmethod 

A
cc

u
ra

cy
 

(%
) 

Mean 97.35 

Standard deviation 2.74 

Min 86.75 

Max 98.05 

 Dice 93.54 

 Jaccard 92.89 

Total time of convergence (s) 1.24 

 

3.3 PG lesion classification results 

 

PG lesions classification stage aims to create a significant 

separation of subjects into two classes related to the degree of 

lesion progress (lesion level 1 or lesion level 2) in order to 

improve the diagnostic of PG anomalies. The deep learning 

process is divided into two important steps: The training and 

the validation. The resulting accuracies demonstrate the 

superiority of DBN-DNN proposed classifier when compared 

to the U-net, C-RNN, and standard CNN methods. From the 

obtained results revealed in Table 2, it is clear that the DNN 

classifier is more effective in term of the highest accuracy rate 

with an average of 91.76. 

The obtained classification rate presents the highest 

precision when compared with the tested approaches. Besides, 

the proposed methodology supplied an effectual 

characterization phase of the most appropriate information 

clearly distinguished the two levels of PG lesion (PGLL1, 

PGLL2). The establishment of a PG diagnosis can be 

considered as a binary decision which can be divided into four 

distinct situations (See Table 3). 

To enhance our comparative study, ROC parameters are 

evaluated in this section. ROC measures are given by [42]:  

The accuracy classification (AC) is the ratio of the total 

numbers of correctly classified test samples to the total number 

of test samples. 

 

TP TN
AC

TP FN TN FP

+
=

+ + +
 (35) 

 

The sensitivity (SE) of a diagnostic test is the number of 

subjects for whom the result is positive that are correctly 

identified by the test. 

 
TP

SE
FN TP

=
+

 
(36) 

 

The specificity (SP) is the class of subjects for whom the 

result is negative that are correctly identified by the test. 

 
TN

SP
TN+FP

=
 

(37) 

 

where, TP and TN represent respectively the number of true 

positives and true negatives, FP is the number of false 

positives and FN is the number of false negatives. 
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To significantly explain the used parameters of different 

compared methods [41], Table 4 is perceptibly established to 

summarize the employed hyper-parameters in the resulting 

classification strategies.  

The proposed strategy offers important recognition results 

in view of statistical evaluations (AC, SE and SP) with a mean 

average of 92.15%, 91.36% and 93.51%, respectively. 

Compared to different deep learning techniques, the proposed 

procedure completes a capable classification of MR images 

dataset and clearly distinguished the two parotid gland levels.  

Figure 9 presents the ROC curve to approve the 

experimental classification results. Then, in order to select the 

best classifier, a common method that can be used here is to 

compute the area under the ROC curve. The value of this area 

is fixed between 0 and 1 and it corresponds to the value 1 for 

an ideal classifier. In this work, the area under curves is equal 

to 0.87, 0.84, 0.79, and 0.76 for DNN, U-net, C-RNN and 

standard CNN respectively. 

 
 

Figure 9. Training and validation performances using our 

proposed DBN-DNN model compared to U-net, C-RNN and 

standard CNN applied on MRI datasets for two classes 

 

 

Table 2. A comparison between previous studies and the current study 

 
 Standard CNN C-RNN U-net The proposedDBN-DNN method 

Fold 1 81.54 84.67 88.72 92.82 

Fold 2 79.47 85.25 88.33 91.44 

Fold 3 80.15 83.49 87.45 92.98 

Fold 4 79.14 81.76 89.04 91.03 

Fold 5 77.69 83.35 87.23 90.55 

Mean 79.60 83.70 88.15 91.76 

 

Table 3. Parotid Gland tumor diagnostic tests 

 

 
Patients *Note: 

PGLL1: Parotid Gland Lesion L1 

PGLL2: Parotid Gland Lesion L2 

TP: True Positive 

TN: True Negative FP: False Positive FN: False Negative 

Effectively L1 Effectively L2 

Observer response 
PGLL1 TP FP 

PGLL2 FN TN 

 

Table 4. A detailed process for comparison with standard CNN, C-RNN and U-net methods 

 
  Proposed method 

Classifiers Standard CNN C-RNN U-net DBN-DNN 

 

Epoch 20 20 20 20 

Training method SBP SBP SBP SBP 

Neighbor number - - - - 

Distance function - - - - 

Threshold - - - - 

Activation function Tan-Sig Pretanh Tan-Sig Tan-Sig 

SP 81.29 84.34 90.06 93.51 

SE 81.06 82.69 89.65 91.36 

AC (%) 79.98 83.56 88.14 92.15 
*Note: SBP:Standar Back,Parametric rectified tanh : Pretanh , Tan-Sig: Tangent Sigmoid transfert function. 

 

Table 5. Summary of some studies reporting PG lesion diagnosis 

 
Literature Year Used technique Used Dataset Dice (%) PG Lesion Classification Accuracy 

Yang et al. [38] 2014 Statistical features+ SVM MRI 90.5 - 

Močnik et al. [39] 2018 CNN multimodal segmentation CT+MRI 78.7 - 

Hänsch et al. [40] 2018 U-net segmentation CT 88 - 

Proposed method - GAC+ (DBN-DNN) MRI 93.54 92.15 

 

3.4 Discussion and comparison with some previous works 

 

The majority of existing segmentation methods use atlas 

software as an integral part, of prior segmented images, and 

the propagated atlas images are then used as a basis for further 

segmentation enhancement, using statistical shape, active 

contours and appearance models. Nevertheless, in the work of 

Yang et al. [38], multiple features from subject-specific atlas 

pairs were used to train the kernel SVM based on RBF kernel. 

The proposed segmentation method could robustly 

differentiate the parotid tissue from surrounding tissues by 

statistically matching multiple texture features. However, this 

study needs to test the sensitivity of multiple features in order 

to decreasing the number of feature numbers. The proposed 
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study [39] using CNN method gives pertinent segmentation 

results of tumors and the segmentation methodology does not 

require a learning process. However, its definition is 

inconsistent. In some cases, this method may not completely 

cover some structures, and indicates an insufficient ability to 

fill some portions of the structure with non-negligible surface 

area. In the work of Hänsch et al. [40], authors presented a 

strategy of parotid gland detection using multimodal U-net 

architecture, the segmentation results are significantly better 

than those given by atlas-based methods. This demonstrates 

the high potential of deep learning-based segmentation 

methods for radiotherapy arrangement. However the learned 

features need to be trained on a larger dataset. As shown in 

Table 5, the segmentation accuracies of the proposed GAC 

method presents effective segmentation accuracies when 

compared with other considered methods from the literature. 

Evaluation measures of the proposed segmentation and 

classification approaches of PG lesion levels compared to 

other existing methods are presented in Table 5. 

 

 

4. CONCLUSION 

 

This paper deals a completely automatic method that can be 

applied for parotid gland lesion detection in different level of 

malignity in MR images. First, a consecutively pre-process 

model based on a BM3D technique was used to MR images 

filtering in order to improve the original image quality. The 

proposed method gives finest approach for parotid gland ROI 

detection. Second, a Geodesic active contour model was 

employed to PG lesion detection. Then to classify the MR 

images into two categories: PG lesion level 1 or 2 using the 

deep network classifier. The proposed methodology 

frequently supports a hard groundwork for computer-assisted 

anomalies evaluation system of an expert early diagnosis. In 

future work, we can develop deep classification methods for 

training networks using more large training data, by 

replicating and modifying existing samples to generate new 

dataset. 
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