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Structured video captioning is a fundamental yet challenging task in both computer vision 

and artificial intelligence (AI). The prevalent approach is to map an input video to a variable-

length output sentence with models like recurrent neural network (RNN). This paper 

presents a new model based on an improved scene-aware bidirectional long short-term 

memory network (SABi-LSTM), and names the model as label importance ranking with 

entropy variation complex networks of structured video captions. Structured video 

captioning is a three-level structured system, including a multi-feature fusion level, an 

SABi-LSTM level, and a label importance ranking level. The system decomposes structures 

of multiple levels and dimensions from different perspectives to perform video captioning. 

This work affirms the theoretical and practical significance of label importance ranking to 

video caption generation, and regards entropy as a local level metric to quantify label 

importance. Hence, entropy variation was proposed to define label importance, namely, the 

variation of the network entropy through label removal. It is assumed that the removal of an 

important label could cause sustainable variation to the structure. Hence, the authors defined 

the label importance ranking with entropy variation complex network algorithm to calculate 

the weight model of label nodes marked by video, and obtain the final caption of the video. 

Empirical results on Microsoft Video Caption (MSVD) dataset and MSR-Video to Text 

(MSR-VTT) dataset demonstrate the superiority of our approach for structured video 

captioning, especially on MSVD dataset. 
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1. INTRODUCTION

The development of mobile Internet enables various media 

to disseminate information. In the era of mobile Internet, video 

becomes an important carrier of information, and video 

analysis attracts more and more attention. With a complex 

structure, video usually contains a huge amount of data with 

rich features. Describing video in natural language is trivial for 

human beings, but thorny for machines. Many problems need 

to be solved in order to effectively process multimedia videos, 

and fully understand the relevant data.  

Computer vision has developed rapidly thanks to the 

proliferation of neural networks and emergence of various 

open-source datasets. Against this backdrop, there are two 

trends in the development of video interpretation and 

processing technology: video classification, and video 

captioning. For video classification, a video clip can be 

classified by spatiotemporal features of image frames or 

action-containing videos [1-3]. For video captioning, the aim 

is to dividing each image into multiple regions, and label 

meaningful phrases or sentences. At present, video captioning 

and its application are still in the preliminary stage [4-7].  

With the advancement of deep learning (DL) frameworks, 

most scholars have tried to caption videos with an encoding 

and decoding structure: the video features are often extracted 

by a convolutional neural network (CNN), the video codes are 

transformed into a semantic eigenvector, the statements are 

treated as a sequence generation process, and the words and 

sentences are generated iteratively by the neural network, 

using context information. But video captioning faces a 

challenging problem: The video captioning algorithm needs to 

detect the moving people or objects in the video based on 

moving speed and direction, and describe them with accurate 

words. However, it is difficult to automatically detect the few 

important people or objects in a long video, which often 

involves multiple interrelated events. Only these people or 

objects need to be described by relationships.  

To improve the video captioning quality, this paper presents 

a novel structured video captioning model based on entropy 

variation complex networks. The proposed model firstly 

extracts multiple features from the video, including the feature 

of each static frame, the existence of objects in the frame, and 

the spatiotemporal features of the whole video, and then stitch 

the extracted features into a natural caption statement, 

according to the feature lengths of memory encoding and 

decoding network. Next, a new video boundary-aware 

bidirectional long short-term memory network (BiLSTM) was 

designed to identify the discontinuities in video frames, and to 

better encode a video with multiple actions. After that, entropy 

variation complex networks were introduced to generate 

captions, making the generated statements more certain, and 

the video captions more accurate. Different feature extraction 

methods with multiple modes and video features were adopted 

to obtain more information, thereby adaptively controlling the 

effects of different modal features on word generation, 

acquiring more video contents, and generating richer 
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descriptive texts. Then, natural language information was 

derived from word entropy, and natural expressions were 

obtained to enhance the generalization and practicality of our 

model. Finally, our model was proved better than other 

approaches on MSVD and MSR-VTT datasets. 

 

 

2. LITERATURE REVIEW 

 

The existing video captioning methods generally adopt one 

of the following four strategies [8]: (1) Assigning the words 

detected in visual contents to each sentence fragment, and 

generating video captions based on the predefined language 

template; (2) Learning the probability distribution of the joint 

space composed of visual contents and text sentences; (3) 

training the attribute detector through multi-example learning, 

and generating video captions by a maximum entropy 

language model based on the output of the detector; (4) 

integrating the semantic features mined from the frame 

sequence into video captions, using a CNN/circular CNN 

(CCNN) with a simple linear transfer unit. The first strategy 

depends heavily on the template, and generates sentences of a 

fixed structure. The second strategy outputs sentences with a 

flexible syntactic structure. Unlike these two strategies, the 

third and fourth strategies consider the semantic features in 

video captions, but fail to deeply integrate the semantic 

features in different domains.  

When it comes to the sequence-to-sequence learning part, 

early studies on automatic captioning of visual contents are 

mostly grounded on templates [9-11]. These template-based 

approaches can be regarded as a bottom-up method, which 

generates video captions in two steps: generating visual 

content descriptors from local features through object 

detection; and filling the generated words into the predefined 

language template, and selecting the sentence with the highest 

probability of occurrence, using the probabilistic language 

model. The LSTM is capable of processing sequential data 

from the video. Venugopalan et al. [12] combined a deep CNN 

(DCNN) with LSTM to learn spatiotemporal features of the 

video: The two-dimensional (2D) network features are 

extracted by CNN encoder; the features of all frames are 

averaged to obtain the vector representation of video contents; 

the features are sequentially imported to LSTM to parse the 

dynamic video information. This hybrid approach marks a 

pioneering progress in video captioning. However, the 

averaging of image features ignores the timing features of the 

video [13]. The sequence-to-sequence video to text (S2VT) 

model further encodes the sequence of frame features with an 

LSTM encoder, and generates a high-quality representation 

vector of video contents, for the chain structure of LSTM is 

similar to the structure of the frame sequence. During the 

experiments, the order of frames in the sequence were shuffled 

randomly, highlighting the importance of sequence 

stationarity. The main defect of S2VT is the insufficient use of 

local information. The model performance mainly depends on 

the expression ability of global features. If the length of video 

objects varies from tens of seconds to tens of minutes, it would 

be difficult to obtain expressive image features with CNN. 

Besides, local information tends to be lost, when the 

expression ability of features is limited. Jin et al. [14] fused 

various types of features, namely, image features, video 

features, and species features, to represent the video, and 

obtained accurate results with the abundance of extracted 

features. Pasunuru et al. [15] proposed a multi-task learning 

method, including unsupervised frame prediction, synonym 

generation, and caption generation, for video captioning, to 

reshare features and parameters in the three tasks, thereby 

improving the model accuracy. 

As for the natural language processing part, HALogen 

representation [15, 16], head-driven phrase structure grammar 

(HPSG) [17], and document planner [18] define the 

description rules for the structure of language expressions, 

ensuring the grammatical correctness of the generated 

sentences. Following production rules, the syntax can generate 

lots of different configurations from a relatively small 

vocabulary. With the aid of DL, Rohrbach et al. [19] proposed 

an LSTM encoder and decoder with conditional random field 

(CRF), which integrates probability distribution in language 

processing to generate statements. Huang et al. [20, 21] added 

attention mechanism to image captioning. Chen et al. [22, 23] 

processed natural languages in video captioning, focusing on 

image objects. Most strategies in the last two years, such as 

dual-stream recurrent neural network, object relational graph 

(ORG) with teacher-recommended learning (TRL), and 

spatio-temporal graph with knowledge distillation (STG-KD) 

[24-26], are optimized with features of video images. Few of 

them take the natural captioning of sentences into full 

consideration. Thus, the importance of natural language 

processing in video captioning is seriously underestimated. 

The importance of nodes is often ranked by the information 

on network structure [27-29]. One of the basic tools to capture 

the structure information of complex networks is entropy [30, 

31]. This paper proposes a comprehensive evaluation method 

of node importance based on relative entropy, which optimizes 

the sentence captions using different centrality indices through 

linear programming. Rather than directly indicate node 

importance ranking, relative entropy is a hybrid metric that 

integrates the importance ranking of existing nodes. The 

expected force is a node attribute derived from local network 

topology, and could be approximated as the entropy of 

forwarding connectivity of each transmission cluster. On this 

basis, a video captioning model was designed based on 

multiple modes and information entropy. Apart from 

integrating multi-mode features, the statement effect 

generated by video captioning was optimized according to the 

principle of information entropy, such that the captions are 

smoother and more consistent with video expression. 

 

 

3. METHODOLOGY 

 

The research roadmap is shown in Figure 1 below. 

(a) Label importance ranking with entropy variation (label 

importance is defined as the variation of network entropy 

through the removal of the label, assuming that the removal of 

an important node could cause substantial variation in network 

structure) 

(b) SABiLSTM encoding unit 

(c) Multi-feature processing (a semantic network is 

constructed using entropy variation complex networks, and 

feature words are sorted in descending order of hybrid 

eigenvalues to generate descriptive statements) 

(d)Whole image processing (the three-level structured video 

captioning system decomposes the structures of multiple 

levels and dimensions from different perspectives to establish 

the topology of video captioning network) 
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Figure 1. Research roadmap 

 

3.1 Feature selection of entropy-based complex networks 

 

3.1.1 Construction of complex networks  

Each complex network is composed of nodes and edges. 

The smallest unit that represents the complete semantic 

information in a text is a sentence. Hence, this paper treats 

sentences as nodes, and analyzes the structural features of a 

text with sentences as the unit. Edges are defined as the 

connections between two sentences with a common noun. The 

two sentences linked up by an edge may elaborate on the same 

topic, or convey supplementary information on the same topic. 

Although they might contain redundant information, the two 

sentences are highly similar in contents. Based on the common 

noun relationship of sentence pairs, it is possible to build a 

complex network for the target text. 

After preprocessing, the nouns in each sentence are mapped 

to the network. Then, two matrices A and W could be defined, 

representing adjacency matrix and n-order matrix weight (N is 

the number of nodes), respectively. In matrix A, if there is an 

edge between nodes i and j, then Aij equals 1, and any other 

item equals zero. In matrix W, wij is the number of occurrences 

of common words between i and j. 

The original text should be preprocessed before 

constructing the weighted complex network. The 

proprocessing technqiues include word segmentation, word 

extraction, and the filtering of meaningless workds (e.g., pause 

words). If the text is in English, the feature words need to be 

restored to the prototype form, that is, the set of feature words 

should be extracted from the text.  

The edges are assigned between nodes by Cancho and 

Solé’s method, that is, an edge is added between the keywords 

in a sentence that spans no greater than 2 keys, and the weight 

of the edge spans no greater than 2 co-occurrences. In this way, 

a text can be transformed into a weighted complex network. 

For a given text T, the internal keys are treated as nodes in a 

network of V = (v1, v2,...,vn), where Vi is a keyword, according 

to the edges between key nodes: 

 

 (1) 

In this way, a weighted complex network can be constructed 

as G=(V, E, W). 

 

3.1.2 Weighting of entropy variation in complex networks 

Based on entropy-weighted complex networks, the text 

captioning algorithm needs to model the text as an entropy-

weighted complex network, and then analyze each network 

node that represents a feature word. In addition, the feature 

words with a large composite eigenvalue will be extracted as 

the keywords of the text. According to complex network 

theories, the nodes with a large composite eigenvalue tend to 

cluster in local modules, and play a key role in linking up the 

nodes within the entire network, increasing the density and 

intensity of network edges. To calculate the composite 

eigenvalue of each node, our algorithm fully considers the 

weighted clustering coefficient and the number of intermediate 

nodes, and extracts the nodes with a large composite 

eigenvalue from the weighted complex network. The 

corresponding feature words are the keywords of the text. The 

algorithm flow is detailed below. 

Step 1. Input the original text T for keyword extraction. 

Step 2. Preprocess the original text, and extract the feature 

words. 

Step 3. Take each feature word as a network node, connect 

the words in the same sentence with a span no greater than 2 

with edges, and weigh each edge with the co-occurrence of 

words, creating a weighted complex network. 

Step 4. Pair the nodes in the weighted complex network, 

compute the weighted clustering coefficient of nodes, the 

number of intermediate nodes, and the composite eigenvalue 

CP of network nodes: 

 

 

(2) 

 

where, α is an adjustable parameter; N, is the number of nodes 
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importance of a node, 𝑃𝑖 =
1

∑ 𝑑𝑖
𝑁
𝑗=1

. 

Step 5. Sort the feature nodes in descending order of 

eigenvalue, extract the first k feature words with a large 

composite eigenvalue, and take them as the k keywords of the 

text. 

Step 6. Output the k keywords of the text. 

 

3.1.3 Application of entropy variation complex networks 

In our model, the semantics obtained by the SABi-LSTM 

are built into a semantic network, with each feature word as a 

node, and an edge between each pair of words spanning no 

greater than 2. The number of word co-occurrences is the 

weight of each edge. In the resulting weighted complex 

network, the weighted clustering coefficient of node v can be 

calculated by formula (1), and the intermediate nodes of node 

v can be computed by formula (2). After that, the CP value of 

the node is calculated, and the feature words are sorted in 

descending order by that value. Eventually, these keywords 

are constructed into description statements. 

 

3.2 Multi-feature fusion 

 

The flow of multi-feature fusion is depicted in Figure 2. 

Linear and nonlinear mappings have little difference in the 

case of high-dimensional data. But linear classification or 

regression usually achieves better results at a faster speed. 

After the high-dimensional features are extracted from the 

video, linear mapping is performed to reduce the dimensions 

of the features, and realize bidirectional labeling of the video 

and sentences.  

 

 
 

Figure 2. Multi-feature fusion 

 

This paper fuses the multiple features of the video, which 

belongs to the intermediate level of information fusion. The 

basic theory of feature fusion is information fusion theory. 

Information fusion refers to the comprehensive processing of 

multi-source heterogeneous data, laying the basis for joint 

decision-making.  

Taking video recognition as a pattern classification problem, 

the video features can be fused under two empirical 

assumptions: (1) Multi-feature fusion tends to improve the 

classification performance from that based on a single feature; 

(2) Multi-feature fusion is the starting point of pattern 

classification, while single feature is the guide for the selection 

of multiple image features.  

Feature fusion directly employs the current feature 

extraction algorithm to mine multiple features from the video 

than a single feature. This approach is much less costly than 

redesigning the features or the feature extraction algorithm. 

Different feature descriptors, such as red-green-blue (RGB) 

feature, and light flow motion, are utilized comprehensively to 

illustrate different aspects of the video, breaking the limitation 

of single feature-based content captioning. The multi-feature 

fusion is realized in two steps. 

Step 1. Feature stitching 

During feature extraction, each model uses a vector F to 

represent the whole video, and to splice the features extracted 

from various models. Then, Ffusion is directly assembled by 

selecting the combination of these features. The video feature 

imported to the natural language captioning model. 

Step 2. Weighted summation 

The features extracted from different models are aligned by 

length, and trainable weight vectors are set for weighted 

summation of the features. Then, the fused features are 

imported as video features into the natural language captioning 

model: 

 

 (3) 

 

where, Ffusion is the final fused feature; m is the number of 

features being used, ∑ 𝑤𝑖
𝑚
𝑖=0 = 1. 

 

1 1 2 2F ( )T

fusion m mWF w F w F w F= = + + +
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3.3 Video boundary-sensing BiLSTM encoding unit 

 

This paper proposes a new LSTM unit to identify the 

discontinuities in video frames, i.e., the discontinuities 

between actions, such as to better encode a video with multiple 

actions. For a given input video, the video encoder can output 

a sequence (s1,s2,…,sm) for the entire video based on the input 

(x1,x2,…,xn). In the encoder, the connection between layers 

varies with the current input and hidden state. 

Then, a scene- aware loop unit is defined to modify layer 

connectivity over time. Whenever the action changes, the 

hidden state and cell memory of LSTM are reinitialized, and 

the hidden state of the output layer is exported at the end of the 

segment, i.e., the feature output of the current image. Hence, 

the input data following time boundaries are not affected by 

the contents before the boundaries, and a hierarchical 

representation of the video is generated, where each block 

encompasses similar frames. 

 

 
 

Figure 3. Time connections determined by the scene-aware encoder and the common LSTM encoder 

 

Figure 3 compares the time connections determined by the 

scene-aware encoder and the common LSTM encoder. Our 

encoder is based on LSTM unit, which can learn patterns with 

wide time dependence. At the core of the encoder lies a storage 

unit, capable of preserving the observed inputs in a time step.  

The memory is updated under the control of three gates, all 

of which are combinations of the current input and the 

previous hidden state, followed by the sigmoid activation 

function. The input gate controls the addition of input to the 

memory; the forget gate controls what the unit forgets; the 

output gate controls whether the current memory should be 

outputted. 

In each time step, the hidden state and storage location are 

transferred to the next time step, or reinitialized according to 

the detected state. Hence, the seamless update and processing 

of the input sequence are interrupted. The boundaries of each 

block are derived by a learnable function, which varies with 

the inputs. Finally, the scene-aware encoder is established as a 

linear combination the current input and the hidden state, 

followed by the activation function, a combination of sigmoid 

function and step function: 

 

 

(4) 

 

 

(5) 

 

where, vT
s is a learnable row vector; Wsh and bs are learning 

weight and bias, respectively. 

Let st be the state before unit update. According to the state, 

the hidden state and memory unit at the start of a new segment 

will be transferred or reinitialized:  

 

(6) 

 

 

(7) 

 

 

(8) 

 

 

(9) 

 

 

(10) 

 

 

(11) 

  

 

(12) 

 

 

(13) 

 

where, ⊙ is the Hadamard product; σ is an S-shaped function; 

ϕ is the hyperbolic tangent function tanh; W* is the learning 

weight matrix; b* is the learning bias vector. The internal state 

h and the memory unit C are initialized as zero. 

Then, the gates are recalculated from the resulting state and 

memory unit, and adopted for the next time step. The encoder 

generates output only at the end of the segment. If St=1, the 

hidden state of time step t-1 will be passed onto the next layer. 

Figure 4 presents the structure of our scene-aware encoder. 

The above formulas are executed layer by layer to produce a 

variable-length output set (𝑠1, 𝑠2, ⋯ , 𝑠𝑚) , where  is the 

number of segments. Each output conceptually summarizes 

the contents of the segments detected in the video. The output 
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set is passed onto another layer to build a hierarchical 

representation of the video. Hence, the output of the scene-

aware encoder is imported to another LSTM layer, and the 

final hidden state is taken as the eigenvector of the entire video. 

 

 
 

Figure 4. BiLSTM unit 

 

The previous video encoding methods simply stack many 

layers together, adding to the nonlinearity of LSTM structure, 

or build a layered architecture in which the lower level 

encodes fixed-length blocks, while the higher level merges the 

blocks into the final video representation. By contrast, our 

encoder can generate variable length blocks according to the 

input features, and encode them in a hierarchical structure, 

without damaging the structure of the neural network. 

 

 

4. EXPERIMENTAL VERIFICATION 

 

4.1 Datasets 

 

Two popular benchmark datasets about video captioning 

were chosen to evaluate our technique, namely, Microsoft 

Video Caption (MSVD) [32] dataset and MSR-Video to Text 

(MSR-VTT) dataset [33].  

The MSVD is composed of 1,970 open domain YouTube 

videos, which predominantly show only a single activity each. 

Each clip spans between 10 and 25 seconds. The dataset 

provides multilingual human-annotated sentences as captions 

for the videos. The English captions were selected for our 

experiments. On average, 41 ground truth captions can be 

associated with a single video. For benchmarking, the 

common rule was adopted to design a training set of 1,200 

samples, a validation set of 100 samples, and a testing set of 

670 samples [34-36]. 

The MSR-VTT is a relatively new dataset of various open 

domain videos for captioning. A total of 7,180 videos are 

transformed into 10,000 clips. These clips are grouped into 20 

classes. Following the common rule, the 10,000 clips were 

divided into a training set of 6,513 samples, a validation set of 

497 samples, and a testing set of 2,990 samples. Each video 

has 20 annotations per sentence, which were made by Amazon 

Mechanical Turk (AMT) workers. This is one of the largest 

clip-sentence pair datasets available for the video captioning. 

That is why this dataset was chosen for benchmarking. 

 

4.2 Evaluation metrics and data preprocessing 

 

4.2.1 Evaluation metrics 

Our technique was compared with the existing methods 

against three popular metrics: bilingual evaluation understudy 

(BLEU) [37], metric for evaluation of translation with explicit 

ordering (METEOR) [38], and consensus-based image caption 

evaluation (CIDER) [39]. The original definitions of these 

metrics were taken. A variable threshold (0.3, 0.5, 0.7, and 0.9) 

was designed according to the summary of the mean values of 

the three metrics. METEOR was adopted as the main 

comparative index, because it is the closest index to human 

judgment, when only a few reference captions are available 

[36]. 

 

4.2.2 Data preprocessing 

The captions in both datasets were converted to lowercase, 

and all punctuations were removed, before marking each 

sentence. The vocabulary of MSVD was set to 5,497, and that 

of MSR-VTT to 23,500. Then, vectors were initialized 

randomly to generate embedded vectors, and the resulting 

vectors were phased to produce the final vector. After that, a 

dataset-specific network adjustment was carried out for the 

pertained word embedding. To train our model, a start tag and 

an end tag were included in the caption to cope with the 

variable length of sentences. The maximum sentence length 

was set to 40 words in the MSVD dataset, and 50 words in the 

MSRVTT dataset. These length limits are based on the 

available captions in the dataset. If the length of a sentence 

exceeds the limit, the sentence will be cut off; if the length is 

too short, the sentence will be truncated to zero length. 

 

4.2.3 Experiments 

The video or frames can be represented well by the features 

extracted from well-trained, high-quality models. The 

following features were extracted for our experiments: 

(1) Spatial features 

This paper adopts the pretrained model to extract the spatial 

features from each frame sequence. In recent years, great 

breakthroughs have been made in CNN-based image 

classification, target detection, image semantics segmentation, 

etc. The features extracted by CNN can express the original 

image well. Hence, this paper selects residual network 

(ResNet), a popular CNN, to extract high-quality data from 

each dataset, i.e., the features of all images in the preprocessed 

frame sequence, and compute the mean of the features of the 

frame sequence. In this way, each video was represented by a 

2,048-dimensional eigenvector. 

(2) Motion features 

Each video consists of many continuous frames. The motion 

changes between these frames makes it imperative to analyze 

the motion features in video analysis. This paper relies on 

Vedantam et al.’s method [40] to extract the optical flow of 

adjacent frames, and normalize the extracted data to [0, 255]. 

The normalized data were stored as image files. The number 

of optical flow images is 1 fewer than the number N of frames 

in the video. The pretrained model was applied to extract the 

top fully-connected layer (Fc7) features from each optical flow 

image as motion features, and compute the mean of the optical 

flow sequence features. Hence, a 2,048-dimensional 

eigenvector was obtained to represent the motion features of 

each frame. 

(3) Temporal features 

Unlike single-image captioning problem, video captioning 

involves the temporal correlation between frames. Thus, it is 

necessary to extract temporal features of each video. Hence, 

convolution three-dimensional (C3D) video features were 

extracted, and a model pretrained on the C3D features of 

Sports-1M Dataset was adopted. During the preprocessing, the 

frame size was adjusted to match the input dimension of the 

network. For 3D CNN, 16 frame clips of the extracted key 

frames were adopted as input.  

Input Layer

Forward Layer

Backward Layer

Output Layer
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Next, the words that appear at least three times were 

retained, yielding a vocabulary of 10,298 words. During 

network training, a start of sentence <BOS> tag and an end of 

sentence <EOS> tag were added to the beginning and the end 

of the caption, respectively, allowing the model to handle 

variable-length captions. During the test, SABi-LSTM was 

given a <BOS> tag, denoting the caption input of the first 

scene. Then, the probability of the section word was sampled 

according to the predicted distribution, and taken as the input 

of the next step until the prediction of an <EOS> tag. The 

generated sentences and phrases were imported to the entropy 

variable complex network, and the sentences were optimized 

according to node weights. The top-k value of the complex 

network was set to 5. 

Then, the hyperparameters of our model was adjusted on the 

verification set, using the root mean square propagation 

(RMSProp) algorithm. The model was trained at the learning 

rate of 2×10-4. During our experiments, the batch size was set 

to 100 for training, i.e., the whole model was iterated for 100 

rounds. The sparse cross-entropy loss was adopted to train our 

model on NVIDIA Tesla P100 GPU, under the PyTorch 

framework. 

 

4.3 Results 

 

The results of our technique and the cutting-edge video 

captioning methods are compared in Table 1, where the 

columns are the metrics BLEU-4, METEOR, and CIDER. The 

results of the contrastive methods were directly drawn from 

the existing literature, which use the same evaluation scheme. 

 

4.3.1 Results on MSVD  

The merit of our technique, denoted as Entropy-SABi-

LSTM-(R+C+F), was compared with several traditional 

LSTM-based methods, i.e., a CNN encoder plus a LSTM 

decoder model (MP-LSTM), and an LSTM-based encoder-

decoder model (S2VT), as well as state-of-the-art methods like 

LSTM-E, gated recurrent unit (GRU)-routing convolutional 

network (RCN), physical process wrapped recurrent neural 

network (p-RNN), PickNet-VL [27], TDConvED [28], 

DenseLSTM [41], and BALSTM-(R+C) [42]. Table 1 

compares the performance of different methods on MSVD. It 

can be observed that our technique is superior to all the other 

methods.  

The BLEU-4, METEOR, and CIDER of our technique were 

also contrasted with those of the most advanced approaches 

that can achieve the best performance with various visual 

features. The comparison shows that our technique performed 

better than those approaches, such as MP-LSTM, S2VT, and 

BALSTM-(R+C). Owing to the entropy variable decoder, our 

technique outperformed BALSTM-(R+C) by 8.4%, 1% and 

13.6% in BLEU-4, METEOR, and CIDER, respectively.  

 

Table 1. Performance of different methods on MSVD 

 
Model BLEU-4 METEOR CIDER 

MP-LSTM(V)  37.0 29.2 53.3 

MP-LSTM(V+C) 39.4 29.7 55.1 

MP-LSTM(R) 50.4 32.5 71.0 

S2VT(V+O)[43]  29.8  

S2VT(V+C) 42.1 30.0 58.8 

LSTM-E (V+C) 45.3 31.0  

GRU-RCN  47.9 31.1 67.8 

p-RNN (V+C)[43] 49.9 32.6 65.8 

PickNet-VL[27] 46.1 33.1 76 

TDConvED (V+C)[28] 49.8 32.7 67.2 

DenseLSTM(V+C)[41] 50.4 32.9 72.6 

BALSTM-(R+C)[42] 42.5 32.4 63.5 

SABi-LSTM -(F) 38.9 27.5 55.1 

SABi-LSTM -(C) 40 29.5 61.2 

SABi-LSTM -(R) 43.2 30.2 61.6 

SABi-LSTM-(R+C) 47.71 32.8 70.9 

SABi-LSTM-(R+C+F) 48.2 33 73.4 

Entropy-SABi-LSTM-(R+C+F) 50.9 33.4 77.1 
Note: All values are reported as percentage (%). The short name in the brackets indicates the features, where G, V, C, O, R, and M denote GoogleNet, VGGNet, 
C3D, Optical flow, ResNet, and motion feature learned by 3D CNN on manual descriptors, respectively. The same below. 

 

The above results reflect the effectiveness of our technique, 

i.e., label importance ranking with entropy variable complex 

networks, in video captioning, and its superiority over other 

techniques. Hence, label importance ranking is a promising 

direction for video captioning [44-46]. 

 

4.3.2 Results on MSR-VTT 

The merit of out technique was also tested on MSR-VTT 

dataset against traditional LSTM-based methods like MP-

LSTM and S2VT, as well as state-of-the-art techniques, 

namely: TA, LSTM-E, Hierarchical LSTM with Adjusted 

Temporal Attention (hLSTMat), ManhaĴan LSTM (MA-

LSTM), M3, MM, Multi-Column Convolutional Neural 

Network (MCNN) +MCF, PickNet-VL [27], TDConvED [28], 

DenseLSTM [41], and BALSTM-(R+C) [42]. 

As shown in Table 4, our technique did not achieve the 

optimal values on BLEU-4 and METEOR, but realized the 

best performance on CIDER. In an entropy-complicated 

network, the optimization of sentences will be optimized in a 

caption more suitable for human language. CIDER, which 

mainly evaluates the similarity between candidate and 

reference sentences, is more capable of generating fluent 

sentences [47-50]. 

 

4.3.3 Ablation analysis 

Several ablations were executed to analyze different 

modules with different combinations on the MSVD dataset. 

Table 3 compares the results of ablation experiments with 

different input modes. Compare with the first three models, 

when a certain mode was used alone, the RGB feature could 
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achieve better results. With the increase of modes and 

introduction of modal fusion, however, better results were 

achieved on MSVD. 

 

Table 2. Performance of different methods on MSR-VTT 

 

Model METEOR CIDER Bleu_4 

MP-LSTM(R) 25.4 35.8 34.1 

MP-LSTM (G+C+A) 25.6 38.1 35.7 

S2VT( R) 25.8 36.7 34.4 

S2VT (G+C+A) 26.0 39.1 36.0 

TA (R) 24.9 34.5 33.2 

TA(G+C+A) 25.1 36.7 34.8 

LSTM-E(R) 25.7 36.1 34.5 

LSTM-E(G+C+A) 25.8 38.5 36.1 

hLSTMat(R) 26.3 - 38.3 

MA-LSTM(G+C+A) 26.5 41 36.5 

M3(V+C) 26.6 - 38.1 

MM(R+C) 27 41.8 38.3 

MCNN+MCF(R) 27.2 42.1 38.1 

PickNet-VL(R) 27.2 42.1 38.9 

TDConvED1(R) 26.8 40.7 37.1 

TDConvED2(R) 27.2 41.9 39 

TDConvED (R) 27.5 42.8 39.5 

DenseLSTM(V+C) 32.9 72.6 50.4 

Entropy-SABi-LSTM-(R+C+F) 33.4 77.1 50.9 

 

Table 3. Results of feature ablations 

 
Model  RGB feature Flow feature Temporal feature CIDER 

Entropy-SABi-LSTM √   61.6 
Entropy-SABi-LSTM  √  55.1 

Entropy-SABi-LSTM   √ 61.2 

Entropy-SABi-LSTM √  √ 70.9 
Entropy-SABi-LSTM √ √ √ 73.4 

 

Table 4 reports the results of ablation experiments on 

different modules. Compare with the traditional LSTM 

network, adding scene-awareness unit and BiLSTM could 

greatly improve the network accuracy. Meanwhile, adding 

entropy variation complex network alone also led to better 

results. This means the modules being added could effectively 

improve the performance of video captioning. 

 

Table 4. Results of module ablations 

 
 Model Scene-aware   Bidirectional Entropy CIDER 

 SALSTM √     63.5 

 BiLSTM    √  70.2 

 Entropy-LSTM     √ 73.6 

 SABi-LSTM √   √  73.4 

 Entropy-SABi-LSTM √   √ √ 77.1 

 

 

5. DISCUSSION 

 

It can be also inferred from Table 1 that our technique 

clearly outshined the average pooling methods and the 

common LSTM-based method (S2VT). Besides, METEOR 

was compared with the state-of-the-art methods that rely on 

rich visual features for optimal performance. In this regard, our 

approach surpassed the closest competitor by a wide margin 

(1%). 

Concerning the performance on MSR-VTT (Table 2), our 

technique outperformed other baselines in CIDER. Similar to 

the observations on MSVD, our technique achieved better 

performance than the basic CNN+RNN, MP-LSTM, by 

replacing RNN with convolutional layers in the decoder.  

Further, different aspects of our technique were evaluated 

empirically. A few highlights are mentioned in the following 

text. If necessary, the readers can request for supplementary 

materials that support the discussion.  

Whereas all the components of the proposed technique 

contribute to the overall performance, the biggest innovation 

of our work is the application of entropy variation complex 

networks to calculate the node weight of video captions. 

Unlike to the “nearly standard” averaging pooling in the 

existing captioning pipeline, the proposed use of entropy 

variation complex networks promises a significant 

performance gain for any method. Hence, the authors 

recommended replacing the mean pooling operation with our 

entropy variable complex network for the future techniques. 

 

 

6. CONCLUSIONS 

 

The present study was designed to determine the effect of 

label importance ranking in video captioning. Compared with 

the previous studies, our paper presents a completely new idea: 

the video captioning network is improved in the natural 

language processing part, instead of the convolutional part. 

Specifically, our technique relies on label importance 

ranking with entropy variation complex network to caption 

videos. Firstly, multiple features were extracted from each 

static frame, including the feature of each static frame, the 

existence of objects in the frame, and the spatiotemporal 

features of the whole video. Then, the extracted features were 

fused into a natural caption statement through the encoding 

and decoding by an LSTM. During model training, the multi-

modal video features extracted by different methods were 

fused with the information entropy of words in natural 

language. The fusion helps to adaptively control the influence 

of different modal features on the generated words, and to 

obtain the caption text containing more details of the video and 

more natural expression, making our technique more 

generalizable and practical. In addition, information entropy 

was applied to improve the caption generation process, and the 

uncertainty of idioms was introduced to improve the accuracy 

of video captioning. 

Caption language generation offers an intriguing 

perspective to video captioning. This issue will be further 

explored in future research. 
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