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 The intelligent transportation system is one of the most important constructions of urban 

modernization. Traffic flow monitoring technology is the most essential information in the 

intelligent transportation system. With the advancements in instrumentation, computer 

image processing and communication technology, computerized traffic monitoring 

technologies have become feasible. This study captures traffic information using 

surveillance cameras installed at higher locations. The YOLO object detection technology 

is used to identify vehicle types. The system principle uses image processing and deep 

convolutional neural networks for object detection training. Vehicle type identification and 

counting are carried out in this study for straight-line bidirectional roads, and T-shaped and 

cross-type intersections. A counting line is defined in the vehicle path direction using the 

object tracking method. The center coordinate of the object moves through the counting line. 

The number of motorcycles, small vehicles, and large vehicles were counted in different 

road sections. The actual number of vehicles on the road was compared with the number of 

vehicles measured by the system. Three separate counting periods were used to define the 

results using the confusion matrix. 
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1. INTRODUCTION 

 

Vehicle detection and classification is an important part of 

a smart transportation system. The goal is to collect 

information from vehicles and derive some useful flags such 

as vehicle speed measurements, traffic density, vehicle counts, 

traffic congestion lengths, vehicle collisions, average traffic 

speeds, and vehicle amounts within a period. This information 

can be used in traffic management to make the traffic flow 

smoother. In recent years, sensor technology has improved 

greatly. Using advanced semiconductor technology various 

sensors have become cheap enough for use in image detection 

to reduce the manpower and time cost. 

Vehicle detection methods include three parts. The first part 

is the sensor. Sensors include acoustic sensors, magnetometers, 

accelerometers, ultrasonic and microwave radars and laser 

scanning [1-6]. The second part is signal processing. For 

example, the wavelet packet autocorrelation function method 

[7]. The third part is data processing and analysis such as GPS 

data for floating cars [8]. The most common traffic flow 

calculation method is based on intrusive induction which 

embeds sensors under the road surface. Such a system needs 

maintenance and regular calibration; thus, producing serious 

traffic interruption. 

Image recognition based on outdoor surveillance cameras is 

more susceptible to weather, lighting, shadows, etc. than other 

technologies. However, the image recognition system can 

provide various advantages, such as not disturbing traffic areas, 

easy installation and easy modification. Vehicle detection 

research greatly increased in the past decade supporting the 

rapid development of intelligent transportation systems [9, 10]. 

Image processing technology development and the extensive 

installation of road cameras have facilitated image-based 

vehicle detection and classification. The most common vehicle 

image recognition detection method is to use background 

subtraction for the detection of simple moving objects [11]. 

For each input traffic image frame, the absolute difference 

between the generated background model and the current 

video frame is calculated to extract the vehicle images on the 

road. To detect the foreground areas of the vehicle, the 

background modelling process needs to be learned and 

maintained, such as the Gaussian Mixture Model [12]. Both of 

the above methods require a stable background for the object 

to be detected. It is difficult for the program to deal with 

shadows and the occlusion of large vehicles, which will result 

in multiple vehicles appearing as a single object. Instant 

vehicle road detection requires an adaptive non-static 

background [13]. 

The continuous improvement in hardware computing power 

has permitted the rapid development of convolutional neural 

networks and achieved good results in the computer vision 

field [14]. At present, the most commonly used methods for 

object detection are R-CNN series [15, 16], SSD series [17, 

18] and YOLO series [19, 20]. The YOLO algorithm was 

proposed by Redmon and Farhadi [21]. The YOLO algorithm 

is continuously improved. The YOLOv3 model solves object 

detection as a regression problem, and uses the K-means 

clustering method to automatically select the best initial 

regression for the data set frame. The multi-scale anchor frame 

concept is used to improve the detection accuracy for small 

objects [22]. In one step the location and classification of 

objects are output onto an end-to-end network. This method is 

one of the fastest algorithms at present. 

A better trade-off between speed and accuracy is made in 
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this study. The YOLOv3-SPP model pyramid feature is used 

as the vehicle detection method [23]. Large buses and large 

container vehicles are classified as heavy vehicles; small 

container vehicles and passenger cars, and sport utility 

vehicles and vans are classified as small cars. Motorcycles are 

classified into their own separate category. A passenger car 

equivalent (PCE) provides the vehicle conversion into the 

reference vehicle [24]. The small passenger car equivalent is 

the proportion of traffic in the traffic flow compared to small 

passenger cars under the existing road layout, traffic plan and 

management measures. For example, a motorcycle is 0.3 small 

passengers, the small one is a small passenger, and the large 

one is 1.5 small passengers, etc., to convert traffic flow 

information into small passenger equivalents. This is very 

important data for future road construction, traffic signing, and 

road traffic control.  

 

 

2. PRINCIPLES OF VEHICLE DETECTION AND 

CLASSIFICATION 

 

The convolutional neural network is a multi-level 

feedforward neural network. The convolutional neural 

network can automatically learn image features with high 

nuances, and can be identified on the graph without the 

function of hand-crafted features. The object detection task is 

composed mainly of three different algorithms: object 

localization, feature extraction and image classification. This 

study uses YOLO object detection that combines the original 

scattered object detection steps into a single neural network, 

predicts each bounding box through the features of the entire 

image, and simultaneously calculates the probability of each 

bounding box for each class. The object bounding box and the 

location of the center point are then obtained. YOLO detects 

objects from the entire image and end-to-end [25], trains and 

calculations, and also maintains high precision in real-time 

operations. 

The YOLO object detection method is based mainly on the 

GoogLeNet [26] image classification model. It extracts the 

input image characteristics from the initial convolutional layer 

and predicts the probability of the full-connected layer output. 

Each square is predicted by the convolutional neural network 

to include the target frame. The YOLO detection method 

confidence index is the basis for the detection model output. 

Eq. (1) of the confidence index is as follows: 

 

Confidence Score σ(𝑡𝑜) = Pr (Object) ∗ IoU𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (1) 

 

Each bounding box corresponds to a confidence score. If 

there is no object in the grid cell, the confidence score is zero. 

If there are objects in the square, the confidence score is the 

perdition bounding boxes and the real marker IoU value of the 

bounding boxes. There are two main methods for solving 

multi-scale problems in the past, one is the image pyramid, and 

the other is the convolution kernel pyramid. When two 

different objects are in close proximity, causing the center 

point of the two objects to share a set of grid cells, the problem 

of object overlap occurs. In order to solve the problem of 

overlapping multiple objects in an image, the author proposes 

an anchors mechanism to introduce anchors of different sizes 

and different aspect ratios as pre-defined default bounding 

boxes.  

During the object detection process the same area in the 

image is easily covered by multiple bounding boxes. The non-

max suppression algorithm solves this common problem. 

When bounding box prediction is repeated in object detection, 

IoU is used to define a threshold value to define the repeated 

region. A threshold value IoU ≥ 0.5 is the object that we want 

to focus on. The bounding box datum for all IoU comparisons 

is then identified, which is the bounding box with the highest 

probability of prediction in this repeating region. Bounding 

boxes with the IoU ≥ 0.5 of the base bounding boxes are then 

discarded. IoU refers to the intersection between the ground-

truth bounding boxes and perdition's bounding boxes divided 

by the union of the two bounding boxes. The IoU calculation 

is shown in the ground-truth and predicted results shown in 

Figure 1. The red line is the correct result for the artificial mark. 

The green line is the result predicted by the algorithm. What 

IoU has to do is measure the algorithm accuracy in these two 

results. Therefore, IoU can be used directly as an important 

indicator of the detection model accuracy. 

 

 
 

Figure 1. IoU accuracy calculation 

 

 
 

Figure 2. Schematic diagram of Region of Interest 

 

 
 

Figure 3. Image tracking area after image processing 

 

Because the image detection process will get a new object 

list every time an object is detected in the object frame, the 

objects in the upper and lower frames cannot determine 

whether it is the same vehicle if the training weight is 

insufficient. In the travel direction a single object will result in 
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multiple calculations. In order to avoid double counting it must 

be solved by object tracking. In the image processing 

procedure, the images of some objects can only be processed 

and analyzed through region of interest (ROI). The image ROI 

often outlines the areas to be processed in the form of boxes, 

circles, ellipses, irregular polygons, and the like. A part of the 

image is separated from the area for processing, which reduces 

the image processing analysis workload, improves the 

precision and reduces the processing time. 

In the middle of the lane image, a count line is drawn 

perpendicular to the lane in the lane image. The thickness is 1 

pixel. A thick line of 20 pixels is expanded on the upper and 

lower sides of the count line. The two thick lines cover the 

ROI1 and ROI2 regions of interest. The tracking action is 

started when a vehicle center point position enters ROI1. If the 

center point of the object enters ROI2 through the counting 

line in the next frame, the vehicle direction is obtained through 

the upper and lower frames and the number of vehicles in that 

direction is increased by one, as shown in Figure 2. It shows a 

schematic diagram of the area of interest. It is not necessary to 

calculate the vehicle flow and direction for the entire image 

during object tracking. Just add the drawn line segment and 

ROI area to the hidden layer and then judge and calculate when 

a vehicle passes this line or this area. After the center point of 

the object passes through the traced area drawn in the front, 

the number of objects is added. Figure 3 shows the image 

processing detection area after image processing. 

 

 

3. IMPLEMENTATION AND EXPERIMENTAL WORK 

 

Table 1. Equipment and operating environment 

 
OS Ubuntu 16.04 LTS 

CPU Intel Core i7-7700 4.2GHz 

GPU 
GeForce GTX1080Ti 11G 

3584CUDA/1544MHz 

RAM 64 GB 

Camera Canon EOS M50 

Camera lens EF-M 11-22mm f/4-5.6 IS STM 

Video specification 1920*1080/60FPS 

 

 
 

Figure 4. Camera installation diagram 

 

The development environment for the entire identification 

system used Python language. Python is an object-oriented 

high-level programming language and a literal translation 

language. The system hardware equipment mainly uses the 

GTX 1080Ti display card as the main core of the whole system 

operation. The environment and operating system mainly used 

for data collection and feature engineering are shown in Table 

1. This study carried out scorpion type classification and the 

vehicle counting system. Traffic flow filming must be carried 

out in locations that are conducive to the recording of 

motorcycles, cars and heavy vehicles. In consideration of the 

need to photograph motorcycles, the traffic is filmed at a 

height of about eight meters in the urban area. A straight-line 

bidirectional road film is taken on two road sections. As shown 

in Figure 4, the relevant position for the vehicles and camera 

frame is shown.  

The system architecture of this experiment is to set up a 

camera on an overpass to take images of three different road 

sections as a database. The three road types recorded were 

straight-line bidirectional road, T-shaped intersection and 

cross-type intersection. This section of the shooting angle is 

divided into two types: camera shoots north and camera shoots 

south. There are 12 videos on straight-line bidirectional road, 

each videotape takes about two minutes, codenamed A1-A12, 

A1-A6 are taken by the camera to the north, A7-A12 are taken 

by the camera to the south, A1-A3 is used as a training sample 

for CNN, internal testing is used for identification, A4-A12 is 

an external test.  

 

 
 

Figure 5. Video classification process 

 

The T-shaped road is located at the intersection of the road. 

Two videos were shot on T-shaped road, codenamed B1 and 

B2. B1 is used as the training sample for CNN. B2 is used for 

external testing. The cross-type road is located at the 

intersection of highway expressway and county road. Two 

videos were taken on the cross-type intersection, codenamed 

C1 and C2. C1 is used as a training sample for CNN, and C2 

is an external test. The three road types used five videos as 

training samples, as summarized in Figure 5. The five videos 

codenamed A1-A3 and B1 and C1 output 10,003 pictures for 

cars, 673 pictures for heavy vehicles, and 6,185 pictures for 

motorbike. A total of 16,861 pictures were used for training. 

The training sample for this study is shown in Table 2. 

 

Table 2. Number of training samples 

 
Sample category Number of samples 

Car 10,003 

Heavy vehicles 673 

Motorbike 6,185 

Total 16,861 

 

In feature engineering, 8 videos are used as training samples. 

The video is used to capture 2 pictures in 1 second. The 

rectangle frame is used to frame the boundary of the object. 

Recorded movies

Road segment 

classification

Straight-line bidirectional road

Camera shoots north

Camera shoots south

T-shaped intersection

Cross-counting intersection

A1-A6

A7-A12

B1-B2

C1-C2

Training Test

A1-A3 B1 C1 Internal test External test

A1-A3 B1 C1 A4-A12 B2 C2
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After training using CNN, the system will obtain the positional 

data of the object's bounding box and the object category 

confidence in the rectangular box, and output a weight. After 

completing the training, the traffic flow in the video is 

randomized, the trained weight model input to classify and 

mark the objects, and finally the trained model is evaluated to 

obtain the optimization weight. The system flow chart is 

indicated in Figure 6. From the incremental decrease in the 

center point of the vehicle images in the upper and lower 

frames, the number and direction of vehicles passing the count 

line are determined as shown in Figure 7, the external test 

straight-line bidirectional road movement detection and 

counting result map. Figure 8 is the external test T-shaped 

intersection mobile detection and counting result graph. Figure 

9 is a diagram showing the motion detection and counting 

results for the external test cross-type intersection. 

 

 
 

Figure 6. System flow chart 

 

 
 

Figure 7. Straight-line bidirectional road counting result  

 

 
 

Figure 8. T-shaped intersection count result  

 
 

Figure 9. Cross-type intersection result  

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

This experiment recorded videos on straight-line 

bidirectional roads, T-shaped intersections and cross-type 

intersection. Three experimental conditions were recorded in 

1 to 2 minutes of video and divided into two parts for testing, 

the first part is internal testing. The internal test is to sample 

five videos codenamed A1-A3 and B1 and C1 for training, and 

obtain the weight after training, and then use this weight to test 

the five videos with the classification and counting system of 

this study. The second part is the external test. The external 

test is in the un-retrained samples of the video. After the 

training weights, the external video data was tested with the 

classification and counting system of this study. Eleven films 

codenamed A4-A12 and B2 and C2 for external testing. The 

actual number of vehicles on the road was compared with the 

number of vehicles measured by the system. Three counting 

results were obtained using the Confusion Matrix, which is 

defined as shown in Eqns. (2) to (4) [27]. 

 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

RR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

𝐹𝑚 =
2 ∙ 𝑃𝑅 ∙ 𝑅𝑅

𝑃𝑅 + 𝑅𝑅
 (4) 

 

The number of positive examples detected correctly is 

called (True Positive, TP). The number of positive examples 

detected as positive examples is called (False Positive, FP), 

and the number of positive examples detected as negative 

examples is called (False Negative, FN). The precision rate 

(PR) is the ratio of the correct number of parameters retrieved 

by the system to the total number of parameters retrieved by 

the system. The precision rate is a measure ranging between 0 

and 1 that indicates the detection accuracy rate relative to 

ground truth. The recall rate (RR) is the correct number of 

turns retrieved and the actual total number of vehicles. The 

recall rate is also a measure ranging between 0 and 1 that can 

be interpreted as the converse of the omission error.  

The ratio of 𝐹𝑚  (F-measure, 𝐹𝑚 ) is a weighted harmonic 

average that takes into account both the precision and the 

recall. This is applied to an evaluation of the retrieval system 

effectiveness and can also be used to compare the difference 

in performance between different technologies or systems. 

The system detection and counting results for three vehicle 

internal testing classes under the videos codename A1-A3 are 

relatively stable. Table 3 shows the average counting results 

Road segment 

classification

Label real category

YOLO-SPP Model

Opencv Image 

preprocessing

Opencv Image post processing

YOLO-SPP Model

Object center

Evaluation

Feature 

Enginnering

Tracking line

ROI1

Input video

ROI2

Output training weight

Detection Number of classes

Output training data

Output image Iuput training weight
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for three vehicle external testing classes under the videos 

codename A4-A12. The 𝐹𝑚 metric of 9 videos are all above 

97%.  

 

Table 3. Results of external test in straight-line bidirectional 

roads 

 
A4-A12 straight-line bidirectional road 

Video TP FP FN PR (%) RR (%) Fm (%) 

A4 165 3 0 98.21 100 99.1 

A5 177 6 1 96.72 99.44 98.06 

A6 197 7 0 96.57 100 98.25 

A7 167 5 0 97.09 100 98.53 

A8 176 3 0 98.32 100 99.15 

A9 176 7 2 96.17 98.9 97.51 

A10 59 1 0 98.33 100 99.16 

A11 185 0 1 100 99.46 99.73 

A12 133 0 0 100 100 100 

Total 1435 32 4 97.82 99.72 98.76 

 

Table 4. Results of external test in T-shaped intersection 

roads 

 
B2 T-shaped intersection 

Lane vehicle classification TP FP FN PR (%) RR (%) Fm (%) 

A 

car 24 0 0 100 100 100 

heavy vehicles 2 0 0 100 100 100 

motorbike 8 0 1 100 88.89 94.12 

B 

car 30 3 0 90.91 100 95.24 

heavy vehicles 0 0 0 100 100 100 

motorbike 7 1 0 87.50 100 93.33 

C 

car 1 0 0 100 100 100 

heavy vehicles 0 0 0 100 100 100 

motorbike 0 0 0 100 100 100 

Total  72 4 1 94.74 98.63 96.64 

 

Table 5. Results of external test in cross-type intersection 

 
Lane vehicle classification TP FP FN PR (%) RR (%) Fm (%) 

A 

car 14 0 0 100 100 100 

heavy vehicles 1 0 0 100 100 100 

motorbike 1 0 0 100 100 100 

B 

car 14 0 2 100 87.5 93.33 

heavy vehicles 0 0 0 100 100 100 

motorbike 3 0 0 100 100 100 

C 

car 25 0 2 100 92.59 96.15 

heavy vehicles 2 0 0 100 100 100 

motorbike 0 0 0 100 100 100 

D 

car 1 0 0 100 100 100 

heavy vehicles 0 0 0 100 100 100 

motorbike 2 0 0 100 100 100 

Total  63 0 4 100 94.03 96.92 

 

Table 4 shows the average counting results for three vehicle 

classes in the T-shaped intersection external testing under the 

videos codename B2. It can be seen that the system detection 

count results in 4 over counts and 1 undercount in 72 vehicles. 

It has been observed that due to the complexity of the road 

environment and the angle of recording, small objects are 

easily covered by large vehicles during detection. This may 

result in vehicle leakage. The case of multiple calculations 

occurs when an object passes through the zebra crossing and 

the background is complicated by the black and white stripes 

of the zebra crossing. When the object is detected, a jump in 

the object frame leads to multiple calculations. The counting 

system will then have multiple counts and misses. The rate and 

recall rate and 𝐹𝑚 metrics are both decreased, but the precision 

rate remains at 94.74%. The recall rate remains at 98.63%. The 

𝐹𝑚 metric also maintained good performance above 96.64%. 

Table 5 shows the average counting results for three vehicle 

classes in the cross-type intersection external test under the 

videos codename C2. C1 can be seen that in the 55 vehicles 

five cars are missing from counting system. It was observed 

that the poles, wires and traffic lights created shadows on the 

road due to the sun, which caused the system to calculate 

higher leakage than the first two sections because of the 

intersection. This traffic environment was shot with an aerial 

camera. The image is easy to shake up and down slightly, and 

the counting line is fixed in the image. It is easy to generate 

multiple counts when shaking, so that the recall rate is 

maintained at 94.03%. In the case of a missed vehicle, the 

precision is only maintained at 100%. After the precision and 

recall average the 𝐹𝑚 metric is 96.92%.  

 

Table 6. Average counting results for three classes of vehicle 

in index by road type 

 
roads classification TP FP FN PR (%) RR (%) Fm (%) 

straight line  1944 32 10 98.38 99.49 98.93 

T-shaped  137 4 1 97.16 99.28 98.21 

cross-type  118 1 5 99.16 95.93 97.52 

Total 2199 37 16 98.35 99.28 98.81 

 

Table 6 shows the average counting results for three vehicle 

classes in the videos codename A1-A12, B1-B2 and C1-C2 

index by road type. It can be seen straight line bidirectional 

road that in the 1944 vehicles, 32 vehicles are extra and 10 

vehicles are missing from counting system. After the precision 

and recall average the 𝐹𝑚 metric is 98.93%. In the T-shaped 

intersection 137 vehicles, 32 vehicles are extra and 10 vehicles 

are missing from counting system. After the precision and 

recall average the 𝐹𝑚  metric is 98.21%. In the cross-type 

intersection 118 vehicles, 1 vehicle is extra and 5 vehicles are 

missing from counting system. After the precision and recall 

average the 𝐹𝑚  metric is 97.52%. In the three categories of 

roads, heavy vehicles and motorbike, the heavy vehicles do not 

have over counting and undercounting. According to 

observations of three roads, more complex routes and 

backgrounds are prone to systematic misjudgments. The 

detection performance of four models is summarized in Table 

7. It can be clearly seen from the results that Yolov3-SPP has 

the best recognition rate effect in three road conditions of 

present system. 

 

Table 7. Detection performance of four models 

 

 
mAP (%) 

Straight-line T-shaped Cross-type 

yolov3 88.3 87.2 84.3 

yolov3-tiny 88.5 88.3 84.6 

yolov4 90.2 89.4 89.5 

yolov3-spp 98.8 96.6 98.8 

 

 

5. CONCLUSION 

 

This study proposed a vehicle motion detection and 

classification counting system using a convolutional neural 

network to classify motorcycles, small cars and large vehicles 

in different categories. The image processing technology used 

in this system completes object tracking and the object 

tracking system classifies and counts the vehicles according to 
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the input weight and the object category identification 

parameters. From the experimental results using these three 

types of defects, it was found that the objects will be in 

shadows, the zebra crossing, the vehicle stays on the counting 

line, and large vehicles will cover small vehicles. The system 

will have multiple calculations and missed measures, so the 

system will have multiple counts and misses. In completes the 

effectiveness evaluation for the entire system and road 

capacity estimation, PCE provides a mechanism for 

converting vehicles into vehicle types. The small passenger 

equivalent is a very important data for the future road 

construction, the setting of traffic signs and the formulation of 

road traffic control. In the future, system stability will be 

continuously improved. With the advancement of GPUs and 

learning algorithm the accuracy and timeliness can be 

significantly improved in the future. The experimental results 

show that this method feasible and is expected to be applied 

continuously in the future of smart transportation systems. 
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