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Machine vision is a promising technique to promote intelligent production. It strikes a 

balance between product quality and production efficiency. However, the existing metal 

surface defect detection algorithms are too general, and deviate from electrical production 

equipment in the level of response time to the target image. To address the two problems, 

this paper designs a detection algorithm for various types of metal surface defects based on 

image processing. Firstly, each metal surface image was preprocessed through average 

graying and nonlocal means filtering. Next, the principle of the composite model scale 

expansion was explained, and an improved EfficientNet was constructed to classify metal 

surface defects, which couples spatial attention mechanism. Finally, the backbone network 

of the single shot multi-box detector (SSD) network was improved, and used to fuse the 

features of the target image. The proposed model was proved effective through experiments. 
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1. INTRODUCTION

Despite the rapid progress of detection technology, manual 

quality inspection is still widely used among small and 

medium-sized enterprises (SMEs) [1-4]. However, it is 

difficult to visually identify the surface defects on metals. 

Manual quality inspection alone cannot even ensure the 

quality stability and consistency of metal products in the same 

batch, and face relatively high false positive (FP) and false 

negative (FN) [5-9]. Machine vision is a promising technique 

to promote intelligent production. It strikes a balance between 

product quality and production efficiency. However, many 

technical problems need to be overcome to detect metal 

surface defects. For example, the detection effect varies with 

the shapes and causes of metal surface defects [10-13]. 

One of the key goals of Industry 4.0 and digital production 

is to support faster, cleaner, and increasingly customizable 

manufacturing. Di Cataldo et al. [14] integrated advanced 

visual sensing technology into industrial robot systems, and 

realized the real-time quality monitoring and flow 

optimization of massive field data, using multiple time scales 

and resolutions. To improve the sensitivity of defect detection, 

Sun et al. [15] mainly adopted two techniques, namely, 

segmentation of running cycle, and integration between 

physical and mathematical models. The results on test data 

show that the adopted techniques can display whether the 

target robot is qualified or not, and guide the repair of any 

defect being detected. To detect rare defects, Gutierrez et al. 

[16] proposed a texture scanning and generation method to

render the small defects (e.g., extruding textures and small

holes) of metal parts, and evaluated the quality of generated

images by training the deep learning (DL) network, and testing

on the actual data from the manufacturer. Traditional defect

detection algorithms have difficulty in detecting the defects

with large shape changes, identifying the defects with massive

changes, and locating defects with a high accuracy. To 

overcome the difficulty, Liu et al. [17] put forward a visual 

defect detection framework based on convolutional neural 

network (CNN), and mitigated the above three problems by 

introducing three modules, namely, deformable convolution 

module, balanced feature generation module, and cascade 

header module. Lin H.I. and Lin, P.Y. [18] designed a 

composite evaluation metric for the image quality of image 

dataset, and applied it to train the defect detection model. Hu 

et al. [19] presented a generative adversarial network with the 

relative average discriminator, which is driven by dual 

attention mechanisms, to generate high-quality defect images. 

The network provides a desired solution to the lack of samples 

and imbalanced classes in the surface defect dataset of metal 

workpieces in industrial production. Zhou et al. [20] created a 

metal surface defect detection algorithm based on machine 

vision: the improved binary empirical mode decomposition 

(BEMD) algorithm was adopted to filter the complex textures 

on metal surface, thereby extracting the initial surface defects; 

meanwhile, the effective information of defects is preserved as 

much as possible. The performance of the defect detection 

algorithm was demonstrated through experiments. 

The existing metal surface defect detection algorithms are 

too general for the small defects on the surface of metal 

workpieces, and deviate from electrical production equipment 

in the level of response time to the target image. To solve the 

problems, this paper designs a novel detection algorithm for 

various types of metal surface defects. Section 2 provides a 

preprocessing method for metal surface images, which 

includes average graying and nonlocal means filtering. Section 

3 expounds on the principle of the composite model scale 

expansion, and constructs an improved EfficientNet to classify 

metal surface defects, which couples spatial attention 

mechanism. Section 4 takes the EfficientNet with spatial 

attention mechanism as the backbone network of single shot 
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multi-box detector (SSD) network, and applied it to fuse the 

features of the target image. The proposed model was proved 

valid through experiments. 

 

 

2. METAL SURFACE IMAGE PREPROCESSING  

 

Component method, maximum method, average method 

and weighted average method are the most common image 

graying approaches. This paper chooses the commonly used 

average method to gray the collected metal surface defect 

images. Similar to the maximum method, the average method 

defines the gray value of an image pixel as the mean brightness 

of the three components: red (R), green (G), and blue (B): 
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This paper aims to detect different types of metal surface 

defects. The detection results might be affected by any slight 

noise produced in image transmission. Here, the target image 

is processed by nonlocal average filtering, which can denoise 

the redundant information that are prevalent in natural images. 

Unlike the traditional denoising method, the nonlocal 

average filtering algorithm removes the noises of the entire 

image, and searches for the areas in the target image that are 

similar to defect templates, using each image block as the unit. 

After the search, the similar areas are averaged. This filtering 

algorithm can effectively eliminate the Gaussian noise in the 

image. Let NEa be the neighborhood of pixel a in the target 

image, i.e., the search area of pixel a; q(b) be the noisy original 

target image; θ(a, b) be the weight of the similarity between 

pixels a and b in the image. Then, the nonlocal average 

filtering can be expressed as: 
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where, θ(a, b) falls in the following range: 
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Formula (3) shows the value of θ(a, b) must be greater than 

zero, and all the weights should add up to 1. Let EU(a, b) be 

the Gaussian weighted Euclidean distance between the 

neighborhoods of pixels a and b. Then, θ(a, b) can be further 

derived from EU(a, b): 
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Let ε be a positive standard deviation of Gaussian kernel. 

Then, EU(a, b) can be calculated by: 
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3. METAL SURFACE DEFECT CLASSIFICATION 

BASED ON COMPOSITE MODEL SCALE 

EXPANSION 

 

 
 

Figure 1. Illustration of composite model scale expansion 

method 

 

Figure 1 illustrates composite model scale expansion 

method. The benchmark model was compared with four 

mesoscale expansion methods, including width scaling, depth 

scaling, image size scaling, and composite scaling. The depth, 

width, and input resolution of EfficientNet can be weighed 

based on a unified proportionality factor, that is, the three 

parameters can be balanced in the same CNN. Let N be the 

CNN; Bi=Hi(Ai) be the i-th convolutional layer of the network; 

Ai and Bi be the three-dimensional (3D) input and output 

tensors of the image, respectively. Then, the CNN M 

composed of only 1 convolutional layer can be expressed as: 

 

( ) ( )2 1 1 1... 1...l j l jM H H H A H A==    =  (6) 

 

However, actual image processing networks all adopt 

multiple identical convolutional layers. Here, the identical 

convolutional layers are considered as a stage, whose number 

is i (i=1, 2, …, r). Let <Fi, Ui, Di> be the dimensions of the 3D 

input tensor Ai of the i-th convolutional layer image, where Fi 

and Ui are the spatial dimensions of the feature map, and Di is 

the channel dimension. Let HKi
i be the component of the i-th 

convolutional layer Hi repeated Ki times. Then, the CNN M 

can be expressed as: 
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The image space can be reduced by determining Hi in 

EfficientNet algorithm, that is, the detection accuracy of 

defects can be maximized under a poor computing ability of 

hardware equipment by scaling each block evenly in three 

dimensions by a constant proportion. Let c, u, and s be the 

width coefficient, depth coefficient, and image resolution 

coefficient of the neural network, respectively. The objective 

function of accuracy rate (AR) optimization can be given by: 
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where, ME is the target memory limit; FL is the floating-point 

operations per second (FLOPS) limit. To optimize the defect 

detection effect, this paper adopts composite scaling method 

to proportionally scale c, u, and s in EfficientNet, striking a 

balance between the three. The first step is to determine the 

constrained optimal parameters δ, ξ and λ that measure the 

proportions of c, u, and s. Since c and s have a square 

relationship with network computing load, while u and s do 

not have such a relationship, square processing was only 

implemented on the constraints of ξ and λ. 

This paper introduces parameter ψ, which satisfies all three 

dimensions, to optimize the balance between c, u, and s. To 

facilitate FLOPs calculation and minimize the computing load 

of the neural network in the search of optimal solution, the 

values of the three coefficients should be constrained at the 

same time: δ2.ξ2.λ2≈2 and δ≥1, ξ≥1, and λ≥1. The specific 

constraints can be expressed as:  
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 (9) 

 

where, DE, WI, and RE are the constraints on width, depth, 

and image resolution, respectively. As shown in formula (9), 

δ, ξ, λ, and ψ are a set of constants and a constant term found 

by the neural network. 

Image convolution, a local operation, pays insufficient 

attention to the input target image. By introducing the 

computationally-efficient spatial attention mechanism, this 

paper optimizes EfficientNet algorithm to increase the 

projected area of each pixel of the feature map outputted by 

each neural network layer onto the original image, aiming to 

improve model performance. 

Figure 2 illustrates the structure of spatial attention module. 

This paper firstly transforms the feature map with three 

convolutional layers (kernel size: 1×1). The transformation 

function can be expressed as: 
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To facilitate the next operation, the matrices x(a) and y(a) 

obtained through the transformation of the convolutional layer 

need dimensional variation. The dimensionally-changed 

matrices were then multiplied with each other to obtain a 

feature map of the size UF×UF. Then, the spatial attention map 

can be further generated by softmax function:  
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T
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R
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 (11) 

 

where, Rv-t is the relationship between pixels v and t on the 

feature map. The spatial attention could be composed of Rv-t. 

Feature fusion is needed to obtain the feature map after the 

spatial attention transform. Using the convolutional layer with 

the kernel size of 1×1, matrix z(a) can be obtained. The feature 

fusion map can be obtained by multiplying matrix z(a) with Rv-

t. Then, a coefficient ξ was introduced to multiply with the 

feature fusion map, and then superposed on the original feature 

map av: 

 

( )( )1

UF

v v v t vt
OU a R z a −=

= +    (12) 

 

where, ξ is initialized as zero. The ξ value should be gradually 

increased to improve the effectiveness of attention on features. 

In theory, the additional spatial attention module is stochastic, 

and capable of processing channels and matrix information at 

the same time. 

 

 
 

Figure 2. Structure of spatial attention module 

 

Table 1 shows the structure of the EfficientNet with spatial 

attention mechanism, where Conv1 and Conv6 represent the 

scale expansion ratios of 1 and 6, respectively. 

 

 

4. IMPROVED SSD FOR METAL SURFACE DEFECT 

DETECTION 

 

This paper takes the EfficientNet algorithm coupled with 

spatial attention mechanism as the backbone network of SSD 

network, and fuses the features of the target image. In this way, 

the network becomes more capable of expressing and 

detecting the defects in the image. 
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4.1 Model construction 

 

The SSD network, as a single-stage target detection network, 

can detect defects quickly and accurately, and meet the 

requirements of real-time detection. The target detection effect 

of SSD network is better than you only look once (YOLO) and 

Faster Region-Based CNN (R-CNN). 

To enhance feature extraction ability, the SSD network with 

multiscale feature maps has a customized convolutional layer 

after each convolutional layer, and sets default boxes of 

multiple sizes for the target to be detected. The weak defects 

on metal surface are recognized by small feature maps, while 

the salient defects are recognized by large feature maps. 

 

Table 1. EfficientNet structure with spatial attention mechanism 

 
Stage i Operation Hi Layer Li Channel Di Resolution Fi×Ui 

1 Conv 3×3 1 32 224×224 

2 Conv1 3×3 1 16 112×112 

3 Conv6 3×3 2 24 112×112 

4 Conv6 5×5 2 40 56×56 

5 Conv6 3×3 3 80 28×28 

6 Conv6 5×5 3 112 15×15 

7 Conv6 5×5 4 192 14×14 

8 Conv6 3×3 1 320 7×7 

9 Spatial attention module 1 320 7×7 

10 Conv 1×1 & pooling & fully-connected layer 1 1280 7×7 

 

 
 

Figure 3. Structure of SSD network 

  

Figure 3 shows the structure of SSD network. The 

multiscale feature map of SSD network is mainly extracted 

from the newly added convolutional layers. A total of six 

feature maps could be extracted, including Conv7, Conv8_2, 

Conv9_2, Conv10_2, Conv11_2, and Conv4_3. The sizes of 

the six feature maps are (38, 38), (19, 19), (10, 10), (5, 5), (3, 

3), and (1, 1), respectively. The scale and aspect ratio of the 

priori box were configured based on the linear increasing rule. 

The number of priori boxes in each unit varies with the feature 

maps. 

With each point on the feature map as the center, concentric 

default boxes of different scales were generated. With the 

growing number of pooling layers, the visible range of the 

feature map gradually increased, while the map size gradually 

decreased. However, the scale Ol of the default box increased 

linearly. Let Omin, and Omax be the scales of the bottom layer 

and the top layer, respectively. Then, Ol can be calculated by: 

 

( )  1 , 1,
1

max min

l min

O O
O O l l n

n

−
= + − 

−
 (13) 

 

The six default boxes of various sizes can be obtained by 

the above formula (13). The default aspect ratio βS of the 

default boxes can be described as:  

1 1
1,2,3, ,

2 3
S

 
 
 

 (14) 

 

Let EB and TA be the effective width and actual height of 

each default box, respectively. We have: 

 

l l S

l

l

S

EB O

O
TA









 =



=


 (15) 

 

For the EfficientNet algorithm with spatial attention 

mechanism, the SSD network has the following convolutional 

layers: Conv7, Conv15, Conv22, Conv23_2, Conv24_2, and 

Conv25_2, whose sizes are (28, 28), (14, 14), (7, 7), (5, 5), (3, 

3), and (1, 1), respectively. Based on focal loss function, the 

improved SSD network applies to the mining of difficult 

samples with weak metal surface defects. 

During the design of network loss function, two 

convolutional layers with kernel size of 3×3 were introduced 

in turn to compute the output of a specific convolutional layer 

in the network. The loss function of the network is the 

weighted sum of confidence error and position error. Let MPS 
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be the number of positive samples in the matched default box; 

d be the predicted class confidence; k be the predicted 

boundary coordinates of the default box; p be the location 

parameter of the actual box; LossRE and LossPO be the 

confidence error and position error of metal surface defects, 

respectively; γ be the weight coefficient obtained through 

cross validation. Then, the loss function can be obtained by: 

 

( )

( ) ( )( )

, , ,

1
, , ,RE PO

PS

Loss a d k p

Loss a d Loss a k p
M

= +
 (16) 

 

where, the confidence error LossRE is generally calculated 

based on softmax error: 
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where,  
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t
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e
=
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(18) 

 

at
ij is a binary function; if at

ij=1, default box i matches with 

the ground truth box j in sample class t; if at
ij=0, the two boxes  

do not match with each other. 

The position error LossPO is calculated by Smooth L1 loss: 
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al
ij is also a binary function; if al

ij=1, default box i matches 

with the ground truth box j in sample class 1; if at
ij=0, the two 

boxes do not match with each other. Suppose the predicted 

boundary coordinates k of the default box is the coded value. 

The position parameter p of the ground truth box needs to be 

encoded to obtain the parameter values of formula (20).  

Let e be the difference between ground truth box and 

predicted box. Then, Smooth L1 loss function SLL1(a) can be 

given by: 

 

( )
1

20.5       1

0.5    
L
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SL e
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During metal surface image processing, the input target 

image is mostly the background of metal surface, that is, the 

defect area occupies a very small portion in the target image. 

If the background is overfitted, it would be very likely for the 

network fail to converge. Focal loss can effectively overcome 

the serious imbalance between positive and negative samples 

in target detection, such that the neural network will not over-

predict the background samples, but focus on the learning of 

difficult samples with weak surface defects. Let b be the result 

of activation function, which falls in [0, 1]. Then, the focal loss 

can be calculated by: 

 

( ) ( ) ( )' 1 1 'FL blog b b log b= − − − −  (22) 

 

When there is a huge amount of image data, the loss  

function will consume a long time in continuous calculation. 

This paper modifies the focal loss function with binary cross 

entropy:  

 

( ) ( ) ( )1GD t log


     = −  (23) 

 

Let ητ be the probability of detecting images with 

differences; υ be a constant falling in (0, +ꝏ); κτ be the 

adjustment factor for the proportion of positive samples to 

negative samples in all samples; κτ and 1-κτ be the class of 

foreground and the class of background, respectively. Both κτ 

and 1-κτ are probabilities within [0, 1]. The above analysis 

shows that υ and κτ are constants, that need not to be trained 

during network training. 

 

4.2 Feature fusion 

 

The SSD network lacks information interaction between 

low- and high-level features. Drawing on the idea of feature 

pyramid network (FPN), this paper reconstructs a neural 

network that fuses high- and low-level features. The backbone 

network can simultaneously extract high-level semantics, and 

fuse the features of some high-level information and low-level 

information. 

The traditional feature layer fusion mainly involves two 

operations: concatenate and add. The former combines the 

channels of multiple feature maps of the same size, while the 

latter superimposes the feature information of the pixels on the 

feature maps of the same size. Based on concatenate operation, 

add operation shares convolution kernels, reduces the 

computing load in the case of feature maps with wide channels, 

and effectively improves detection speed. This paper chooses 

add operation to fuse the metal surface defect features: 

 

( )
1 1 1

h h h

ADD i i i i i i i

i i i

WS u A B Au B u
= = =

= + = +    (24) 

 

 
 

Figure 4. Structure of improved SSD feature fusion network 
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During neural network reconstruction, the feature fusion of 

Conv10_2, and Conv11_2 does not improve the detection 

effect. In actual practice, the two features may not be fused. 

Figure 4 shows the structure of the improved SSD feature 

fusion network. It can be inferred that, the add operation can 

integrate the different backbone networks of SSD with FPN. 

The integration will not increase the dimension of feature map, 

but embed richer information to the feature map on the lower 

level. In this way, the recognition performance will be 

improved for metal surface defects. 

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

This paper evaluates defect detection effect with accuracy, 

precision, and recall. Let TP and TP be the number of correctly 

and incorrectly detected metal surface defects of the same type, 

respectively; TN be the number of correctly detected and 

judged metal surface defects of other types; FN be the number 

of failures in detecting any metal surface defect of any type. 

Then, the accuracy AC, which reflects whether the correct 

result is detected, can be calculated by: 

 

TP TN
AC

TP TN FP FN

+
=

+ + +
 (25) 

 

The precision, PR, which judges whether the detection 

result is an actual defect, can be calculated by: 

 

TP
PR

TP FP
=

+
 (26) 

 

The recall, RE, which judges whether the positive samples 

in the original image are detected as positive samples: 

 

TP
recall

TP FN
=

+
 (27) 

 

 
 

Figure 5. Accuracies of defect detection with different width 

coefficients 

 

The same depth coefficient was configured for the neural 

network. Figure 5 shows the detection accuracies of different 

types of metal surface defects by EfficientNet scaled with 

different width coefficients. It can be learned that, if network 

depth coefficient u and image resolution coefficient s are fixed, 

and only width coefficient c is adjusted, the network accuracy 

of defect detection will soon saturate. If the depth coefficient 

u is fixed, while resolution coefficient s and width coefficient 

c are adjusted, the defect detection would be more accurate 

than that under single-dimensional scaling with the same 

computing cost. To sum up, the three dimensions should not 

be blindly expanded. Instead, the scales of different 

dimensions should be weighed carefully, such as to realize an 

ideal detection accuracy and the best network efficiency.  

The EfficientNet with spatial attention mechanism was 

adopted for network training, in the light of the size of metal 

surface image, and the limitation of computing resources. To 

compare the EfficientNet qualities before and after the 

addition of spatial attention, this paper configures the same 

parameters values for the contrastive networks. Under the 

premise of ensuring model efficiency and detection accuracy, 

the authors analyzed only how the addition of spatial attention 

influences the network. Every other model parameter was 

obtained in reference to accuracy and loss function. If the two 

reference metrics are stable at the same time, the selected 

model has the optimal number of iterations. Figures 6 and 7 

show the accuracy and loss curves of network models on 

training set and test set, respectively. It can be observed that, 

after 30 iterations, the accuracy and loss of the EfficientNet 

coupled with spatial attention tended to be stable. Further 

comparison shows the addition of spatial attention pushed up 

the network detection accuracy, and reduced the loss function. 

 

 
 

Figure 6. Accuracy curve of EfficientNet with spatial 

attention mechanism 

 

 
 

Figure 7. Loss curve of EfficientNet with spatial attention 

mechanism 

 

1076



 

Next, the accuracy of the proposed network was compared 

with that of common defect classification and recognition 

models, aiming to demonstrate the effectiveness of 

EfficientNet more intuitively with attention mechanism in 

detecting different types of metal surface defects. The 

contrastive models include 1-VGG16, 2-ResNet50, 3-

MobileNetV2, and 4-traditional EfficientNet. Figure 8 

compares the detection accuracies of different models. Table 

2 presents the detection accuracies, theoretical computing 

loads, and parameter quantities of different models. It can be 

seen that the addition of spatial attention mechanism to 

EfficientNet not only enhanced the key features of the defects 

of different types in the target image, but also ensured the 

information exchange between feature maps on different 

levels, thereby achieving better detection effect on metal 

surface defect image set. 

 
 

Figure 8. Detection accuracies of different models 

 

Table 2. Comparison of experimental results 

 
Model Theoretical computing load FLOPS Parameter quantity Detection accuracy 

Model 1 267.4M 135.7M 72.56 

Model 2 48.9M 24.7M 92.79 

Model 3 4.8M 2.5M 89.20 

Model 4 13.5M 6.7M 97.67 

Our model 13.5M 6.7M 98.21 

 

Next is to verify the effectiveness of adopting improved 

SSD network to detect different types of metal surface defects. 

For this purpose, the non-maximum suppression layer, a key 

layer in the network, was verified first. Figure 9 shows the 

detection process of different types of metal surface defects: 

Initially, lots of default boxes are obtained, and the positive 

defect samples in the target image are marked in red boxes; 

Next, network detection, regression, and top-k selection are 

performed to effectively reduce the boxes for positive samples 

of defects; Finally, non-maximum suppression is carried out 

to re-filter the default boxes, and obtain the detection results 

on defects. The iterative execution of non-maximization 

suppression can optimize some bounding boxes that are 

partially repetitive, incorrect, or inaccurate. 

Table 3 compares the experimental results of FPNs with 

different backbone networks. The contrastive neural networks 

include VGG16, VGG16 coupled with FPN, and improved 

SSD. It can be observed that the two backbone networks 

improved VGG16 and improved SSD achieved better 

detection time per target image and mean detection precision 

than VGG16 and SSD, thanks to the improvement of FPN 

coupling. In particular, the SSD improved by FPN in this paper 

reached the mean detection precision of 90%, and a single-

image detection speed of 41.8ms, on metal surface defect 

image set. The performance could satisfy the ideal detection 

needs. The original SSD, which is not improved by FPN, was 

5% smaller in mean detection precision, and 4.9 ms longer in 

detection speed, than our network. The results confirm the 

superiority of our algorithm. 

 

Table 3. Experimental results of FPNs with different 

backbone networks 

 
Model structure Mean precision Detection time 

VGG16 62% 128.6 

Improved VGG16 68% 127.9 

SSD 85% 46.7 

Improved SSD 90% 41.8 

 

 
 

Figure 9. Detection process of different types of metal 

surface defects 

 

 

6. CONCLUSIONS 

 

This paper explores the detection of various types of metal 

surface defects based on image processing. Firstly, the 

preprocessing method was given for metal surface images. 

Next, the EfficientNet was improved by adding the spatial 

attention mechanism for metal surface defect classification. 

After that, the backbone network of SSD was improved to 

realize feature fusion of the target image. Through 

experiments, the same depth coefficient was set for neural 

networks, and the detection accuracies of different types of 

metal surface defects were recorded for EfficientNet scaled 

with different width coefficients. The experimental results 

demonstrate that the scales of different dimensions should be 

weighed carefully, such as to realize an ideal detection 

accuracy and the best network efficiency. Furthermore, the 

accuracy and loss curves of network models on training set and 

test set were plotted, and a comparative experiment was 

conducted to verify that the network with attention mechanism 

achieved better detection accuracy than the original 
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mechanism. Finally, the superiority of our algorithm was 

verified through comparison between FPNs with different 

backbone networks. 
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