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 This paper reflects the problem of wideband spectrum recovery. The demand for spectrum 

usage is increasing exponentially as the wireless technologies rules the world. To meet these 

needs, Cognitive Radio is one of the emerging technologies, which intelligently allots the 

spectrum to the secondary users. Since the spectrum is wideband, the capability of spectrum 

sensing is improved by introducing sub-nyquist sampling under compressive sensing 

framework. In this paper, a sub-nyquist sampling technique of Modulated Wideband 

Converter (MWC) is used as it possesses m-parallel channels providing fast sensing and 

robust structure. A circulant matrix method is used to improve the hardware complexity of 

MWC. Also at the reconstruction of MWC, a fusion based recovery algorithm is proposed 

which became an added benefit for perfect recovery of the support. The results are compared 

with conventional MWC in terms of support recovery, mean square error and SNR gain. 

Simulations proved that the proposed algorithm performs superior at low as well as high 

SNR with increased gain. 
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1. INTRODUCTION 

 

Now-a-days, the digital world rules our everyday life. 

Telecommunications, medical services, education and 

entertainment need digital media. The existence of digital 

world is possible with perfect analog to digital conversion. 

This development has increased the demands of wideband 

spectrum and paved way to a new radio frequency (RF) 

technology of cognitive radio. This has led to spectrum 

congestion. Cognitive Radio (CR) is an intelligent software 

defined radio which intelligently allots the unused spectrum to 

the secondary users. Of all the different works of CR, spectrum 

sensing plays a vital role. A major challenge is to sample the 

wideband signal at high rates satisfying good resolution. The 

well-known Shannon-Nyquist sampling theorem says that a 

signal which is bandlimited can be sampled and reconstructed 

perfectly provided the sampling rate must exceed twice its 

bandwidth. The signal here is a wideband signal which cannot 

be processed by normal analog-to-digital converters (ADC). 

Due to its low spectrum utilization, the wideband spectrum is 

inherently sparse, hence applying the concept of compressive 

sensing (CS), samples the wideband signals at sub-Nyquist 

rates [1-4]. Under CS framework, most of the proposed 

architectures included random demodulator (RD) for 

spectrally sparse signals, periodic non-uniform sampling (PNS) 

for sparse multitone signals [5] and modulated wideband 

converter (MWC) [6] for sparse multiband signals. 

The Modulated Wideband Converter (MWC) is a 

multichannel architecture which mixes a multiband signal with 

a periodic random sequence and passed through a low rate 

sampler. It is constructed with m channels with parallel 

structure in which each channel comprises of a mixing 

function, a low pass filter (LPF) and an analogue-to-digital 

converter (ADC). Due to its flexible design and parallel 

structure, it is used in many practical wireless applications like 

cognitive radio, channel estimation, radar, etc., This paper 

focuses on two problems and improves the performance of 

MWC. The first problem focuses on hardware complexity of 

MWC [7, 8] in which the measurement matrix of length mM 

plays a vital role. The random sequence of Bernoulli or 

Gaussian is considered with a length of M. Now mM 

measurement matrix is constructed by circular shifting the 

sequence m times or taking m different combinations of the 

sequence. In this process, it needs mM flip-flops of shift 

registers. Some binary sequences like deterministic sequences 

which are identical to random Bernoulli matrices, also suitable 

for this case. The deterministic sequences are not fully random. 

Hence to reduce the hardware complexity of MWC, 

alternating methods of using deterministic sequences is 

preferred which guarantees better reconstruction and good 

choice of hardware. Out of all the other sequences, the 

maximum length sequence, Gold, Kasami codes exist for a 

finite prime length of 2n-1 where n is the degree of the 

primitive polynomial and nM, which are not feasible for all 

applications [8-13]. The Legendre sequence is one of the 

deterministic sequence exist for any choice of length provided 

it should be a prime. Li et al. [9] proposed a circulant matrix 

structure in which each row is attained by random cyclic shift 

of the deterministic sequence. This circulant measurement 

matrix provides memory efficient hardware since only M flip-

flops are required and only M log M multiplications are needed 

indicating it is also faster [14-17]. 

The second problem is to find the suitable reconstruction 

algorithm [18, 19] which improves the support recovery 

performance of MWC. In this regard, a fusion based algorithm 

[20-24] is proposed and compared with existing simultaneous 
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orthogonal matching pursuit (Somp) algorithm. 

Organization of the paper is as follows: section II gives the 

related background of compressed sensing. A sparse 

multiband model and sub-nyquist sampling scheme are 

outlined in Section III. Section IV describes the proposed 

reconstruction algorithm. Numerical and simulation results are 

given in section V. 

In this paper, matrices are denoted with upper case as X and 

vectors with lower case letters as x. 𝑋 ∈ ℝ𝑚×𝑁  is an mM 

matrix with all entries corresponds to real values. T or * 

represents transpose of a matrix. Also †  is a pseudo inverse 

form of a matrix A which means 𝐴† = (𝐴𝐴𝑇)𝑇 . p-norm 

calculations are indicated by ||.||p.  
 

 

2. RELATED BACKGROUND OF COMPRESSED 

SENSING  
 

The Compressive Sensing (CS) is a new framework of 

sampling the signals which are sparse at any basis. Consider a 

real vector of finite length, discrete time signal 𝑋 ∈ ℝ𝑀. To 

make it sparse, it is represented using an arbitrary basis 

{𝜓𝑖}𝑖=1
𝑀 , a set of orthonormal vector in the space ℝ𝑀 [4]. An 

orthonormal matrix is formed by these vectors as 𝛹 ∈ ℝ𝑀×𝑀. 

Now the signal is given as 
 

1

M

i i

i=

=x z  or x = z  (1) 

 

where, z is the projection of x over Ψ. Thus the signal x in time 

domain is equal to z in Ψ domain. The signal x is measured by 

sampling it with a measurement matrix 𝐴 ∈ ℝ𝑚×𝑀 . The 

measurements y at each row corresponds to the inner product 

𝑦 = ⟨𝜙, 𝑥⟩ where, ϕ belongs to the rows of A [18]. Thus the 

measurements are given as 
 

y = Ax = A z  (2) 

 

If m≥M, then x is perfectly reconstructed from its 

measurements y. If m≤M, it becomes an ill-posed problem 

which has infinite number of solutions. 

Consider z is a K-sparse signal under the basis of Ψ where 

𝐾 ≪ 𝑀. Then 𝐾 ≪ 𝑚 ≪ 𝑀 is an underdetermined solution. 

To solve this, the measurement matrix must obey RIP 

(Restricted Isometry Property) such that 𝑚 ≥ 𝐶 ⋅ 𝐾 𝑙𝑜𝑔 (
𝑀

𝐾
) 

where C is constant. Also the incoherence between 

measurement and basis matrices provides better stability for 

measurement matrix. Clearly the solution for this inverse 

problem is to find the Least square solution Eq. (2) i.e., �̂� =
(𝐴𝐴𝑇)-1𝐴𝑇𝑦 , ℓ𝑝 − 𝑛𝑜𝑟𝑚 calculations provide the sparsest 

solution.  

Some convex optimization techniques like basis pursuit 

algorithms are accurate but consume high recovery time. Also 

the recovery is possible by many greedy algorithms which are 

iterative [20-22]. Mostly, it includes orthogonal matching 

pursuit (omp) and its derivatives provide faster recovery. 
 

 

3. SIGNAL MODEL AND SUB-NYQUIST SAMPLING 

SCHEME 
 

Consider an analog multiband signal x(t) whose fourier 

transform X(f) is bandlimited to −
𝑓𝑁𝑌𝑄

2
 to 

𝑓𝑁𝑌𝑄

2
 Hz. The total 

wideband communication model is divided into subbands each 

of BHz bandwidth. It consists of N active bands centered at 

frequency fn, n=1,2,…,N. Thus x(t) is a sparse wideband signal 

with 𝑁𝐵 ≪ 𝑓𝑁𝑌𝑄 . The positions of the bands are random with 

no prior information. Figure 1 depicts the assumption of 

wideband spectrum. In CR context, these active bands are 

termed as occupied bands of primary users and the remaining 

subbands of the model are unoccupied bands called spectrum 

holes. The main idea of CR is to sense these spectrum holes 

and allot to secondary users. 

 

 
 

Figure 1. Wideband spectrum with three different 

frequencies of multiband signal 

 

3.1 MWC sampling method 

 

Modulated wideband converter is one of the sub-nyquist 

sampling methods which consist of m-parallel channels [6]. 

The multiband signal x(t) is applied to m channels 

simultaneously. At ith channel, the signal x(t) is mixed with a 

periodic random sequence pi(t) which alternates between +1 

and -1. 

 

2
( )

j lt T

il

l

pa eip t




=−

=   (3) 

 

where, Tp is the sampling period. 

This mixing spreads the signal over the period Tp 

represented in time domain as �̃�𝑖(𝑡) = 𝑥(𝑡). 𝑝𝑖(𝑡)  ie., in 

fourier domain �̃�𝑖(𝑡) is fp shifted replicas of X(f). The entire 

architecture of MWC is depicted in Figure 2. 

 

 
 

Figure 2. Architecture of modulated wideband converter 

 

Then the mixed signal is passed through a LPF truncating 

with cutoff frequency of 
1

2𝑇𝑠
. The low pass filtered signal is 

now sampled at t=nTs to get the sampled measurements. Thus 

the DTFT of the measurements yi[n] is expressed as 
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( )2
0

0

( )

L

j fT

i il p

l L

sY e a X f lf


=−

= −  (4) 

 

where, 𝐿0 = (𝑓𝑁𝑌𝑄 +
𝑓𝑠

2𝑓𝑝
− 1). 

The sign alternating function pi(t) is generated by a random 

sequence alternated between +1 and -1 for M equal time 

intervals. This is given as 

 

( ), 1( )
kT T

ik M M

p p
t kip t    +=  (5) 

 

where, 𝛼𝑖𝑘 ∈ [−1,+1]. It is an 𝑚 ×𝑀 pseudo random matrix 

referred as S. Now the measurements expressed in Eq. (4) is 

modified and represented in matrix form as  

 

y(f) = SFDZ(f)

S F D Z(f)m M M L L L  =
 (6) 

 

where, S is sign matrix, F is DFT matrix and D is diagonal 

matrix with dl defined as 

 
1

2

1

20

01

0

T M

Mj lt

l p

j lp

p
l

d e T dt
lT






−

−

=
= =

  (7) 

 

Since Eq. (6) is the key to recover the signal, finally the 

measurements are obtained as y(f)=AZ(f) in which A is the 

measurement matrix. 

 

3.2 Circulant matrix design 

 

The sign matrix SmM is implemented by shift registers in 

which the number of filps-flops used is justified by M. To 

reduce the hardware complexity of MWC, alternating methods 

of using deterministic sequences is preferred which guarantees 

better reconstruction and good choice of hardware. Out of all 

the other sequences, the maximum length sequence, Gold and 

Kasami codes exist for a finite prime length of 2n-1 where n is 

the degree of primitive polynomial and nM, which are not 

feasible for all applications. The Legendre sequence is one of 

the deterministic sequence exist for any choice of length 

provided it should be a prime [15]. A Legendre sequence is 

defined as 

 

0 1

1 ,

1 ,

i

LS

LS i is square

i is non square

=


= 
− −

 (8) 

 

Theorem-1: Consider an mM circulant matrix 𝐴 =
1

√𝑚
𝑅𝑈, 

where 
1

√𝑚
 is a normalizing factor, R is a random sampling 

operator which randomly selects m out of M ones uniformly, 

U is an MM unitary matrix constructed by a deterministic 

sequence which satisfies U*U=MI𝑀 , provided the 

deterministic sequence should have a flat spectra. 

The mixing sequence S is constructed by a circulant matrix 

design proposed [9] according to Theorem 1 represented as 

 
1S = RC
m

 (9) 

 

where, C is an MM circulant matrix and R is a random 

operator which randomly selects m rows of matrix C.  

The circulant matrix C is constructed from any deterministic 

sequence. Let the sequence be a Legendre sequence with a 

length of M considered as 𝑐 = [𝐿𝑆0, 𝐿𝑆1, 𝐿𝑆2, . . . . . . . . . 𝐿𝑆𝑀−1]. 
This is taken as the first row of circulant matrix and next rows 

are obtained by cyclic shifting c right/left to generate an MM 

matrix which is given as 

 

0 1 1

1 0 2

1 2 0

0

11

1

0 0

0 0
F F

0 0

M

M M

M

LS LS LS

LS LS LS
C

LS LS LS

LS

LS

LS

−

− −

−

−

 
 
 =
 
 
 

 
 
 =
 
 
 

 (10) 

 

So, finally the measurement matrix is given as 

 

0 1 1

1 0 21

1 2 0

M

M M

m

LS LS LS

LS LS LS

LS LS LS

−

− −

 
 
 =
 
 
 

S R  (11) 

 

where, S is measurement matrix, 
1

√𝑚
 is the normalizing factor 

and R is random sampling operator which randomly selects m 

out of M ones Thus the deterministic sequence (here Legendre 

sequence) is cyclic shifted M times to form a circulant matrix. 

Then mixing sequence S is formed by random selection of m 

rows to get mM matrix. A mixing function with random 

Bernoulli matrix use mM flip-flops, however with the use of 

deterministic sequence such as Legendre requires only M flip-

flops reducing the hardware complexity. 

 

 

4. RECONSTRUCTION 

 

4.1 CTF block 

 

After receiving the measurements y[n], Continuous-to-

finite (CTF) block plays an important role in the recovery of 

support vector as shown in Figure 3. In y(f)=AZ(f), A is mL 

matrix in which m<L shows an underdetermined equation [25]. 

Hence it can be solved by building multiple measurement 

vector (MMV) system. 

 

 
 

Figure 3. Continuous-to-finite (CTF) block 

 

The difficulty of infinite measurement vector problem 

makes the direct reconstruction of signal �̂�(𝑡) is not possible. 

This can be solved by using Continuous-to-finite (CTF) 

method. Hence, first frame v is constructed which satisfies the 

relation 𝑄 = 𝑣𝑣𝐻 where Q is the measurement set defined as 
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Q= [ ] [ ]T

n

y n y n


=−

  (12) 

 

Now solving for MMV system v=Au by applying any 

greedy algorithms attains the support set. Once the support is 

found, reconstruction can be done by  

 
†( )= ( )s sf fz A y  (13) 

 

where, zs(f) is DFT of Z[n], 𝐴𝑠
†

 is the pseudo-inverse of A 

indexed by support columns and y(f) is the measurement 

vector. zi[n] is now interpolated to Nyquist rate and these 

sequences are finally modulated in time domain to get �̂�(𝑡). 
In this context, to reconstruct the signal �̂�(𝑡) , the 

reconstruction algorithm plays a major role. Among the CS 

reconstruction algorithms, some convex optimization 

techniques like basis pursuit algorithms are accurate but 

consume high recovery time. Also the recovery is possible by 

many greedy algorithms which are iterative. Mostly, it 

includes Orthogonal Matching Pursuit (OMP) and its 

derivative algorithms provide faster recovery but reduced 

performance than convex. In this paper, a fusion based 

recovery algorithm is proposed by combining both convex and 

greedy algorithms to achieve higher accuracy in recovery of 

the signal. In this context, Simultaneous orthogonal matching 

pursuit (Somp) and Subspace Pursuit (SP) algorithms are 

combined. 

 

4.2 Extended SP embedded SOMP algorithm 

 

Of all the recovery algorithms of CS, greedy algorithms [20] 

are in general harder to analyze but computationally efficient, 

easy to implement and also provide better performance. 

Orthogonal Matching Pursuit (OMP) is the most popular due 

to its better reconstruction performance and simple structure. 

Out of the many derivative algorithms of OMP, Simultaneous 

orthogonal matching pursuit (Somp) [22] has drawn its interest 

for the recovery support of MWC. The support set is explained 

in the following definition. 

Definition: The support set Ʌ is a set of indices 

corresponding to the non-zero or active elements of the sparse 

vector x: 

 

 : 0ii x   

and its complement is  : 0ii x =  

then  1,2, N  =  and   =  

(14) 

 

In Somp algorithm, at kth iteration the index corresponding 

to the highest magnitude of correlation between matrix A and 

residual rk-1 is identified. Then it is added to the support set Ʌ 

along with the symmetric location of the index. Later the sub 

matrix As is obtained as the matrix A indexed by support set 

columns. Now using least square method the approximate 

solution is found to update the residual rk. Thus Somp, variant 

of OMP, has proved its better reconstruction performance. 

The main limitation of Somp is lack of self-correcting 

procedure while estimating the support set. Conversely, 

Subspace Pursuit (SP) itself possesses self-correction method 

[23]. Thus Algorithm 1is a different method proposed to 

incorporate a self-correcting mechanism using SP in Somp. 

The step 4 checks the estimated support using SP algorithm. 

 

Algorithm 1: SP embedded Somp 

Input 

• An mM circulant matrix A 

• m2N frame vector v 

• Support recovery N 

Initialization 

• k=0, Somp =  null vector, residual r=V 

Procedure 

1. k=k+1 

2. 𝜆𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗=1,2,…𝐿

|⟨𝐴𝑗𝑟𝑘−1⟩|

𝑑
 where d is the norm of 

diagonal elements of A 

3. 1k ksymm k

Somp
  − =    

4. ( ) ( )
( , , , )k

SP Somp
SP i  = 

 
A v  

5. 
( )

k k

SP
 =   

6. †

k kk  = −r v A A v  

7. Repeat until (k≤N) 

Output: Support set Ʌ 

 

The Algorithm2 describes the Subspace Pursuit in which 

Ʌinit is the previous support set. By taking N1 highest 

magnitude elements of correlated vectors A and rk, it obtains 

the least square solution approximation. At kth iteration, 

estimated support set is found by adding or deleting indices. 

Thus it gives the correct support set which improves the 

performance of Somp. 

 

Algorithm 2: Subspace Pursuit Initialization 

Input 

• An mM circulant matrix A 

• m2N frame vector v 

• Support recovery N1 

Initialization: 

• k=0, 
0 init =  , residual 

0 0

†

 = −r v A A  

Ensure    
1init N   

Procedure 

1. k=k+1 

2. j indices of N1 maximum components of 

1
1,2,

arg max j k
j L

d −
=

= A r  where d is the norm of diagonal 

elements of A. 

3. 
1k − =   

4. 
†= x A v  

5. k = indices of N1 largest magnitude of x  

6. †

k kk  = −r v A A v  

7. Repeat until 
12 2

( )k k−r r  

Output 1k− =   

 

As described by Algorithm1, SP embedded Somp is same 

as Somp in estimating the support set. After finding the 

support Ʌk in the kth iteration, it is refined using SP algorithm 

as in step 4. This self-correcting process of SP used in Somp 

is renamed as SP embedded Somp. 

Algorithm 1 is run for k≤N iterations to estimate the support. 

To identify the exact non-zero elements, Sahoo and Makur [24] 

proposed an idea to extend the number of iterations. 
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Theorem 2: Suppose that x is an arbitrary k-sparse 

multiband signal with a measurement matrix Φ of size mM 

can be recovered, by fixing α[0,1], in at most k+[αk] 

iterations. 

Algorithm 3 describes that algorithm 1 is proposed to run at 

k+[αk] iterations according to Theorem 2. Thus Extended SP 

embedded Somp (ESPsomp) selects more atoms. This 

increases the additional computational cost by a factor of 1+α 

which can be discarded with an increase of recovery 

performance. 

 

Algorithm 3: Extended SP embedded Somp (ESPsomp) 

This is same as algorithm 1 except the following change 

8. Until k+[αk] where α[0,1] 

 

 

5. SIMULATION RESULTS 

 

The simulations are done using MATLAB R2015 with Intel 

(R) Core (TM) i5-4790 CPU @ 3.60 GHz and 8 GB RAM on 

a PC. The system is a 64-bit Microsoft Windows-7 operating 

system. Table 1 lists the parameters used to construct a 

wideband signal x(t).  

 

( )
3

1

( ) sin ( ) cos(2 ( ))i i i i

i

x t E B c t f t   
=

= − −  (15) 

 

Table 1. Parameters used for wideband signal 

 
Parameter Value 

fNYQ 10 GHz 

B 50 MHz 

Time offset τi {0.4,0.7,0.2} μs 

Energy Ei {1,2,3} 

fs=fp 50.76 MHz 

No. of channels (m) 50 

M=L 197 

 

According to the signal model, an analog multiband signal 

x(t) is considered with N= 3 active bands (support) centered at 

three different frequencies. In the simulations, M=197, the 

prime number is chosen to generate the Legendre sequence. 

200 Monte–Carlo simulations were done in this process. The 

performance of the system using circulant measurement 

matrix design is compared with different sequences like 

Legendre, Bernoulli and Zadoff-chu sequences. Figure 4a and 

4b depicts the support recovery at different SNR ranging from 

-10 to 25 dB using ESPomp and somp reconstruction 

algorithms respectively. The proposed recovery algorithm 

outperforms Somp in terms of percentage of support recovery. 

The results of using ESPomp and Somp for different 

sequences are also tabulated in Table 2 and Table 3 

respectively. This shows that the construction of circulant 

matrix using Legendre sequence proved its performance in 

terms of success rate (support recovery) as well as hardware 

complexity.  

 

Table 2. Comparison of percentage of support recovery for 

different sequences using ESPsomp algorithm 

 
 Legendre Bernoulli Zadoff-chu  

SNR = 5 dB 69.5% 52.5% 18% 

SNR = 10 dB 95% 91% 39% 

SNR = 15 dB 100% 98.5% 59% 

Table 3. Comparison of percentage of support recovery for 

different sequences using Somp algorithm 

 
 Legendre Bernoulli Zadoff-chu  

SNR = 5 dB 68% 46.5% 19.5% 

SNR = 10 dB 93% 87% 39% 

SNR = 15 dB 99% 97.5% 58% 

 

 
 

Figure 4a. Percentage of support recovery vs SNR for 

different sequences using ESPsomp algorithm 

 

 
 

Figure 4b. Percentage of support recovery vs SNR for 

different sequences using Somp algorithm 

 

 
 

Figure 5. MSE performance for different sequences 
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Figure 6. Support recovery at increasing channels for 

proposed algorithm 
 

 
 

Figure 7. Percentage of support recovery at varying 

frequency bands 
 

Considering the performance of the proposed recovery 

algorithm for different sequences at various metrics. Mean 

Square Error (MSE) is one of the performance metrics 

calculated as  
 

2

2

x̂ x
MSE

x

−
=  (16) 

 

The averaged MSE at varying SNR of -15 to 25 dB was 

compared for different deterministic sequences using 

proposed algorithm. Lesser the value of MSE, better the 

performance of the design. It is clearly shown in the Figure 5 

that the Legendre sequence acquired better MSE compared 

with well-known Bernoulli and Zadoff-chu sequences. The 

averaged MSE performance of the sequences using ESPsomp 

is given in Table 4. At SNR=10dB, MSE of Zad0ff-chu has 

21.3810-4 whereas Legendre is with only 9.7910-4. 
 

Table 4. Comparison of MSE for different sequences 
 

 Legendre Bernoulli Zadoff-chu  

SNR = 5 dB 5.4910-3 1.810-4 5.0810-3 

SNR = 10 dB 9.7910-4 10.4510-4 21.3810-4 

SNR = 15 dB 1.810-4 1.9710-4 18.7610-4 

Also the comparison is done in terms of output SNR and 

SNR gain which are tabulated in Table 5 and Table 6. Output 

SNR of the design is calculated as  

 

2 2
ˆ20lo g Output SN x x xR −=  (17) 

 

The output SNR indirectly acts as a metric for sensing gain. 

And Sensing gain is the difference of input SNR to output SNR. 

Higher the sensing gain, better the recovery performance. At 

input SNR of 15 dB, the Legendre sequence outperforms with 

output SNR of 19.38 dB achieving a gain of 4.38 dB, however 

output SNR is only 15.22dB with only 0.22 dB gain for 

Zadoff-chu. 

 

Table 5. Comparison of output SNR for different sequences 

 
 Legendre Bernoulli Zadoff-chu  

SNR = -15 dB -10.67 dB -11.53 dB -8.81 dB 

SNR = 5 dB 9.35 dB 8.37 dB 7.4 dB 

SNR = 15 dB 19.38 dB 18.51 dB 15.22 dB 

 

Table 6. Comparison of Sensing gain for different sequences 

 
 Legendre Bernoulli Zadoff-chu  

SNR = -15 dB 4.32 dB 3.46 dB 6.18 dB 

SNR = 5 dB 4.35 dB 3.37 dB 2.4 dB 

SNR = 15 dB 4.38 dB 3.35 dB 0.22 dB 

 

Now the impact of circulant matrix using Legendre 

sequence on the system is compared using proposed recovery 

algorithm. The simulations are done at N=6 and SNR 5 dB & 

10 dB at varying channels from 20 to 80. As shown in Figure 

6, the success recovery is always high using ESPsomp than 

Somp. Also Figure 7 shows the success recovery of proposed 

algorithm at varying sparcity (bands) from 2 to 20. The 

parameters of SNR=10 dB, channels m=30 & 50 at random 

energy levels are taken following the symmetric frequency 

bands. As the number of bands increasing, the recovery 

performance decreases. This is because, as the sparse bands 

increases, the sparsity of the original signal rises demanding 

more number of channels. As N≥14, the support recovery is 

very less for Somp. However ESPsomp performs better than 

Somp. 

 

 

6. CONCLUSIONS 

 

In this paper, a sub-Nyquist sampling scheme of MWC is 

used as a mechanism to meet the needs of spectrum congestion. 

To avoid the hardware complexity of MWC, a circulant 

measurement matrix is proposed with deterministic sequences. 

Among the different deterministic sequences, Legendre 

sequence outperforms by achieving better gain and MSE. 

Traditionally, the measurement matrix with Bernoulli use mM 

flip-flops, however with the use of deterministic sequence 

such as Legendre requires only M flip-flops reducing the 

hardware complexity. Also at the reconstruction of MWC, the 

proposed fusion based recovery algorithm becomes an added 

benefit for perfect recovery of the support. Simulations proved 

that the proposed Extended SP embedded Somp (ESPsomp) 

algorithm performs superior at low as well as high SNR with 

increased gain. However, the increased additional 

computational cost by a factor of 1+α can be discarded with an 

increase of recovery performance. 
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NOMENCLATURE 

 

A measurement matrix 

x  signal vector 

z  projection vector  
y  measurement vector 

N  number of active bands 

LS  legendre sequence 
m  number of channels 

M  length of the sequence 

x  recovered vector 

S measurement matrix 

 

Greek symbols 

 

  basis vector 
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 support vector 
 observation vector
 run factor 
 time offset 

Subscripts 

k iterations 

NYQ nyquist frequency 
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