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The impedance cardiography (ICG) is a reliable, non-invasive method widely used in 

clinical practice for the measurement of a multitude of hemodynamic parameters for the 

diagnosis of cardiovascular disease and continuous monitoring. Signal processing field is 

necessary to eliminate noises as an artefact of respiration and movement, to extract features 

characteristics from ICG signals. This paper discusses the concept of wavelet denoising 

based on scale-dependent thresholding, which is used in two types of the orthogonal wavelet 

family: Daubechies wavelets (db) and Symlet (sym) applied to the ICG. The study is based 

on wavelet coefficients that are thresholded using Sureshrink, NeighBlock, and classical 

thresholds such as Rigrsure and Sqtwolog; they are all compared with linear filters as well 

as with the LMS-based adaptive filtering algorithm already implemented in biosignal 

denoising. The results of the evaluation of the performance parameters show that the best 

denoising technique that gives good results in noise reduction is that of sym8 wavelets at 

level 5, and the most optimal thresholding technique is the Rigrsure technique with a mean 

error rate (MER) equal to 0.0001%. The proposed method has shown the reliability of results 

that can help us later to extract precisely significant information to diagnose earlier and 

monitor cardiovascular disorders. 
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1. INTRODUCTION

ICG is widely used in clinical applications, such as 

hypertension, surgery, cardiovascular disease and pregnancy 

[1]. It emerges in 1940, it is simple, safe, easy-to-apply, cost-

effective, non-invasive method of diagnosis and medical 

monitoring that measures the change in blood volume due to 

impedance changes using a system of electrodes placed on the 

patient's skin. The detected impedance waveform called ICG 

is vulnerable to noise such as respiratory and motion artifacts 

due to patient movement during acquisition, poor electrode 

placement and electrode material. The essential step in 

deriving several significant parameters is the analysis of this 

type of waveform using the concept of noise cancellation. 

Some researchers have applied algorithms such as the LMS-

based adaptive filter [2, 3] as well as linear filters such as 

Elliptic and Butterworth [4] to remove noise and artifacts from 

the ICG waveform. 

However, wavelet analysis is an advanced signal processing 

tool, although its mathematical foundations date back to 

Joseph Fourier in the 19th century, when the researcher 

established the foundations for the Theory of Frequency 

Analysis [5]. It is a method that measures average fluctuations 

at different scales that have shown a significant reduction in 

noise and preserves the characteristics of the signal. In 1909 

the wavelet was discussed in Alfred Haar's thesis. Afterwards, 

these methods of analysis were developed by Meyer and other 

researchers [5]. In signal analysis, the wavelet transforms the 

signal to extract the relevant information after noise 

suppression [6]. One of the discrete wavelets is the sym26 

which is used for noise suppression of the ICG signal [7]. 

Five methods of denoising are compared using different 

filters: the Savitzky-Golay filter compared to the median filter, 

the bandpass filter, the wavelet (db8) and the moving average 

filter. The results show that the first filter is the best [8]. A 

comparison between the Empirical Ensemble Empirical Mode 

Decomposition (EEMD), the optimal FIR filter, and the 

Symlet (sym8) wavelet family for ICG denoising where the 

latter is better [9]. Choudhari's study has shown that db4 is the 

most efficient for denoising [10]. Chabchoub argued that the 

best level of wavelet decay is the one that gives the greatest 

softness separation between signal and noise; he found that the 

db8 wavelet family is better than the other wavelet families 

[11]. According to Chabchoub [11], and other papers in the 

scientific literature [8-10, 12], the best denoising method has 

the highest signal-to-noise ratio, the lowest root mean square 

error, the smallest percentage difference, and the smallest 

reconstructed error. The ICG denoising process is therefore 

necessary to pass through the multi-scale decomposition, then 

the threshold coefficients, after which the signal will be 

reconstructed, using the inverse of the Discrete Wave 

Transformation (DWT). 

There is no better universal standard threshold applied for 

the determination technique, which is why there are multiple 

threshold techniques such as classical thresholding, 

SureShrink and Neigh-Block. These techniques have provided 

reliable results for denoising the ECG signal and have never 

been used for denoising the ICG signal [13]. The advantage of 

wavelet denoising is that it preserves the signal characteristics 

and eliminates noise at all frequencies. However, it is different 

from the smoothing used to suppress high frequencies and 

maintain low frequencies [14].  
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This study aims to study the denoising of the ICG signal 

using linear filters. In addition, the LMS adaptive filter tested, 

as well as different wavelet thresholding techniques such as 

SureShrink (proposed by Donoho and Johnstone [15], 

NeighBlock (local thresholding), Rigrsure and Sqtwolog 

(universal thresholding) are compared. 

 

 

2. MATERIAL AND METHODS 

 

2.1 The impedance cardiography (ICG) method 

 

Research on the impedance technique of cardiography is 

devoted to the evaluation of the structural configurations and 

physiological activities of biological tissues; this technique 

measures the variations in Z impedance in the thorax during 

the cardiac cycle. Studies in this field are applied to the 

diagnosis and monitoring of the patient's pathological state and 

to the detection of cardiovascular disorders through the 

calculation of hemodynamic parameters such as systolic 

volume and cardiac output for the elderly [16], by applying a 

weak electric field longitudinally from 0.2 mA to 5 mA, and 

of low frequency from 50 kHz to 100 kHz across a segment of 

the thorax with the Tetrapolar technique [17]. Figure 1a shows 

the electrode configuration of the ICG technique with the outer 

electrode for current injection and the inner electrode for 

impedance measurement values during diastole. 

Figure 1b shows the typical ICG signal and the ECG signal 

tracing. 

 

 
(a) Electrode configuration of the ICG technique 

 

 
(b) Typical ICG signal and ECG signal tracing 

 

Figure 1. The ICG signal measurement 

 

The ICG signal is used to calculate cardiac function 

parameters [3] such as stroke volume (SV) Eq. (1), New Bern 

Stein [18, 19], Cardiac output (CO) Eq. (2) is an effective 

parameter used to evaluate the mechanical activities of the 

heart and cardiovascular disorders. 

 

𝑆𝑉 = 𝑉˓√𝐿𝑉𝐸𝑇 ∗ (
1

𝑍₀
) (

𝑑𝑍

𝑑𝑡
)𝑚𝑎𝑥 (1) 

𝐶𝑂 = 𝐻𝑅 ∗ 𝑆𝑉 (2) 

 

where, 𝑉˓ is the intrathoracic blood volume expressed in mL, 

and LVET is the left ventricle ejection time, Z0: basic thoracic 

impedance, (dZ/ dt)max is maximum aortic flow rate and 

presents the maximum on the ICG signal curve, HR is the heart 

rate. 

 

2.1.1 ICG signal 

The ICG waveform range is 0.8 to 20 Hz. This is the first 

derivative of Z (dZ/dt) shown in the Figure 1b. It is 

characterised by points, where, Z0: basic thoracic impedance 

varies from 20 to 33Ω and 27 to 48 Ω for men and women 

respectively [20]; P or A: atrial wave; B: aortic valve opening; 

C: maximum aortic flow rate (dZ/ dt)max; X: aortic valve 

closure; Y: the pulmonary valve closing; O: mitral valve 

opening. These points are detected to extract indices such as 

SV and CO, as well as characteristic time intervals such as left 

ventricular ejection time (LVET) to diagnose cardiovascular 

disease [21]. The advantage of this technique is that it is simple 

to perform, quickly to respond to rhythm, less expensive, non-

invasive and safe, and allows continuous real-time monitoring 

[22]. 

Many researchers have devoted their studies to the 

algorithms for detecting characteristic points. While the 

problem with acquired ICG signals is that of respiratory and 

motion artefacts, which have very low frequency ranges of 

0.04 Hz to 2 Hz and 0.1 Hz to 10 Hz, respectively, it has 

nevertheless made its analysis somewhat challenging. To this 

end, this work aims to address this problem. 

 

2.2 Transform wavelet 

 

A wavelet has a short-term waveform; orthogonal wavelets 

better characterise the local properties of signals than Fourier 

bases. Its analysis is used to decompose the signal into shifted 

and scaled versions of the mother wavelet, whose matrix is 

defined as follows [23]: 

 

ѱ(𝑥) =

{
 
 

 
 1  𝑓𝑜𝑟    0 < 𝑥 <

1

2

−1  𝑓𝑜𝑟   
1

2
< 𝑥 < 1

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (3) 

 

Transformation wavelets used in a multitude of applications, 

mainly for feature extraction, classification and noise 

elimination [23], have simplified signal analysis. In several 

fields, it has become well known over the last 15 years, such 

as industry, medicine, where it is used for noise removal from 

physiological signals [24] such as ECG, EEG, and others.  

There are two types of wavelet transformation: continuous 

wavelet transformation (CWT) and discrete wavelet 

transformation (DWT). The latter, which is concerned with 

statistical parameters, is precisely discretely sampled 

functions, it describes the frequency content of the signal at 

given moments, thanks to filter banks that decompose the 

signal into coefficients with Details, and Approximation [25], 

it is used to select scales and dynamic positions to obtain more 

accuracy, the DWT Eq. (4) is as follows: 

 

𝑋 [ɑ, ʙ] = ∑ 𝑥[𝑛]ѱ+∞
𝑛=−∞ ɑ,ʙ[n] (4) 

 

ѱɑ,ʙ[𝑛] =
1

√ɑ
[ѱ(n-ʙ)/ɑ] (5) 
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where, ɑ and ʙ are the wavelet location parameters, x[n] is the 

signal, n is the samples number, and ѱ(.) is the mother wavelet 

[26]. 

 

2.2.1 Wavelet thresholding 

The wavelet thresholding method is used to threshold the 

wavelet coefficients by eliminating their noisy part [14]. 

Noise-free wavelet coefficients are indeed rare, and those of 

low amplitude are set to zero. The name wavelet thresholding 

is derived from the comparison of a coefficient with a 

threshold to determine whether or not it is a desirable 

constituent part of the original signal. The wavelet 

decomposes the signal into approximations cᵢ, which represent 

the low frequencies, where most of the information in the 

signal resides, and details dᵢ, which represent the high 

frequencies.  

The thresholding derives the significant coefficients of cᵢ; if 

they are less than a threshold level λ, they will be equal to zero. 

This threshold depends on the level of decomposition, which 

is called Sureshrink [15, 27], and an inverse discrete wavelet 

transformation using IDWT which leads to a less noisy 

reconstruction of the signal [14]. Among these threshold 

methods are classical thresholding such as Rigrsure which 

used the Stein's unbiased risk principle (SURE), and Sqtwolog 

which used for the universal threshold. The methods are 

respectively defined as follows: 
 

thᵢ=𝜃ᵢ√2log (𝑁ᵢ) (6) 

 

𝜃ᵢ =
𝑚𝑒𝑑𝑖𝑎𝑛|𝜔|

0.6745
 (7) 

 

where, 𝜃ᵢ is the mean absolute deviation and Nᵢ is the length of 

the noisy signal, and ω is the wavelet coefficient to scale j. 

 

thᵢ= 𝜃ᵢ√𝜔ₐ (8) 
 

where, 𝜃 is the standard deviation of noisy signal, and 𝜔ₐ is 

the coefficient wavelet square. 

The Sureshrink method, proposed by Donoho and 

Johnstone [15], is based on Steins' unbiased risk estimate 

(SURE). Its principle is to set the coefficients to zero below a 

certain threshold. For each sub-band, the calculation of the 

threshold is crucial and is determined by the level of 

decomposition [13].  

The neighbourhood block method, proposed by Cai and 

Silverman [28], is based on the calculation of the shrinkage 

factor within blocks of successive coefficients. It is applied to 

the group of adjacent coefficients, and is not applied for each 

coefficient and level. The use of multiple thresholds for all 

coefficients improves noise reduction performance [13]. The 

choice of the threshold can be chosen according to the local 

noise levels, this technique calculates a threshold value with 

the neighbourhood [28, 29], and is based on the following 

steps [29]: 

• Step 1: Decomposition of the signal in 

coefficient with the DWT; 

• Step 2: Carry out the coefficients in disjoint 

block bi,j for each level; 

• Step 3: The shrinkage factor rule is chosen 

according to the local properties of the 

coefficient. It is defined in Eq. (6) as follows: 

 

𝛽i,j=(max(0,1- 
𝜆𝐿𝜃²

𝑆²
)) (9) 

with, 

 

𝐿 = 𝐿₀ + 2𝐿₁ 

𝐿₀ =
log (𝑛)

2
 

𝐿₁ = max(1,
𝐿₀

2
) 

S2=∑ 𝜃𝑗,𝑘 ∈𝛽𝑖,𝑗 i,j 

𝐾 = 1,…𝐿₁ 
 

where, i is the block, j is the level, λ=4.5053, and 𝜃² is the 

variance of the extended block. 

There are two thresholding approaches which are defined as 

follows [13]: 

 

Hard: dᵢ={
𝑑ᵢ 𝑖𝑓 |𝑑ᵢ| > 𝜆

0 𝑒𝑙𝑠𝑒
} (10) 

 

Soft: dᵢ= {
𝑑ᵢ − 𝜆 𝑓𝑜𝑟 𝑑ᵢ > 𝜆
𝑑ᵢ + 𝜆 𝑓𝑜𝑟  𝑑ᵢ < −𝜆

0 𝑒𝑙𝑠𝑒 

} (11) 

 

Simple wavelet thresholding is the hard thresholding but 

soft thresholding is more efficient, considered as the wavelet 

denoising (shrinkage) method, i.e., a non-linear process 

integrated in a linear denoising technique. According to 

Donoho, the calculation of λ is based on Stein's unbiased risk 

principle (SURE) [15, 28] as follows: 

 

𝜆 = √2 log𝑀 (12) 

 

where, M coefficients numbers. 

 

2.3 Proposed methodology 

 

2.3.1 ICG signal recordings 

ICG signal samples from 10 healthy subjects were recorded 

with BioLab v.3.0.13 software at a sampling rate of 1000 Hz. 

The ICG device was implemented in tree sections comprising 

the Howland current injection stage, the latching amplifier 

stage for impedance detection and the ICG evaluation 

interface. ICG measurements in the tetrapolar configuration 

are based on four electrodes. The proposed methodology is 

mainly based on the denoising process, with some filtering 

techniques: linear filters, LMS adaptive filters and wavelets. 

These techniques were tested to eliminate noise and have a 

better visibility of the ICG waveform. 

 

2.3.2 Linear filters method 

The linear filters used to denoise the ICG signal of 10 

participants are: 

• Butterworth 

•  Elliptical 

•  Bessel 

•  Gaussian 

•  Chebychev1 

•  Chebychev2 

The addition of a high frequency component of 600 Hz to 

the signal was necessary for efficiency testing. The filters used 

a frequency bandwidth for cutoff ranging from 0.1 to 10 Hz 

and an order of 3. A comparison was made to identify the best 

of them. The performance of the denoising method was 

evaluated by calculating specific parameters to verify perfect 

reconstruction. 
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2.3.3 Least mean squares (LMS) 

The adaptive filter, in particular the fundamental LMS 

adaptive algorithm, is widely applied in denoising biosignals. 

Hence, it is used for the respiratory elimination artifact. The 

LMS is simple in its implementation and is used to control the 

finite impulse response (FIR) filter at each use. Moreover, it is 

based on a feedback process to reduce the error e(n) of the 

input signal x(n) and the reconstructed signal y(n) by adjusting 

its parameters: a higher order is chosen, weighting coefficients 

update w(n+1) Eq. (13) [2], and a predefined step size μ (0<μ< 

(2/ FIR filter T-tap)) at the beginning of the adaptive filtering 

process. If μ is too small, the algorithm will converge, so we 

took (0 <μ< 0.2) and we added an HF component with a 

frequency of 600 Hz to the ICG reference signal to also test 

the efficiency of the filters. 

 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝑒(𝑛)𝑥(𝑛) (13) 

 

𝑤(𝑛) = [𝑤₀(𝑛), 𝑤₁(𝑛), 𝑤k-1(n)]t (14) 

 

where, nth is the weight coefficient vector, K is the input 

sample length, and e(n) is the difference between the reference 

and the output signal. 

 

 

 

 

2.3.4 Transform wavelet method of ICG signal 

Figure 2 shows the overall scheme of the wavelet denoising 

algorithm. 

As we said above, we added a high-frequency component 

of 600 Hz to ICG waveforms for efficiency testing, then 

applied two types of DWT (db/sym) that split signals into 

coefficients; Details and Approximation; where we used four 

types of thresholding techniques (Sureshrink, NeighBlock, 

Rigrsure, and Sqtwolog) for each type of DWT (db(2, 4, 6, 8), 

sym (2, 4, 6, 8)), also we tested each threshold technique and 

compared wavelet levels from level 1 to level 10. Finally we 

applied the inverse DWT to reconstruct the final signal. 

 

2.3.5 Simulation progress 

The study is based on a comparison between linear filters, 

LMS-based adaptive filter, and orthogonal wavelets such as 

Daubechies (db) and Symlet (sym) with order N (2, 4, 6, 8), 

which already used according to literature demonstration 

citing above the paper. The thresholding methods used are the 

classic threshold, Sureshrink, NeighBlock, which have chosen 

according to Cai [28, 30], it has threshold criteria that exceed 

that of Rigrsure and Sqtwolog, we also used the Soft 

thresholding rule because it considered as the wavelet 

denoising method and “mln” for rescaling that used for noise 

estimation at each wavelet level from 1 to 10. Our method 

based on the steps presented in the Figure 3: 

 
 

Figure 2. Schematic diagram method 

 

 
 

Figure 3. Interpretable diagram algorithm 
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2.4 Performance parameters evaluation 

 

For the evaluation of the results of our comparisons, we 

based on the following parameters [24, 30], to verify the 

improvement of the reconstructed ICG signal: the square error 

(SE), the signal to noise ratio output (SNR) expressed in dB, 

the signal to noise ratio input (SNRi) expressed in dB which 

the input noise range calculate thanks to Eq. (17) is from 0 dB 

to 35 dB, the root mean square error (RMSE), and the percent 

difference root mean square (PRD) expressed in %, their 

formulas are defined in the order as follow: 

 

SE = (x(n) − y(n))² (15) 

 

SNR = 10log₁₀ [
∑ y²(n)n

∑ (y(n) − x(n))²n

] (16) 

 

SNRi = 10log₁₀ [
∑ x ²(n)n

∑ (noise)²n
] (17) 

 

RMSE =
1

L
∑(x(n) − y(n))²

L

n

 (18) 

 

PRD (%) = 100√
∑ (x(n)−y(n))L
n ²

∑ x²(n)L
n

 (19) 

 

where, x (n) is the original signal, y (n) is the reconstructed 

signal, and L is the signal length. 

The best denoising method has the highest SNR, the lowest 

PRD, the lowest RMSE and the lowest reconstructed error. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Results 

 

This section presents a comparison between the selected 

denoising techniques. Whereas, the first purpose is to apply 

the linear filters. The second purpose is to denoise the ICG 

signal using LMS-based adaptive filters, that had chosen 

because it has shown reliability in studies [2, 3]. The third 

purpose is to choose the best threshold (SureShrink, 

Neighblock, Rigrsure, Sqtwolog) for two types of discrete 

wavelet families (Daubechies, Symlet). 

Our study used different thresholds to demonstrate that the 

right choice of thresholding affects the obtained results' 

effectiveness. Hence, Neighblock never applied for ICG 

waveforms. Linear filters were applied to the ICG signals of 

10 participants. The results are presented in Table 1. 

 

Table 1. Estimation parameters of linear filters applied to 10 

subjects 

 
Filters SE RMSE PRD SNR 

Butter 46.2660 0.2842 66.9836 4.4693 

Elliptic 50.5032 0.2967 69.1668 3.8837 

Gaussian 5.5373 0.0938 31.2531 13.8792 

Bessel 210.0218 0.7360 185.1752 1.4735 

Chebychev1 51.3537 0.2992 69.7024 3.8104 

Chebychev2 198.89 0.6241 121.1752 2.321 

 

According to the results in Table 1, the filter with the 

highest performance is the Gaussian filter; it has a minimum 

SE of about 5.5373, a minimum RMSE value of about 0.0938, 

a minimum PRD value of about 31.2531 and a maximum SNR 

of about 13.8792. Therefore, it did not fulfil the objective of 

our analysis for assessing accuracy. High values were obtained, 

hence the use of the LMS adaptive filter and discrete wavelets 

is of paramount importance. We added White Gaussian Noise 

with SNRi ranging from 0 to 35 dB to the signals to choose the 

best threshold technique. Figure 4a-d explains exactly the 

different comparisons made and the results obtained for 10 

subjects. In addition, Figure 4 shows a comparison between 

Daubechies (db) and Symlet (sym) with the order N (2, 4, 6, 8) 

in relation to threshold techniques. First, we found that db2 is 

better than db (4, 6, 8) in Sureshrink, db4 is better than db (2, 

6, 8) in Neighblock, db4 is better than db (2, 6, 8) in Rigrsure, 

and db8 is better than db (2, 4, 6) in Sqtwolog. Second, sym2 

is better than sym (4, 6, 8) in Sureshrink, sym4 is better than 

sym (2, 6, 8) in Neighblock, sym8 is better than sym (2, 4, 6) 

in Rigrsure, and sym8 is better than sym (2, 4, 6) in Sqtwolog. 

Thirdly, after comparing two types of wavelets in each 

threshold technique, we found that the best are: db4 in 

Neighblock, sym8 in Rigrsure, and sym 8 in Sqtwolog. Next, 

the results obtained were compared with the Gaussian filter 

and the LMS adaptive filter at different SNRi. The results 

presented in Figure 5a was found using parameter estimation 

calculations. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 

Figure 4. Comparison results between different type of 

thresholds at different SNRi values 

 

3.2 Discussion 

 

This study is based on a performance study using linear 

filters: Bessel; Butterworth, Gaussian, Elliptic, Chebychev1, 

and Chebychev2 with third order; the LMS adaptive filter, as 

well as orthogonal wavelets such as Daubechies (db) and 

Symlet, used with four thresholding techniques such as 

Sureshrink, NeighBlock, Rigrsure, Sqtwolog. The evaluation 

of all comparison results is a necessary step which was carried 

out by calculating SE, SNR, RMSE, and PRD. In a first step, 

a comparison between several linear filters, the results of 

which are presented in Table 1. In addition, another 

comparison of orthogonal wavelets of different N-order (2, 4, 

6, and 8) was performed. 

Although the best selected wavelets were taken from the 

literature, namely db and sym, which are the most applied to 

this type of signal, they were compared with multiple 

thresholding techniques (Figure 4 a-d) such as NeighBlock 

db4, Rigrsure sym8 and Sqtwolog sym8. Next, they were also 

compared with the best linear filter which is the Gaussian filter 

and the LMS adaptive filter. The results show that the best one 

has a minimum value of PRD, RMSE, SE, and it has the 

maximum value of SNR (Figure 5a, b). According to the 

results obtained in the simulation, the best denoising method 

for the ICG signal that preserves the characteristics of the 

original waveform is the rigidity at level 5 of the symm8 

wavelet with minimal degradation of the ICG signal shape. 

Figures 6 and Figure 7 show all reconstructed samples for all 

subjects. 

The advantage of this performance study is to reduce the 

noise and artefacts, which cause distortions in the ICG wave, 

to a maximum and to preserve the shape of our ICG signal, i.e. 

the peak max (dZ/ dt)max of the ICG signal which is present at 

point C which is important in clinical decision making and 

monitoring of cardiovascular diseases. The peak amplitude C 

of the original signal and the reconstructed signal after using 

each denoising technique was calculated to evaluate the results. 

Pan-Tompkins algorithm [31] was used to detect the C peak. 

Table 2 lists the results obtained. 

According to the results in the above Table 2, the best 

denoising method is the one that preserve the C peak 

amplitudes with minimal degradation. We observe that the 

mean C peak amplitudes of Rigrsure (sym8) equal to the mean 

C peak amplitudes of the original signal is about 4.716 Ohms. 

Moreover, for Gaussian filter is about 3.842 Ohms, 4 Ohms 

for LMS, 4.087 Ohms for Neighblock and 4,286 Ohms for 

Sqtwolog (sym8). 

The results of the mean error rate listed in Table 3 provide 

better accuracy than the Ridder [9] and Chabchoub [11] 

methods at different SNRi, especially for the best thresholding 

technique, the Rigrsure of sym 8. For an SNRi of 0 dB, the 

minimum MER value for the Chabchoub and Ridder methods 

is equal to 0.3% and 7.3%, respectively. For 10dB, the 

minimum MER value for the Chabchoub and Ridder methods 

are equal to 0.01% and 0.7%, respectively. In this study, the 

minimum MER value is equal to 0.00006% in 0dB and 

0.0001% in 10dB. 

 

 
 

Figure 5. Comparison results of performance parameters evaluation for Gaussian filter, LMS adaptive filter and various wavelets 

thresholds at different SNRi values 
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(a) 

 
(b) 

 

Figure 6. The ICG signal reconstructed after each technique applied for subject 1 
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Figure 7. The ICG signal samples reconstructed after applying the best denoising technique for all participants: subjects 1 to 10 

 

Table 2. Detection of peak amplitudes C (Ohms) from original noise-free ICG signals 

 
Participants Original C peak 

amplitudes 

C peak amplitudes after using denoising methods 

  Gaussian 

filter 

LMS Neighblock 

(db4) 

Rigrsures (sym8) Sqwolog 

(sym8) 

P1 5021 4999 3429 4433 5001 4047 

P2 4337 4337 4276 4336 4463 4743 

P3 4959 2911 4049 4054 4654 4053 

P4 4351 3357 4127 4353 4112 4357 

P5 5401 4493 5106 4490 5287 4490 

P6 5002 2511 3663 3870 5089 4294 

P7 4756 3609 3383 3382 4665 3606 

P8 4246 3197 4014 4424 4102 4009 

P9 4486 5408 3021 4067 4365 4869 

P10 4596 3395 4942 3447 4623 4396 

Mean 4716 3842 4000 4087 4716 4286 

 

Table 3. Mean error rate (%) of denoising methods for 10 subjects at different SNRi (ranging from 0 to 35 dB) 

 
Methods SNRᵢ 

 0 5 10 15 20 25 30 35 

LMS 0.02855 0.02855 0.02855 0.02855 0.02855 0.02855 0.02855 0.02855 

Gaussian 0.0035223 0.0041569 0.0045127 0.0047133 0.0048262 0.0048894 0.004925 0.0049452 

Neighblock db4 10.1783 10.1796 10.1801 10.1803 10.1804 10.1804 10.1804 10.1805 

Rigrsure sym8 6.2976e-05 8.8323e-05 0.00019118 0.00024163 0.00027019 0.000285 0.00029376 0.00029796 

Sqtwolog sym 8 9.0362e-05 0.00011734 0.00021262 0.00026396 0.00029401 0.00031066 0.00032004 0.00032441 
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4. CONCLUSIONS 

 

Impedance cardiography is a reliable, non-invasive and 

convenient method with less risk for the measurement of 

multiple hemodynamic parameters and it can be used by 

untrained personnel. It is considered a recent way to obtain 

results with the same or higher accuracy than invasive methods 

such as thermodilution, Fick or Doppler echocardiography. 

The ICG method is promising in monitoring cardiac 

contraction and functional status, and is therefore very useful 

for the diagnosis of cardiovascular disorders and continuous 

monitoring in the medical field. In this paper, a comparison 

was made between the LMS adaptive filter, the Gaussian filter 

and wavelet families (Daubechies and Symlet) using different 

threshold techniques such as Sureshrink, NeighBlock, 

Rigrsure and Sqtwolog to find the best technique for denoising 

the ICG signal. 

To our knowledge, DWT is used to remove noise from non-

stationary signals that no longer require special assumptions 

for thresholding or denoising in general. Very interesting 

results were obtained by calculating the estimation parameters, 

which showed that the sym8 wavelet with Rigrsure 

thresholding is the best in terms of noise reduction compared 

to other techniques.  

For future work, the denoising step will be added to the 

current proposal, as it can help us to derive meaningful 

information that will be used to develop cardiography 

impedance systems for the non-invasive diagnosis and 

medical monitoring of patients. 

 

 

ACKNOWLEDGMENT 

 

The authors would like to thank the Directorate-General of 

Scientific Research and Technological Development 

(Direction Générale de la Recherche Scientifique et du 

Développement Technologique, DGRSDT, URL: 

www.dgrsdt.dz. 

 

 

REFERENCES  

 

[1] Mansouri, S., Alhadidi, T., Chabchoub, S., Salah, R.B. 

(2018). Impedance cardiography: Recent applications 

and developments. Biomedical Research, 29(19): 3542-

3552. https://doi.org/10.4066/biomedicalresearch.29-17-

3479 

[2] Hu, X., Chen, X., Ren, R., Zhou, B., Qian, Y., Li, H., Xia, 

S. (2014). Adaptive filtering and characteristics 

extraction for impedance cardiography. Journal of Fiber 

bioengineering and Informatics, 7(1): 81-90. 

https://doi.org/10.3993/jfbi03201407 

[3] Rahman, Z.U., Mirza, S.S., Krishna, K.M. (2019). 

Adaptive noise cancellation techniques for impedance 

cardiography signal analysis. International Journal of 

Innovative Technology and Exploring Engineering 

(IJITEE), 8(9): 2278-3075. 

https://doi.org/10.35940/ijitee.I7531.078919 

[4] Nabian, M., Nouhi, A., Yin, Y., Ostadabbas, S. (2017). 

A biosignal-specific processing tool for machine learning 

and pattern recognition. In 2017 IEEE Healthcare 

Innovations and Point of Care Technologies (HI-POCT), 

pp. 76-80. https://doi.org/10.1109/HIC.2017.8227588 

[5] Hadaś-Dyduch, M. (2015). Wavelets in the prediction of 

short-time series. Mathematical Economics, 11(18): 43-

54. 

[6] Wahab, M.F., O’Haver, T.C. (2020). Wavelet transforms 

in separation science for denoising and peak overlap 

detection. Journal of Separation Science, 43(9-10): 1998-

2010. https://doi.org/10.1002/jssc.202000013 

[7] Sebastian, T., Pandey, P.C., Naidu, S.M.M., Pandey, V.K. 

(2011). Wavelet based denoising for suppression of 

respiratory and motion artifacts in impedance 

cardiography. In 2011 Computing in Cardiology, pp. 

501-504. 

[8] Salah, I.B., Ouni, K. (2017). Denoising of the impedance 

cardiographie signal (ICG) for a best detection of the 

characteristic points. In 2017 2nd International 

Conference on Bio-engineering for Smart Technologies 

(BioSMART), pp. 1-4. 

https://doi.org/10.1109/BIOSMART.2017.8095347 

[9] De Ridder, S., Neyt, X., Pattyn, N., Migeotte, P.F. (2011). 

Comparison between EEMD, wavelet and FIR denoising: 

Influence on event detection in impedance cardiography. 

In 2011 Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, pp. 806-

809. https://doi.org/10.1109/IEMBS.2011.6090184 

[10] Choudhari, P.C., Panse, D.M. (2015). Denoising of radial 

bioimpedance signals using adaptive wavelet packet 

transform and Kalman filter. IOSR J VLSI Signal 

Process, 5: 1-8. 

[11] Chabchoub, S., Mansouri, S., Salah, R.B. (2016). 

Impedance cardiography signal denoising using discrete 

wavelet transform. Australasian Physical & Engineering 

Sciences in Medicine, 39(3): 655-663. 

https://doi.org/10.1007/s13246-016-0460-z 

[12] Shoemaker, W.C., Wo, C.C., Bishop, M.H., Appel, P.L., 

Van de Water, J.M., Harrington, G.R., Patil, R.S. (1994). 

Multicenter trial of a new thoracic electrical 

bioimpedance device for cardiac output estimation. 

Critical Care Medicine, 22(12): 1907-1912. 

https://doi.org/10.1097/00003246-199412000-00004 

[13] AlMahamdy, M., Riley, H.B. (2014). Performance study 

of different denoising methods for ECG signals. Procedia 

Computer Science, 37: 325-332. 

https://dx.doi.org/10.1016/j.procs.2014.08.048 

[14] Cordero, E., Rodino, L. (2020). Time-Frequency 

Analysis of Operators. De Gruyter. 

https://doi.org/10.1515/9783110532456 

[15] Donoho, D.L., Johnstone, I.M. (1995). Adapting to 

unknown smoothness via wavelet shrinkage. Journal of 

the American Statistical Association, 90(432): 1200-

1224. https://doi.org/10.2307/2291512 

[16] Lye, M., Vargas, E. (1981). An analysis of impedance 

cardiography in the elderly. Journal of Medical 

Engineering & Technology, 5(6): 289-292. 

https://doi.org/10.3109/03091908109009363 

[17] Yazdanian, H., Mahnam, A., Edrisi, M., Esfahani, M.A. 

(2016). Design and implementation of a portable 

impedance cardiography system for noninvasive stroke 

volume monitoring. Journal of Medical Signals and 

Sensors, 6(1): 47. 

[18] Bernstein, D.P. (2010). Impedance cardiography: 

Pulsatile blood flow and the biophysical and 

electrodynamic basis for the stroke volume equations. 

Journal of Electrical Bioimpedance, 1(1): 2-17. 

https://doi.org/10.5617/jeb.51 

[19] Bernstein, D.P., Lemmens, H.J.M. (2005). Stroke 

927



volume equation for impedance cardiography. Medical 

and Biological Engineering and Computing, 43(4): 443-

450. https://doi.org/10.1007/BF02344724

[20] Stevanovic, P., Scepanovic, R., Radovanovic, D., Bajec,

D., Perunovic, R., Stojanovic, D., Stevanovic, D. (2008).

Thoracic electrical bioimpedance theory and clinical

possibilities in perioperative medicine. Signa vitae:

journal for Intesive Care and Emergency Medicine,

3(Suppl. 1): 22-27.

https://doi.org/10.22514/SV31.022008.5

[21] Summers, R.L., Shoemaker, W.C., Peacock, W.F., Ander,

D.S., Coleman, T.G. (2003). Bench to bedside:

electrophysiologic and clinical principles of noninvasive

hemodynamic monitoring using impedance

cardiography. Academic Emergency Medicine, 10(6):

669-680. https://doi.org/10.1197/aemj.10.6.669

[22] Podtaev, S., Stepanov, R., Dumler, A., Chugainov, S.,

Tziberkin, K. (2012). Wavelet analysis of the impedance

cardiogram waveforms. In Journal of Physics:

Conference Series, 407(1): 012003.

https://doi.org/10.1088/1742-6596/407/1/012003

[23] Dautov, Ç.P., Özerdem, M.S. (2018). Wavelet transform

and signal denoising using Wavelet method. 2018 26th

Signal Processing and Communications Applications

Conference (SIU), pp. 1-4.

https://doi.org/10.1109/SIU.2018.8404418

[24] Khiter, A., Adamou-Mitiche, A.B., Mitiche, L. (2020).

Denoising electrocardiogram signal from

electromyogram noise using adaptive filter combination.

Revue d'Intelligence Artificielle, 34(1): 67-74.

https://doi.org/10.18280/ria.340109 

[25] Antoniadis, A., Bigot, J., Sapatinas, T. (2001). Wavelet

estimators in nonparametric regression: A comparative

simulation study. Journal of Statistical Software, 6, pp-1.

[26] Cohen, L. (1989). Time-frequency distributions-a review.

Proceedings of the IEEE, 77(7): 941-981.

https://doi.org/10.1109/5.30749

[27] Cohen, R. (2012). Signal denoising using wavelets.

Project Report. Department of Electrical Engineering

Technion, Israel Institute of Technology, Haifa.

[28] Cai, T.T., Silverman, B.W. (2001). Incorporating

information on neighbouring coefficients into wavelet

estimation. Sankhyā: The Indian Journal of Statistics,

Series B, 127-148. https://www.jstor.org/stable/25053168

[29] Roulias, D., Loutas, T., Kostopoulos, V. (2013). A

statistical feature utilising wavelet denoising and

neighblock method for improved condition monitoring of

rolling bearings. Chemical Engineering Transactions, 33:

1045-1050. https://doi.org/10.3303/CET1333175

[30] Cai, T.T. (1999). Adaptive wavelet estimation: A block

thresholding and oracle inequality approach. The Annals

of Statistics, 27(3): 898-924.

https://doi.org/10.1214/aos/1018031262

[31] Pan, J., Tompkins, W.J. (1985). A real-time QRS

detection algorithm. IEEE Transactions on Biomedical

Engineering, (3): 230-236.

https://doi.org/10.1109/TBME.1985.325532

NOMENCLATURE 

A Atrial wave 

B Valve opening 

C Maximum aortic flow rate (dZ/ dt)max 

cᵢ Low frequencies 

CO Cardiac output, L/min 

CWT Continuous wavelet transformation 

(dZ/ dt)max Maximum of the first derivate 

dᵢ High frequencies 

DWT Discrete wavelet transformation 

e(n) Error 

ECG Electrocardiogram 

EEG Electroencephalogram 

IDWT Inverse discrete wavelet transformation 

K Input sample length 

L Signal length 

LVET Left ventricle ejection time 

MER Mean error rate, % 

N Order 

Nᵢ Length of the noisy signal 

nth Weight coefficient vector 

O Mitral valve opening 

PRD Percent difference root mean square, % 

RMSE Root mean square error 

SE Square error 

SNR Noise ratio output, dB 

SNRi Noise ratio input, dB 

SURE Stein's unbiased risk principle 

SV Stroke volume, ml 

X Aortic valve closure 

x[n] Input signal 

Y Pulmonary valve closing 

y(n) Reconstructed signal 

Z Impedance 

Z₀ Basic thoracic impedance 

𝑉˓ Intrathoracic blood volume, mL 

Greek symbols 

ѱ(. ) Mother wavelet 

λ Threshold level 

𝜃ᵢ Mean absolute deviation 

𝜃 Standard deviation of noisy signal 

𝜃² Variance of the extended block 

Nᵢ Length of the noisy signal 

ω Wavelet coefficient 

𝜔ₐ Coefficient wavelet square 

𝛽i,j Shrinkage factor 

μ Predefined step size 

Subscripts 

i Block 

j Level 
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