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 The leading cause of cancer-related death globally has been identified as lung cancer. Early 

lung nodule detection is critical for lung cancer therapy and patient survival. The Gard 

Cam++ Class Activation Function is used with a squeeze-and-excite network to provide a 

revolutionary method for differentiating malignant from benign lung nodules on CT scans. 

The new SENET (Squeeze-and-Excitation Networks) Grad Cam++ module, which 

combines the features calibration and discrimination benefits of SENET, has been shown to 

have a substantial potential for improving feature discriminability in lung cancer 

classification. According to the publicly available LUng Nodule Analysis 2016 (LUNA16) 

database, when assessed on 1230 nodules, the technique achieved an AUC of 0.9664 and an 

accuracy of 97.08% (600 malignant and 630 benign). The favorable results demonstrate the 

robustness of our technique to nodule classification, which we anticipate will be valuable in 

the future. The technology's objective is to aid radiologists in evaluating diagnostic data and 

differentiating benign from malignant lung nodules on CT images. To our knowledge, no 

systematic evaluation of SENET usefulness in classifying lung nodules has been done. 
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1. INTRODUCTION 

 

When it comes to the top cause of mortality in the world [1], 

lung cancer has surpassed all other cancers, accounting for the 

biggest number of deaths. According to cancer data, there are 

expected to be 142,670 lung cancer deaths in the United States 

in 2019, accounting for 23.51% [2] of all cancer patients in the 

country. Patients' 5-year survival rates climb from 19% to 54% 

when lung cancer is detected early, according to the American 

Lung Association [3]. As a result, early identification of lung 

cancer is crucial in order to maximize survival chances for 

patients. Typically, a nodule in the lungs is characterized by 

the presence of parenchymal lesions that are less than 3 cm [4] 

in diameter and that are spherical in shape. Figure 1 displays 

the categorization of lung nodules into two types: those that 

are malignant and those that are benign. The majority of the 

time, medical pictures such as magnetic resonance imaging 

(MRI), positron emission tomography [5] (PET), and 

computed tomography [6] (CT) scans may identify lung 

nodules (CT). When it comes to recognizing [7] and detecting 

nodules, low-dose CT has emerged as the most sensitive and 

extensively utilized imaging technology. The great spatial 

resolution, non-invasive nature, and cheap cost of CT 

screening [8] are the three most important advantages of this 

procedure. The appearance of nodules [9] as a regular or 

irregular white shadow on CT scans increases their visibility, 

increasing the likelihood that they will be discovered [10]. In 

a similar vein, the National Lung Screening Trial [11] (NLST) 

discovered that CT screening reduced lung cancer mortality 

[12] by 20%. 

In order to arrive at an appropriate interpretation of the 

nodule, radiologists must analyse massive quantities of nodule 

data margin, scope, consistency, and outline, among other 

things from several CT scans, which is a complex and time-

consuming job. Also contributing to a misunderstanding of the 

visual data are circumstances such as exhaustion, inattention, 

and a lack of professional skill, to name a few examples. 

Systemic computer-aided diagnostic [13] (CAD) systems, 

which comprise computer-aided detection (CADe) and 

computer-aided diagnosis (CADx) systems, have shown to be 

a very successful tool for the detection and diagnosis of lung 

cancer in a number [14] of studies. This research focuses on 

computer-aided diagnosis (CADx) systems, which make use 

of computed tomography (CT) images to identify and 

diagnose potentially harmful abnormalities. There are four 

primary processes in CADx systems, which are widely used in 

the pharmaceutical business and consist of data collecting, 

nodule segmentation, feature extraction, and nodule 

classification, among other things. When it comes to nodule 

diagnosis, one of these approaches, feature extraction, is quite 

useful. Overall, there are two types of nodule classification 

methodologies that are now accessible, and they may be 

alienated into 2 groups. Both malevolent and benevolent 

nodules may be distinguished using handmade characteristics 

retrieved using classic feature descriptors, while deep features 

learnt using different deep convolutional neural networks may 

be used to distinguish malignant and benign nodules as well 

(DCNNs). 
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Figure 1. The benign and malignant nodules in LUNA 16 benchmark dataset 

 
 

2. BACKGROUND AND RELATED WORKS 

 

The capacity to detect lung nodes using low dose computed 

tomography (CT) metaphors is critical in cancer transmission 

since it allows for early detection [15]. It is challenging to 

create deep learning models for nodule identification because 

of differences between positive and negative data. By merging 

a deep 3D convolutional neural network with an Encoder-

Decoder structure as well as a region proposal network, we 

hope to improve on current nodule detection algorithms. We 

use an animatedly ascended cross entropy loss in nodule 

identification to counterbalance sample disproportion and the 

false positive rate in nodule identification. With the squeeze-

and-excite structure, we may use interdependency information 

to identify essential image features that would otherwise go 

undetected. Verification of our methodology was performed 

using publicly available CT scans and ground truth data from 

LIDCT and IDRI, as well as the LUNA16 subset of the 

LUNA16 dataset. We were able to outperform rival detection 

systems in ablation testing and in-field testing by a significant 

margin. 

SE-ResNet is a residual network that may be used to 

discover lung nodule candidates while simultaneously 

reducing the number of false positives [16]. The purpose of 

this 3D area proposal network is to identify potential lung 

nodule candidates for further investigation. A 3D SE-ResNet-

based classifier is given to distinguish genuine nodules from 

false positives in order to improve accuracy. Recalibrating the 

channel-wise residual feature responses in 3D SE-ResNet 

modules is done in an acceptable manner. Both models make 

use of 3D SE-ResNet modules in order to learn nodule 

characteristics and improve nodule detection performance. 

Among the leading causes of cancer-related death, lung 

cancer is by far the most frequent [17]. Early diagnosis of 

nodules is critical in the treatment and survival of lung cancer 

patients. By using computed tomography data, we 

demonstrate how the squeeze-and-excite network as well as 

aggregated residual changes may be utilised to distinguish 

between malignant and benign lung nodules (SE-ResNeXt). 

With this SE-ResNeXt module, you may significantly increase 

the distinguishing power and discriminability of features in 

picture shape appreciation. The approach is assessed using the 

Lung Nodule Analysis 2016 (LUNA16) database, which has 

1004 nodules (450 malignant and 554 benign), with an AUC 

of 0.9563 and an accuracy of 91.67%. The database has an 

AUC of 0.9563 and an accuracy of 91.67%. The success of our 

technique in nodule categorization is shown by the high 

number of positive results obtained. This method may be 

useful to radiologists in the clinical setting for the discovery 

and differentiation of benign and malignant lung nodes on CT 

metaphors of the lungs. At this time, we are not aware of any 

study including the use of SE-ability ResNeXts to help in the 

classification of lung nodules. 

The iterative development of radiation therapy treatment 

programmes consumes a significant amount of time and effort 

[18]. Treatment planning tool A-Net estimates the ideal 3D 

dose distribution for lung cancer patients using a probabilistic 

approach. To 392 lung cancer patients, it was provided at the 

indicated dosages of 50Gy and 60Gy, respectively. When 

working with GPU memory limits, A-Net makes use of 

asymmetric encoders and decoders to preserve input data. The 

SE units are used to increase the ability to fit data to a given 

set of parameters. The dosage distribution as well as the 

recommended dosage are both included in the ground truth 

loss calculations. For the most part, A-performance Net's 

performance is comparable to that of HD-UNET and 3D-Unet, 

while there are a few instances when it is somewhat better. The 

A-measures Nets performed much better in both the 50Gy and 

60Gy samples. Finally, A-Net successfully predicts the dosage 

distribution in each of the three datasets tested.  

Lung cancer must be recognised and diagnosed as soon as 

possible in order to increase the chances of survival [19]. Deep 

learning is becoming more and more important in medical 

diagnostics. Deep learning-based nodule recognition system 

performed well, however the generalization-performance 

issue remained unaddressed owing to the unequal distribution 

of data in the training data. This difficulty was addressed by 

developing a single-stage, double three-dimensional (3D) 

squeeze-and-excitation (SE) network. The two-dimensional 

(2D) SE network is constructed from a single three-

dimensional (3D) SE network that specifies in great detail the 

relationship between channels and channel depths. Because a 

CT image frequently only contains a few numbers of group 

truth 3D pulmonary nodules, the new nodules are constructed 

from the other CT images in the training dataset. This is done 

to ensure that the training dataset is as accurate as possible. 

Our approaches were tested against the LUNA16 dataset, and 

we were able to achieve a sensitivity of 97.3%. Any single-

stage approach now available outperformed the results 

obtained with this approach.  

Lung cancer is the most common and severe illness that 

affects people's health all over the world, and it is also the most 

preventable [20]. For the purpose of preventing and 

diagnosing lung cancer, it is vital to recognise and identify 

lung nodules as soon as they are seen and identified. In this 

study, a unique Squeeze-and-Excitation Convolutional Neural 

Network structure is constructed using Squeeze-and-

Excitation techniques. According to the results, the SE-CNN 

can discriminate between benign and malignant lung nodules 

in a clinical setting. When it comes to distinguishing between 

benign and malignant lung nodules, SE-CNN is more accurate 

than conventional CT imaging methods. 
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Figure 2. Graph shows the literature review on academic paper related to origin of the paper. Node Citations and Size represents 

the citations and publishing year. Similar papers have strong Connection 

 

Figure 2 shows the literature work done on the various 

origins of the paper. Here the bigger node represents the 

citations and publishing year. We have taken Similar papers 

and strong connections for the Literature survey. 

 

 

3. MATERIALS AND METHODS  

 

The proposed technique for the classification of benevolent 

and malevolent lung nodes is divided into 3 major stages. 

These are as follows:  

(1) Image data gaining from the “LUNA16” database.  

(2) Node Cataloguing using Squeeze and Excitation 

extraction of nodules. 

(3) Feeding classified image to Gard-Cam++ Activation 

function for the foreseeable future classification. 

 

3.1 Proposed model 

 

3.1.1 Data acquisition from LUNA-16 benchmark dataset 

This study uses the Lung Image Database Consortium 

image collection (LIDC–IDRI) dataset, which has been 

upgraded from the freely accessible Lung Image Database 

Consortium dataset (LIDC–IDRI). Thin-slice CT scans are 

optional by the American College of Radiology for nodule 

identification and categorization. Because of this, scans having 

slice thicknesses larger than 3 mm, images with uneven slice 

spacing, and scans with missing slices were rejected. Another 

precaution, given that physicians' experience has shown that 

tiny nodules are usually innocuous, is to remove any nodules 

with a diameter of less than 3 mm simply to be careful. We 

discovered 888 CT images with 1004 nodules and selected all 

of them, yielding a total of 888 CT images with 1004 nodules. 

Four radiologists with extensive experience provided 

comments for each CT image. The annotations in the dataset 

were acquired as part of a two-phase image annotation 

methodology that was acknowledged by at least three out of 

four radiologists in the study. most specific characteristics, 

such as node positions, diameters, and malevolence stages 

(from 1 to 5). "A cancer risk of Level 1 indicates that there is 

no chance of developing cancer; a cancer risk of Level 2 

indicates that cancer development is only possible; a cancer 

risk of Level 3 indicates that disease development is slightly 

likely; a cancer risk of Level 4 indicates that disease 

development is more likely; and a cancer risk of Level 5 

indicates that disease development is very likely." 

 

 
 

Figure 3. Background of the anticipated node diagnosis 

method 

 

3.1.2 Data extraction 

To ensure that the learning model is correctly trained, 3D 

patches containing lung nodules are clipped from raw CT 

images and inserted in the network to serve as training 

examples. In the centre of each nodule is a cantered patch of 

fungus. Expert radiologists estimate that the two greatest 

diameters of the nodules that were selected are 33.26 mm and 

31.62 mm, with the other node sizes ranging from 3.1 mm to 

35 mm. Nodule sizes were chosen at random from the 

LUNA16 database, and the distribution of nodule sizes is 

shown in Table 1. Nodules that are not cancerous are often 

smaller in size than nodules that are cancerous; however, this 

is not always the case. Due to the large number of nodules that 

1105



 

were chosen, the scope of the contribution patch has been 

expanded to 32*32*32 in order to capture the majority of them 

chosen. Figure 3 shows the brief view of our proposed model. 

Diagram Showing Data acquisition, Node Extraction and 

Nodule Classification to check weather it is Benign or 

Malignant. 

 

Table 1. The spreading of node dimensions in the LUNA16 

database 

 
Number of 

Nodules 

Lung Nodules size in MM 

Size in mm (0,10) (10,20) (20,30) (30,36) Total 

Benign 554 16 1 0 571 

Malignant 256 234 56 8 554 

 

3.1.3 Basic structure of squeeze-and-excitation networks 

SENETS are a type of CNN that, despite having limited 

computational power, increases channel interdependence. 

SENETS are a type of CNN that is subdivided. Through the 

use of channel adjustments for each conversion block, we were 

able to fine-tune the weighting on each feature map. Using 

these filters, CNNs are able to extract hierarchical information 

from images. Higher layers are capable of detecting faces, text, 

and other complex geometric shapes, whereas lower layers are 

only capable of detecting borders or extremely high 

frequencies. They gather all of the information necessary to 

complete a task in a short period of time. This is accomplished 

through the combination of space and image data. Following 

that, the filters will combine data from all of the output 

channels that are currently available. When the network 

generates output charts, it assigns the same weight to each of 

the channels. SENets intends to alter the channel weighting by 

incorporating a content-aware mechanism into its network. In 

its most basic form, this entails assigning a single parameter 

and linear scalar to each of the channels. 

Figure 4 shows the Squeeze and Excitation Network and 

working of the proposed Model for classification of the Lung 

Cancer Nodules. 

In convolutional neural networks (CNNs), SENETS 

(Squeeze-and-Excitation Networks) are a novel kind of 

building component that enhances channel dependence while 

requiring low computational effort. As a reminder, the basic 

notion is as follows: A convolutional block should have 

parameters assigned to each of the channels, which will allow 

the network to adjust the weighting of each feature map as 

necessary, as shown in the example. When CNNs analyse 

images, convolutional filters are used to collect hierarchical 

information contained within the images. Higher degrees of 

intelligence may be able to recognise faces, language, and 

other complex geometrical patterns that are undetectable to 

lesser levels of intelligence. Figure 5 shows the detailed view 

of the proposed Model. 

They gather whatever information is necessary in order to 

complete a task properly. By merging the spatial and channel 

data contained inside a single image, this may be done. The 

different filters will search for spatial components in each 

individual input channel before aggregating the data over all 

available output channels to get a final conclusion. When the 

network is constructing the output feature maps, it provides 

equal weight to each of the channels that it has. SENETS 

objective of revolutionising the Internet involves including a 

content-aware technique for adaptively weighing each channel 

as part of its overall objective of revolutionising the Internet. 

In its most basic form, this may be accomplished by assigning 

a single parameter to each channel and processing it as if it 

were a linear scalar value. For each channel, they begin by 

condensing its feature maps into a single numerical value, 

which they then use to get a global understanding of that 

channel. This results in an n-dimensional vector, where n is the 

number of convolutional channels in the underlying technique 

used to generate the vector. Data is then fed into a two-layer 

neural network, which generates a result with a size equal to 

or greater than that of the input vector. Now that the n values 

have been determined, they may be used as weights on the 

original feature maps, allowing for accurate scaling of each 

channel. 

 

 
 

Figure 4. The basic structure of the squeeze and excitation network for the lung cancer classification 

 

 
 

Figure 5. The structure of proposed network SENETS 
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− The function is given an input convolutional block as 

well as the current number of channels available. 

− We reduce each channel to a single numeric quantity 

using average pooling. 

− The required nonlinearity is achieved by adding a 

fully connected layer followed by a Mish function. 3. 

Furthermore, the production channel complication is 

reduced by a certain amount. 

− A smooth gating function for each of the eight 

channels is provided by a additional entirely linked 

layer surveyed by Sigmoid activation. 

− We weight respectively convolutional block feature 

map based on the results of our side network. 

 

3.1.4 SENETS with Grad Cam++ Class activation 

According to this research, we can use this method to offer 

visual explanations by highlighting discriminative areas in the 

model, which is a very strong strategy for finding out how to 

make the model interpretable for those who are not familiar 

with the domain. Essentially, we want to develop a 3D CNN 

with the highest level of accuracy possible while 

simultaneously providing visual insights into the model's 

decision-making processes. This study proposes grade cam++ 

techniques for visual nations based on a single module 

categorization, which is shown by a single module 

classification in this study. Grad-CAM++ is supported by a 

large number of different CNN models. It generates a visual 

image that distinguishes between different classes of people. 

It also informs you of the model's failure modes, should they 

occur. To determine the importance of each neuron for a 

particular decision, Grad-CAM++ examines the information 

on the gradient that is passed into the final convolutional layer 

of the CNN, which is called the final convolutional layer. 

 

 

(1) 

 

Eq. (1) is used to calculate the average pooled global Output 

of the Squeeze and Excitation Network. 

Let us define JP to be average pooled global output 

 

 

(2) 

 

Grad-Cam++ Computes the end scores by gradient via back 

propagation of the network JP is the object of the prediction 

and their confidence of the image, nodule classification with 

discriminative regions, object annotations. 

 

 

(3) 

 

where, 𝑤𝑝
𝑞
 is the weight connecting the Kth Feature map with 

forward activation maps with non-linearity to the squeeze and 

Excitation Network.  

Taking the gradient class score (JP) w.r.t to feature map we 

get. 

 

 

(4) 

 

Taking Partial Derivation (4) w.r.t. 𝐴𝑖𝑗
𝑝

; We can see that 

𝛿𝐽𝑝

𝛿𝐴
𝑖𝑗
𝑝 =

1

𝑧
. Substituting this on (4) we get Grad-CAM++, which 

uses a weighted combination of the positive partial derivatives 

of the last convolutional layer feature maps with respect to a 

specific class score as weights to generate a visual explanation 

for the class label under consideration. 

 

 

(5) 

 

From (3) We get 

 

 

(6) 

 

Summing both sides of (6) we get to know the 𝑧 ∗
𝛿𝐽𝑝

𝛿𝐴
𝑖𝑗
𝑝  

visualize Convolutional Networks and understand what is 

learnt by each neuron. 

 

 

(7) 

 

Therefore 
𝛿𝑦𝑐

𝛿𝐴
𝑖𝑗
𝑝  is used for the pixel wise Value and the true 

value of the lung nodule. 

 

 

(8) 

 

Because of this, Grad-Cam++ may be considered to be a 

rigorous generalisation of the class activation. It is possible to 

offer a visual explanation for domain experts by creating a 3D 

CNN-based model, which makes the procedure both lighter 

and more sophisticated due to this generalisation. As a 

consequence, computer tomography scans will be able to 

pinpoint the exact site of the tumour. To construct a Mish, we 

do a weighted combination of forward activation maps 

followed by a ReLu. 

 

 

(9) 

 

From the Eq. (9), we pointwise multiply the up-sampled (to 

image resolution) saliency map Lc with the pixel-space 

visualisation generated by Guided Backpropagation in order 

to generate class-discriminative saliency maps with the 

richness of pixels-space gradient visualisation methods. Grad 

CAM++ makes use of a technique that is similar. Guided 

Representations using Grad-Cam++ are the end result of this 

procedure. 

SEGNET is being investigated and developed with the goal 

of improving the accuracy and confidence in the identification 

of lung nodules and CT scan data compared to current models, 

with the ultimate goal of aiding in the early diagnosis of lung 

cancer in order to enhance survival and prognosis. 

 

3.1.5 Class discrimination and trust 

These methods are each devolutionised, with redirected 

background and Grad-cam++ versions available 

(Deconvolution Grad-CAM and Guided Grad-CAM). It is 

possible to visualise 160 different images of the lung nodule 

in order to answer the question "What image represents the 
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two categories of objects?" During the testing process, a total 

of 90 pairs of images (360 visualisations) were used. The 

following 9 people have given their opinions. The category 

visualised is correctly identified by humans when they view 

Grad-cam++ (63.43% when viewing Guided 

Backpropagation, compared to 44.44% when viewing Grad-

CAM++; thus, Grad-cam++ improves human performance by 

16.79%). Grad-CAM++, on the other hand, would appear to 

be more discriminatory in its treatment of Deconvolution 

(from 54.36% to 62.32%). Grad-cam++ outperforms all of the 

other methods. It was taken into consideration only when the 

two models predicted the same outcome as the fundamental 

truth. Using 54 lung nodules, the model's reliability was 

assessed using three different levels of reliability: 

outstandingly more/unreliable (+/-2), slightly more/unreliable 

(+/-1), and equally reliable (+/-1). (0). Despite the fact that the 

predictions are identical, noduled subjects can identify the 

more accurate classifier by examining different explications. 

 

3.1.6 Nodule classification network parameters 

Figure 6 displays a SENETS network with Grad Cam++ 

class activation for the classification of lung nodules. A total 

of 32 x 32 x 32 image patches is supplied into the network as 

input. For the first time, a convolutional level is used in the 

generation of the feature map (3 x 3). Table 2 shows the 

Parameter of the Proposed Classification Network 

In order to get the necessary results, SENET blocks are 

interposed with the average-pooling layers, which are 

interleaved with four average-pooling layers, which are 

interleaved with four average-pooling layers. Three Squeeze 

and Excitation modules are included inside each of the four 

Squeeze and Excitation blocks (the first, second, and third), 

with the first block containing four modules, the second 

including six modules, and the third including three modules. 

Using a average-pooling layer, each block is segregated from 

the rest of the blocks. The last layer of the network is 

composed of three layers, which are arranged in the following 

sequence: an average pooling layer, an FC layer, and a 

SoftMax layer (in that order). It is shown in this study how to 

solve a binary classification issue using the cross-entropy loss 

function. Following the SoftMax, the projected malignant 

probability (PMP) of each lung nodule may be estimated 

individually. 

 

 
 

Figure 6. The SENETs with Grad Cam++ Class activation 

 

 
 

Figure 7. The proposed architecture 

 

Table 2. The parameters of the proposed network 

 
Layers Type Activation Shape Activation Size #Parameters 

CNN Conv_1 (32,32,3) 3072 0 

CNN Average_pooling_1 (28,28,8) 6272 208* 

SE_BLOCK_1 Recalibration (14.14,8) 1568 0 

CNN_2 Conv_1 (10,10,16) 1600 416* 

CNN_2 Conv_1 (5,5,16) 400 0 

CNN_2 Average_pooling_2 (12,0,1) 120 48001 

SE_BLOCK_2 Recalibration (84,1) 84 10081 

Fully_Connected_1 SoftMax (10,1) 10 841 

Output ReLU 2*1 - Malignancy/Benign 

 

 

4. DATA AND EXPERIMENTS 

 

Table 1 shows that there are 1230 [21] clinical thoracic 

computed CT images are included in the LUNA16 collection. 

This study excludes CT scans with slice thicknesses more than 

3 mm or images with uneven slice spacing. This research 

included contributions from four thoracic radiologists with 

substantial experience in picture annotation. On a scale of 1 to 

10, each radiologist labelled the lesions that they considered to 

be nodules as non-nodule, nodule 3 mm, and nodules >= 3 mm. 

All nodules larger than 3 mm in diameter that have been 

approved by at least three out of four radiologists form the 

reference standard. The pictures of benign and malignant 

tumour are shown in Figure 7. 

The training process is basically some images X input into 

the model and then this model makes some predictions and 

then this output or the predictions as compared with the actual 

value of the label which is Y and some loss function that is 

Binary Cross Entropy is used for computation for image 

classification. It is a method of determining which model the 

data is using in conjunction with the algorithm. If your 

forecasts turn out to be completely incorrect, your loss 

function will be larger. If they're pretty good, the result will 

offer you a lower score.  

Figure 8 shows the data preprocessing of the LUNA 16 

Dataset. Figure 8.a shows the Nodule Images and Figure 8.b 

showing the Non-Nodule Images. 

In most cases Squeeze and Excitation Network use a cross-

entropy loss on the one-hot encoded output. For a single image 

the cross-entropy loss looks like this: 
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(10) 

 

where, M is the number of classes (i.e., 1000 in ImageNet) and 

y^c is the model's prediction for that class (i.e., the output of 

the SoftMax for class c). Due to the fact that the labels are one-

hot encoded and y is a (1000×1) vector of ones and zeroes, yc 

is either 1 or 0. Thus, out of the whole sum only one term will 

actually be added: the one with yc=1. 

This loss function says how far away we are from where we 

want to be and how we can minimize this loss, so that this 

model is updated and is better at predicting what we're trying 

to do. The optimization of this loss function is basically where 

we update the model with new parameters and, in this case, as 

we talked, the new parameters would be the values inside of 

the kernels, as we were speaking about earlier, as opposed to 

traditional weights and artificial neural networks. During the 

training process, the SoftMax activation function was used 

before loss was calculated and cross-entropy was used as the 

loss function to be optimized and all of the models used an 

optimizer with default parameters and a learning rate of 0.30 

in and out. We can use different optimizers, so the idea is that 

we can change these things and try and get a better model. 

 

 
(a) 

 
(b) 

 

Figure 8. (a) Nodule image vs (b) Non-nodule image 

 

We want to evaluate the model with some key metrics, so 

some of the ones that are used widely are precision recall and 

accuracy. It's just how many you got right out of the total recall 

is how many you were able to detect of all the positive values 

and finally precision is out of the ones you've labelled as 

positive How many are actually positive? They are all useful 

for different reasons to detect as many nodules as possible to 

have a high recall, but you don't want to sacrifice precision. 

We redetected with a lung nodule early on, it can save a life, 

as opposed to a false positive, which will probably show that 

the patient isn't good for them, but it's not the same impact as 

just missing the nodule entirely, so the final outcome is the 

same. A graduate camera was used to visualize CNN in order 

to understand how the model made its decisions. Grad-Cam++ 

is basically an algorithm that uses the penultimate or the 

convolution alert right before the fully connected layers and it 

uses the activation from this con Blair and it can utilize spatial 

information in this con where it's completely lost in the later 

dense layers, so this is a critical step to gaining insight. 

We worked with the Kerras and TensorFlow libraries in 

Python, and I used a library called the corrals visualization 

toolkit for my grad cam algorithm and we used SK learning on 

metrics to get the metrics for all of the decisions and models. 

 

 

5. RESULTS AND DISCUSSIONS 

 

In order to evaluate the methodology, the researchers 

employed the LUNA16 nodule database, which has 1004 

nodules. The image data was separated into 10 subgroups at 

random, with each subgroup being cross-validated 10 times. 

As a result, all of the image data was divided into 10 subsets 

that were distributed equally and randomly. It was necessary 

to analyse nine sets of training data in order to determine 

which ones should be used, however only one set of testing 

data was assessed throughout the process. This method of 

classifying nodule-level trials into binary categories included 

averaging the levels of each nodule and labelling them as 

questionable or certain depending on whether the final average 

level was more than or equal to 3. The presence of a malignant 

nodule is determined by the average final level of the nodule 

being more than 3. However, there is no scientific evidence to 

suggest that they are harmful to humans. The LIDC–IDRI 

database was used to collect all of the annotations for the item 

in question. The chance of malignancy was projected to aid 

radiologists in their diagnosis, and in addition, Windows 10 

and Ryazan 9 series CPUs, as well as 12 GB graphics cards, 

were used in each of the tests. 

 

5.1 Implementation details 

 

 
 

Figure 9. Classification accuracies of diverse frameworks 

with comparison with different classifiers 

 

Figure 9 shows the performance evaluation of the proposed 

model with other classifiers. 

Several CT scanners were utilised in the same experiment 

to analyse images from the LUNA16 database, which was 

conducted on the same day. Before the training method, all CT 

scans were resampled to the same exact resolution of 1 mm, 

which is one millimetre by one millimetre: one millimetre by 

one millimetre. To scale the pixel values of the clipped region, 

they were first normalised to the range [0, 1] and then 

truncated to the range [1200, 600]. For the purpose of reducing 

overfitting, data augmentation was performed to the training 
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dataset, which was checked for accuracy by randomly flipping 

and rotating the patches on the training dataset. The stochastic 

gradient descent algorithm was used to optimise the learning 

process (SGD). The process had an impetus of 0.9, and its 

weight decay was more than 1,000 times more than that of the 

process. Furthermore, since there was a restriction on the 

amount of GPU RAM that could be used, the batch size was 

restricted to a maximum of 24 persons per batch. A total of 

150 training sessions were conducted using the learning model. 

Initially, the initial learning rate was 0.001, and after 60 epochs, 

it was 0.0001, and after 120 epochs, it was 0.0001. Using the 

AUC score and accuracy calculations, as well as the average 

performance on each of the 10 test folds, the suggested 

methodology was assessed. As for the accuracy of lung nodule 

diagnosis, it is defined as the fraction of correctly identified 

nodules, and it is provided in the following as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (12) 

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) (13) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (14) 

 

𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)  

𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 
(15) 

 

where, the TP is true positive, TN is true negative, FP is false 

positive, and FN is false negative. 

From the Table 3, it was very clear that our classifier 

SENETS-Grad-Cam++ has outperformed remaining all the 

classifiers in terms of the performance metrics like AUC and 

accuracy on LUNA 16 benchmark dataset. 

Figure 11 and 12 Shows the Model Classification after the 

Testing. The red heat map shows the benign lung nodule 

classification. Thus as a results it would be easy for the 

radiologists to classifier the tumor. 

From the Table 4 it was clearly evident that our method was 

performed very well with few samples size from LUNA 16 

dataset. The results clearly shows that out proposed model and 

method are good at classifying odd benign and Malignant 

tumours. As, a result the model has achieved a trust gain when 

compared with various others methods. From the Figure 10 we 

can clearly state that with ROC curve performance our model 

has out performed when compared with other classifiers. 

 

 
 

Figure 10. ROC curve showing the proposed classifier 

 
Figure 11. Visualization of benign and malignant nodule classifications. Malignant prognosis, four radiologists, and nodule 

diameter (mm) 
 

 
 

Figure 12. Grad Cam++ visualization of the malignant nodules after classification 
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Table 3. Evaluation of proposed with other procedures based on handcrafted structures 
 

Author’s Year Features Classifier Database Samples AUC Accuracy 

de Carvalho et al. [22] 2016 Intensity Features SVM LIDC 86 0.9557 95.53 

Ferreira et al. [23] 2017 Shape Features RF LIDC 1406 - 92.20 

Jalalimanesh et al. [24] 2018 Texture Feature MLP LIDC 1406 - 90.68 

Hu et al. [25] 2018 Morphology Feature MLP, KNN LIDC 1178 0.8669 79.35 

Gong et al. [26] 2018 Size Feature NBC, LDA LIDC 150 - 94.89 

Xie et al. [27] 2018 Classical Random Features BPNN LIDC 1363 092 91.13 

Kaya et al. [28] 2018 Wavelet Feature CC LIDC 570 0.65 91.13 

Proposed Work 2021 SENETS-GRAD-CAM++  LIDC/LUNA16 1200 0.9664 97.08 
 

Table 4. Assessment of the proposed methods with other approaches based on deep learning topographies 

 

Authors Year Method Database Samples AUC Accuracy 

Neal Joshua et al. [29] 2021 3D -CNN LIDC 2619 0.91 90.15 

Nibali et al. [30] 2017 2D- ResNet LIDC 487 0.77 - 

Zhu et al. [31] 2018 2D -DPN LIDC 890 0.9658 90.91 

Mao et al. [32] 2018 2D- DAE LIDC 2889 0.95 93.85 

Shen et.al. [33] 2016 3D -MCCNN LIDC 1200 - 91.44 

Liu et al. [34] 2018 3D- SE-ResNeXt LIDC 60 0.9440 90.58 

Proposed Work 2021 SENETS-GRAD-CAM++ LUNA16 1230 0.9664 97.08 

 

 

6. CONCLUSION AND FUTURE WORK 

 

As part of this study, we developed a unique End-to-End 3D 

deep learning network inside an Encoder-Decoder architecture 

that employs Squeeze-and-Excitation structures for the 

detection of pulmonary nodules in low-dose lung CT images, 

which was evaluated. Targeted classification loss was applied 

in the proposed network in order to solve the challenges 

caused by sample imbalance and to reduce the frequency of 

false positives in the data set, respectively. With regard to the 

performance of our nodule identification model, we ran a large 

number of trials on the LUNA16 and LIDC/IDRI datasets, and 

the results revealed that our model outperforms state-of-the-

art techniques that employ the same network backbone, as 

shown in Figure 1. According to ablation research, both the 

Squeeze-and-Excite structure and the localised categorization 

loss are crucial in improving the ability to identify nodules and 

other abnormalities in the brain. Our future research will be 

focused on enhancing existing methodologies and building 

deep learning algorithms to characterise lung nodules in order 

to better classify them in the future. 
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