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This paper proposes a variational approach by minimizing the energy functional to compute 

the disparity from a given pair of consecutive images. The partial differential equation 

(PDE) is modeled from the energy function to address the minimization problem. We 

incorporate a distance regularization term in the PDE model to preserve the boundaries' 

discontinuities. The proposed PDE is numerically solved by a cellular neural network 

(CeNN) algorithm. This CeNN based scheme is stable and consistent. The effectiveness of 

the proposed algorithm is shown by a detailed experimental study along with its superiority 

over some of the existing algorithms. 
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1. INTRODUCTION

Stereo matching has a profound impact on computer vision 

tasks. It is commonly used to compute 3D depth information 

from stereo images in the disparity map context. For depth 

information, 2D stereo images are projected as coordinates in 

3D by searching for correspondence pairs between these stereo 

images. Disparity refers to the distinction in an object's image 

region, which is visible through the left and right eyes. 

Disparity gives a method to determine the spatial connection 

between points and surfaces in a scene without any significant 

information level. If new objects enter the scene, then the 

observed disparity would be a term for making precise 

decisions using knowledge of objects' location and velocity in 

3D space. There are numerous approaches to estimate the 

disparity; feature-based [1-4], area-based based [5-7], phase-

based based [8-11] and energy-based based [12-20]. These 

algorithms establish a relationship among few selected 

features that have been extracted from the images [1, 2], 

curves based [3, 21, 22], line segments based [12, 23], and 

including area pixels based [24, 25]. Despite their enormous 

success, these studies fail to yield complete information on the 

field of interest. 

The first step of feature-based methods is to detect disparity 

for specific ground control points, and this elegance of 

techniques was widely used. Special filters and edge-based 

techniques are used to calculate ground control points. A 

significant advantage of the feature-based methods is to obtain 

accurate results and control the appropriate amount of effects. 

Therefore, it increases the computation time for the whole 

process. Further, these approaches do not provide a dense 

depth map required in many applications.  

In phase-based methods, the disparity with sub-pixel 

accuracy was achieved without subpixel feature detection and 

localization. The authors [26] show the stability of the 

bandpass phase behavior and instabilities of the phase near 

singularities. The Fourier phase is another data technique class, 

which is considered a form of slope-based optical flow 

strategy. The derived time is approximated in the scheme by 

the contrast between the right and left Fourier phase images.  

Energy minimization-based methods are associated with the 

solution of the correspondence problem in a regularization and 

minimization formulation [4, 12, 20, 27]. The authors [28] 

proposed a graph cut algorithm, and this approach solved the 

optimization problem in a better and efficient way. A region-

dividing block matching algorithm was proposed by Kim et al. 

[29] to estimate dense disparity and computes within a shape-

adaptive window. The variational approach [20] merges

impressive and robust tools like regularization and multiscale

to achieve depth directly while protecting depth discontinuities.

Figure 1 shows the block diagram of the algorithm, and the

dense disparity vectors are calculated from low to high-

resolution fields using a region dividing technique and shape-

adaptive matching windows [20].

Figure 1. Block diagram of energy minimization methods 

[20] 

The disparity 𝑑  between two consecutive pair images 

𝑋1 and 𝑋2 are obtained by minimizing the energy functional

from the open bounded set   𝑅2 as:

𝐸(𝑑) = ∫ (𝑋1(𝑟) − 𝑋2(𝑟 + 𝑑))
2𝑑𝑟 +

𝛺

𝛼 ∫ 𝜑(𝛻𝑑, 𝛻𝑋1)𝛺
 𝑑𝑟 

(1) 
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where, 𝛼 is a Lagrange multiplier and the potential function 

𝜑(𝛻𝑑, 𝛻𝑋1) is defined as

𝛻(𝜑(𝛻𝑑, 𝛻𝑋1)) = 𝑔(|𝛻𝑋1|
2)𝛻𝑑 (2) 

The diffusivity function 𝑔(|𝛻𝑋1|
2) is defined as

𝑔(|𝛻𝑋1|
2) =

1

(1+|𝛻𝑋1|
2)2

(3) 

The minimization problem written in the form of a parabolic 

system by using the Euler-Lagrange equation [20] 

𝜕𝑑

𝜕𝑡
= 𝛼 𝑑𝑖𝑣(𝑔(|𝛻𝑋1|

2)𝛻𝑑) + (𝑋1(𝑟) − 𝑋2(𝑟 +

𝑑))
𝜕𝑋2(𝑟+𝑑)

𝜕𝑥

(4) 

In Eq. (4), the diffusivity function 𝑔(|𝛻𝑋1|
2) plays the role

of the discontinuity marker, and it remains smooth at the 

boundaries. The energy minimization formulation computes 

the disparity fields with reasonable accuracy, but it consists of 

a local minimum problem and includes computational load 

problems to solve PDEs. Occasionally, stereo images cannot 

be accurately adjusted to calculate disparity if cameras' 

arrangement can be marginally pivoted of the level. 

Regularization of vector fields, which includes both fidelity 

and smoothness, needs to be more appropriate, and so must the 

optimization technique of the system. Most of the methods 

face the object boundary problem and do not preserve the 

discontinuities at boundaries. 

The paper's key feature is to build a model that maintains 

the edge discontinuity. A distance regularization term (DRT) 

is added to the model to create the edge discontinuity. DRT 

gives a significant advantage as it maintains the forward and 

backward diffusion. DRT satisfies the boundedness property, 

allowing us to keep the discontinuity between edges in the 

disparity map. An iterative technique is used to solve the 

parabolic partial differential equation (PDE). Several 

algorithms exist for computing disparity, but a data-driven 

CeNN scheme is proposed for a beneficial network type. The 

CeNN can be implemented easily with low computation costs. 

The CeNN architecture is obtained by discretizing the PDE 

using the central difference method. The modified PDE is 

demonstrated in the CeNN form and used to create the 

template matrices for the proposed CeNN system. The 

proposed scheme is capable of obtaining disparity without any 

parameter settings. The stability of the proposed method 

shows robustness against perturbations in the input images. 

Finally, in numerical experiments, RMSE and BMP matrices 

on some standard images are considered. 

The remainder outline is organized as follows: Sect. 2 

covers the formation of proposed PDE by minimizing the 

energy functional and discusses the discretization of proposed 

PDE into CeNN formation. This section ends with computing 

the CeNN template matrices. In Sect. 3, the convergence of the 

proposed system has been shown. The results and discussion 

present in Sect. 4, and the managerial implications of 

minimizing the energy functional to compute the disparity 

from a given pair of consecutive images has been added in 

section 5. Finally, the conclusions are drawn in Sect. 6. 

2. CENN TEMPLATE MATRICES FOR DISPARITY

ESTIMATION

The process to obtain the CeNN template matrices is 

described in this section. These template matrices are obtained 

using the spatial discretization over the modified PDE 

proposed in the study. 

2.1 Derived partial differential equation 

Consider the energy functional 휀(𝑑)  for the disparity 

function 𝑑 is defined as 

휀(𝑑) = 𝛼𝐷𝑝(𝑑) + 휀𝑒𝑥𝑡(𝑑) (5) 

The external energy function depends upon the data of 

interest, and it is defined so that it minimizes the 휀(𝑑). The 

parameter 𝛼 can take any constant positive value. The 

regularization function 𝐷𝑝(𝑑) is defined as

𝐷𝑝(𝑑) = ∫ 𝑝(|𝛻𝑑|)𝛺
𝑑𝛺 (6) 

where,  𝑝: [0,∞) → ℝ  is the energy density function. The 

Gateaux derivative of the 𝐷𝑝(𝑑) functional is computed as

𝜕𝐷𝑝(𝑑)

𝜕𝑡
= −𝑑𝑖𝑣(𝑑𝑝(|𝛻𝑑|)𝛻𝑑) (7) 

where, 𝑑𝑖𝑣(. ) is the divergence operator and ▽ defined as a 

gradient operator. Following Euclidean norm is used for the 

computation: 

|𝛻𝑈| = √(
𝑑𝑈

𝑑𝑥
)
2

+ (
𝑑𝑈

𝑑𝑦
)
2

(8) 

The following equation described the DRT as [30]; 

𝑑𝑝(𝑑) =
𝑝′(𝑠)

𝑠
(9) 

A preferable function 𝑝(⋅) for the DRT taken as 

𝑝(𝑠) = {

1

2𝜋2
(1 − 𝑐𝑜𝑠( 2𝜋𝑠)) 𝑠 ≤ 1

1

2
(𝑠 − 1)2  𝑠 > 1

} (10) 

The energy density function 𝑝(𝑠) has two minimum points 

𝑠 = 0 and 𝑠 = 1. It is twice differentiable in [0,1), and the 

first-order derivative of a differentiable function 𝑝(𝑠), 𝑠 ∈
[0,∞) is defined as 

𝑝′(𝑠) = {

1

2𝜋
(𝑠𝑖𝑛( 2𝜋𝑠)) 𝑠 ≤ 1

(𝑠 − 1)  𝑠 ≥ 1
} (11) 

The function 𝑑 satisfies the conditions, |𝑑𝑝(𝑠)| < 1, for all

𝑠 ∈ [0,∞) and 

𝑙𝑖𝑚
𝑠→∞
 𝑑𝑝(𝑠) = 𝑙𝑖𝑚

𝑠→0
 𝑑𝑝(𝑠) = 1.
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This diffusion rate depends on the energy density 

function  𝑝(𝑠)  and assumes a positive or negative rate 

accordingly. The diffusion is forward diffusion when 

𝑑𝑝(|𝛻𝑑|) is positive, and the diffusion is backward diffusion 

when 𝑑𝑝(|𝛻𝑑|) is negative. This diffusion is also known as 

forward-and-backward diffusion.  

The energy functional 휀(𝑑) in an image domain   𝑅2 is 

minimized to regularize the vector fields as follows  

 

min
𝑑
휀(𝑑) = 𝛼𝐷𝑝(𝑑) + |𝛻𝑑|𝐴𝑔(𝑑) + 𝜆1𝐿𝑔(𝑑) (12) 

 

where, the constant parameter 𝜆1 > 0. The function 𝐷𝑝(𝑑) is 

defined as the same as Eq. (6). The energy sub functionals 

𝐴𝑔(𝑑) and 𝐿𝑔(𝑑) for image sequence 𝑋1 and 𝑋2  are defined 

by 

 

𝐴𝑔(𝑑) = ∫ |𝛻𝑑(𝑥, 𝑦)|𝑑𝛺𝛺
  (13) 

 

𝐿𝑔(𝑑) = ∫ (𝑋1(𝑥, 𝑦) − 𝑋2(𝑥 + 𝑑, 𝑦))𝛺
𝑑𝛺  (14) 

 

After applying the Euler Lagrange method, the proposed 

energy minimization function is defined as 

 
𝜕𝑑

𝜕𝑡
= 𝛼𝑑𝑖𝑣(𝑑𝑝(|𝛻𝑋1|)𝛻𝑑) + |𝛻𝑑|𝑑𝑖𝑣 (

𝛻𝑑

|𝛻𝑑|
)  

+𝜆1(𝑋1(𝑥, 𝑦) − 𝑋2(𝑥 + 𝑑, 𝑦))
𝜕𝑋2(𝑥+𝑑,𝑦)

𝜕𝑥
  

(15) 

 

with initial disparity 𝑑(𝑥, 𝑦, 0) = 𝑑0(𝑥, 𝑦) and Neumann-type 

boundary conditions. The first term on the right-hand side in 

Eq. (15) follows the DRT diffusion effect, while the second 

and third terms express energy. The DRT 𝑑𝑝(⋅) is defined in 

Eq. (9). The property of forward-and-backward diffusion 

works for (15) in three steps as follows 

• the diffusion rate 𝑑𝑝(|𝛻𝑋1|)  is positive, and the 

diffusion (15) is forward; when |𝛻𝑋1| > 1, 

• the diffusion rate 𝑑𝑝(|𝛻𝑋1|)  is negative, and the 

diffusion (16) is backward; when 
1

2
< |𝛻𝑋1| < 1, 

• the diffusion rate 𝑑𝑝(|𝛻𝑋1|)  is positive, and the 

diffusion (17) is forward; when 
1

2
> |𝛻𝑋1|. 

 

2.2 Initial disparity estimation 

 

Let 𝑆 be the set of pixels in the image, and 𝐿 is the label set 

that is finite. A labeling 𝐹 assigns a label 𝐹𝑝 ∈ 𝐿 to each pixel 

𝑝 ∈ 𝑃. The following energy minimizing function expresses 

the labeling quality: 

 

𝐸(𝐹) = ∑ 𝐶𝑝(𝐹𝑃)𝑝∈𝑃 +∑ 𝑀(𝐹𝑝 − 𝐹𝑞)(𝑝,𝑞∈𝑁)   (16) 

 

where, the four connected image grid graphs have 𝑁edges. 

The discontinuity cost 𝑀(𝐹𝑝, 𝐹𝑞) measures the cost between 

two neighboring pixels 𝐹𝑃  and 𝐹𝑞 . 𝐶𝑝(𝐹𝑃) refers to the data 

cost of detecting a label 𝐹𝑃  for pixel 𝑝 . Let 𝑛𝑡𝑝→𝑞  be the 

message at iteration 𝑡 (node 𝑝 sends to a neighboring node 𝑞). 

The iterative scheme for message updation 𝐹𝑝 ∈ 𝐿 is defined 

by minimizing as 

 

𝑛𝑡𝑝→𝑞(𝐹𝑞) = 𝑚𝑖𝑛
𝐹𝑝
(
𝐶𝑝(𝐹𝑃) + 𝑀(𝐹𝑝 − 𝐹𝑞)

+∑ 𝑛𝑡−1𝑝→𝑞(𝐹𝑞)𝑠∈𝑁(𝑝)\𝑞
)  (17) 

 

where, 𝑁(𝑝)\𝑞 expresses the neighbors of 𝑝 not containing 𝑞. 

Choose label 𝐹 that minimize the belief vector at time 𝑇 for 

each node expressed as 

 

𝐵𝑞(𝐹𝑞) = 𝐶𝑞(𝐹𝑞) + ∑ 𝑛𝑇𝑝→𝑞(𝐹𝑞)𝑝∈𝑁(𝑞)   (18) 

 

The initial disparity is solved by the iterative belief 

propagation Eq. (18). The belief propagation calculation 

works by passing messages around the graphs noted from four 

related image frameworks and all nodes being given in parallel 

[31]. 

 

2.3 Spatial discretization 

 

To compute the CeNN templates matrices in a simple form, 

the parabolic Eq. (15) is discretized using finite difference 

methods and the central difference method. We can write Eq. 

(15) in modified form as follows 

 
𝜕𝑑(𝑥,𝑦)

𝜕𝑡
= 𝛼𝛻𝑇(𝑑𝑝(|𝛻𝑋1(𝑥, 𝑦)|)𝛻𝑑(𝑥, 𝑦))  

+𝜆1(𝑋1(𝑥, 𝑦) − 𝑋2(𝑥 + 𝑑, 𝑦))
𝜕𝑋2(𝑥+𝑑,𝑦)

𝜕𝑥
  

+|𝛻𝑑|𝛻𝑇 (
𝛻𝑑(𝑥,𝑦)

|𝛻𝑑|
)  

(19) 

 

After simplifying the above PDE, the simple way is defined 

as  

 
𝜕𝑑(𝑥,𝑦)

𝜕𝑡
= 𝛼

𝜕

𝜕𝑥
(𝑑𝑝(|𝛻𝑋1(𝑥, 𝑦)|)

𝜕

𝜕𝑥
𝑑(𝑥, 𝑦))  

+𝛼
𝜕

𝜕𝑦
(𝑑𝑝(|𝛻𝑋1(𝑥, 𝑦)|)

𝜕

𝜕𝑦
𝑑(𝑥, 𝑦))  

𝜕𝑑(𝑥,𝑦)

𝜕𝑡
= 𝛼

𝜕

𝜕𝑥
(𝑑𝑝(|𝛻𝑋1(𝑥, 𝑦)|)

𝜕

𝜕𝑥
𝑑(𝑥, 𝑦))  

+
𝜕

𝜕𝑥
(
𝜕

𝜕𝑥
𝑑(𝑥, 𝑦)) +

𝜕

𝜕𝑦
(
𝜕

𝜕𝑦
𝑑(𝑥, 𝑦))  

+𝜆1(𝑋1(𝑥, 𝑦) − 𝑋2(𝑥 + 𝑑, 𝑦))
𝜕𝑋2(𝑥+𝑑,𝑦)

𝜕𝑥
  

(20) 

 

Subsequently, discretizes the Eq. (20) using the central 

difference method 

 

𝜕𝑑(𝑥,𝑦)

𝜕𝑥
=
𝑑(𝑥+

𝛥𝑥

2
,𝑦)−𝑑(𝑥−

𝛥𝑥

2
,𝑦)

𝛥𝑥
  

𝜕𝑑(𝑥,𝑦)

𝜕𝑦
=
𝑑(𝑥,𝑦+

𝛥𝑦

2
)−𝑑(𝑥,𝑦−

𝛥𝑦

2
)

𝛥𝑦
  

(21) 

 

Substituting the values of 
𝜕𝑑(𝑥,𝑦)

𝜕𝑥
, 
𝜕𝑑(𝑥,𝑦)

𝜕𝑦
 in Eq. (19) with 

step size ∆𝑥 = ∆𝑦 = 1, then we obtained the following system 

of ordinary differential equations. 

 

𝑑

𝑑𝑡
𝑑(𝑥, 𝑦, 𝑡) ≈

𝛼

(

 
 

1

𝛥𝑥2
[
𝑑𝑆(𝑑(𝑥 + 𝛥𝑥, 𝑦, 𝑡) − 𝑑(𝑥, 𝑦, 𝑡))

−𝑑𝑁(𝑑(𝑥, 𝑦, 𝑡) − 𝑑(𝑥 − 𝛥𝑥, 𝑦, 𝑡))
]

+
1

𝛥𝑦2
[
𝑑𝐸(𝑑(𝑥, 𝑦 + 𝛥𝑦, 𝑡) − 𝑑(𝑥, 𝑦, 𝑡))

−𝑑𝑊(𝑑(𝑥, 𝑦, 𝑡) − 𝑑(𝑥, 𝑦 − 𝛥𝑦, 𝑡))
]
)

 
 

  

+
1

𝛥𝑥2
(𝑑(𝑥 + 𝛥𝑥, 𝑦, 𝑡) − 2𝑑(𝑥, 𝑦, 𝑡) + 𝑑(𝑥 −

𝛥𝑥, 𝑦, 𝑡))  

+
1

𝛥𝑦2
(𝑑(𝑥, 𝑦 + 𝛥𝑦, 𝑡) − 2𝑑(𝑥, 𝑦, 𝑡) + 𝑑(𝑥, 𝑦 −

𝛥𝑦, 𝑡)) + 𝜆1(𝑋1(�⃗�, 𝑦) − 𝑋2(�⃗� + 𝑑, 𝑦))
𝜕𝑋2(𝑥+𝑑,𝑦)

𝜕𝑥
  

(22) 
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where, in the variable 𝑑𝑁, 𝑑𝑆, 𝑑𝑊, 𝑑𝐸 are defined in the form 

of the regularization function in the north, south, west, and east 

direction, respectively as 

 

𝑑𝑁 = 𝑑𝑝 (|𝛻𝑋1(𝑥 −
𝛥𝑥

2
, 𝑦, 𝑡)|), 

𝑑𝑆 = 𝑑𝑝 (|𝛻𝑋1(𝑥 +
𝛥𝑥

2
, 𝑦, 𝑡)|),  

𝑑𝑊 = 𝑑𝑝 (|𝛻𝑋1(𝑥, 𝑦 −
𝛥𝑦

2
, 𝑡)|), 

𝑑𝐸 = 𝑑𝑝 (|𝛻𝑋1(𝑥, 𝑦 +
𝛥𝑦

2
, 𝑡)|). 

(23) 

 

In the following subsection, the authors first define the 

CeNN architecture, and then after changing Eq. (22) to the 

CeNN form, the valid templates of CeNN are derived. 

 

2.4 CeNN formation 

 

A CeNN is an array of coupled networks that interact in 

local connections only. The dynamical behaviors of CeNN 

processors can be expressed mathematically as a system of the 

ordinary differential equations. In CeNN, each equation 

represents the state of an individual processing unit. The 

mathematical model is described for 𝑟  -neighborhood of 

CeNN cell 𝜍(𝑝, 𝑞), on the 𝑝𝑡ℎ row and 𝑞𝑡ℎ column cell 𝜍(𝑝, 𝑞) 
defined as 

 

𝑁𝑟(𝑝, 𝑞) = {
𝜍(𝑘, 𝑙)| 𝑚𝑎𝑥[|𝑘 − 𝑝|, |𝑙 − 𝑞|] ≤ 𝑟

1 ≤ 𝑘 ≤ 𝑀, 1 ≤ 𝑙 ≤ 𝑁
} 

 

Mathematically, the 2-D state-controlled CeNN 

architecture is defined as [32, 33], 

 

𝑐∗
𝑑𝐼𝑥(𝑝,𝑞)

𝑑𝑡
=
−𝐼𝑥(𝑝,𝑞)

𝑅𝑥
 

+∑ 𝐴(𝑝, 𝑞; 𝑘, 𝑙)𝐼𝑥(𝑘,𝑙)(𝑡)𝜍(𝑘,𝑙)∈𝑁𝑟(𝑝,𝑞)   

+∑ 𝐵(𝑝, 𝑞; 𝑘, 𝑙)𝐼𝑦(𝑘,𝑙)(𝑡)𝜍(𝑘,𝑙)∈𝑁𝑟(𝑝,𝑞) + 𝑇  

(24) 

 

where, 1 ≤ 𝑝 ≤ 𝑀, 1 ≤ 𝑞 ≤ 𝑁 having 𝑀  rows cell and 𝑁 

columns cell. The output vector 𝐼𝑦(𝑘,𝑙) is an approximation of 

the state vector 𝐼𝑥(𝑝,𝑞), which can be any form of function 𝑓(⋅). 

 

 
 

Figure 2. Global behavior of CeNN [32] 

 

The control and feedback template matrices of the CeNN 

model are 𝐴 and 𝐵, respectively, and 𝑇 works as a bias vector. 

Eq. (22) converted in the CeNN form according to Eq. (24) as  

 

𝑐∗
𝑑𝐼(𝑝,𝑞)

𝑑𝑡
=
−𝐼(𝑝,𝑞)

𝑅𝑥
+  

∑ 𝐴(𝑝, 𝑞; 𝑘, 𝑙)𝐼(𝑘,𝑙)(𝑡)𝜍(𝑘,𝑙)∈𝑁𝑟(𝑝,𝑞)   

+∑ 𝐵(𝑝, 𝑞; 𝑘, 𝑙)𝐼𝑦(𝑘,𝑙)(𝑡)𝜍(𝑘,𝑙)∈𝑁𝑟(𝑝,𝑞)
+ 𝑇  

(25) 

where, 𝐼(𝑝,𝑞)(𝑡) = 𝑑(𝑝, 𝑞, 𝑡) and 𝑁𝑟 denotes the neighborhood 

of finite radius 𝑟 of state variable 𝐼(𝑝,𝑞). Eq. (25) associated the 

CeNN (22) with 𝑐∗ = 1 , 
1

𝑅𝑥
= 1  and 𝑇 =

𝜆1 (
𝑋1(𝑥, 𝑦, 𝑡)

−𝑋2(𝑥 + 𝑑, 𝑦, 𝑡)
)
𝑋2(𝑥+𝛥𝑥,𝑦,𝑡)−𝑋2(𝑥,𝑦,𝑡)

𝜕𝑥
. 

The transformation templates of Eq. (25) are computed as 

 

𝐴 = [
0 𝛼𝑑𝑁 0

𝛼𝑑𝑊 −𝛼(𝑑𝑁 + 𝑑𝑆 + 𝑑𝑊 + 𝑑𝐸) 𝛼𝑑𝐸
0 𝛼𝑑𝑆 0

], 

𝐵 = [
0 1 0
1 −4 1
0 1 0

]. 

 

For our proposed CeNN model, the output function is 

defined as 𝐼𝑦(𝑝,𝑞) = 𝐼𝑥(𝑝,𝑞). The components of 𝐼(𝑝,𝑞) denoting 

the position of all cells are included in the complete CeNN-

processor model. The model in Eq. (25) is a network of first-

order ordinary differential Eqs. According to Figure 2, the 

CeNN model consists of 3 × 3  template matrix 𝐴 , which 

serves as the input vector 𝐼(𝑝,𝑞) as well as control template, and 

3 × 3 template matrix 𝐵 acts as a feedback template. In the 

model, the added bias vector is 𝑇, and all the computations are 

performed with the internal state. After the whole process, we 

obtain the output function of 𝐼𝑦(𝑝,𝑞). The output function is 

similar to the input vector for our model, which shows the 

output vector's differentiability. The overall mapping 

procedure is designed so that the ordinary differential equation 

is represented in terms of the components of state space, and 

template matrices have been computed based on the best 

possible mapping conditions. The proposed templates 𝐴, 𝐵 are 

defined according to the desired disparity. The obtained 

templates matrices of the governing CeNN array are space 

invariant. The MATLAB solver ode45 is used for numerical 

computation. Algorithm 1 gives an overview of the overall 

framework of the proposed approach. 

 

Algorithm 1: Numerical implementation 

Input: Initial disparity 𝑑0(𝑥, 𝑦) at t = 0, choose 𝛼 = 0.1, 

time step size 𝛥𝑡 = 0.1, 𝑡𝑚𝑎𝑥final time(s). 

Output: Restored disparity image 𝑑(𝑥, 𝑦) 
1. Set 𝑡 = 0, the initial image 𝑑(𝑥, 𝑦, 0) at 𝑡 = 0, 𝑡𝑚𝑎𝑥; 

2. Compute template matrices 𝐴, 𝐵 and 𝑇; 

3. Call CeNN function 
𝜕𝑑(𝑥,𝑦,𝑡+𝛥𝑡)

𝜕𝑡
= −𝑑(𝑥, 𝑦, 𝑡) + 𝐴 ∗

𝑑(𝑥, 𝑦, 𝑡) + 𝐵 ∗ 𝑑𝑦(𝑥, 𝑦, 𝑡) + 𝑇  and compute the next 

iteration 𝑑(𝑥, 𝑦, 𝑡 + 𝛥𝑡); 
4. Update templates 𝐴 and 𝐵 and goes to step 3 until 𝑡𝑚𝑎𝑥; 

5. Return image 𝑑(𝑥, 𝑦) at a time 𝑡𝑚𝑎𝑥. 

 

 

3. CONVERGENCE  

 

The iterative CeNN scheme needs to be convergent. In this 

study, the convergence of algorithm 1 is proved by showing 

the conditions on templates 𝐴 , 𝐵 , and output function 

𝑑(𝑥, 𝑦, 𝑡). 
Definition: An autonomous dynamical system, expressed 

by the state equation: 

 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥), 𝑥 ∈ ℝ𝑛 (26) 
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and 𝑓:ℝ𝑛 → ℝ𝑛 is said to be stable almost everywhere (or 

convergent), if for each initial condition 𝑥0 ∈ ℝ𝑛  satisfies 

𝑙𝑖𝑚
𝑡→∞
𝑥(𝑡, 𝑥0) = 𝐶 (constant). 

Theorem 11 [34] states that: a sufficient condition for the 

stability almost everywhere (convergent) of a space-invariant 

CeNN system, described by state Eq. (24) with strictly 

monotonic and a differentiable output function; is that the 

template is cell-linking or strictly sign-symmetric [35] (i.e. 

𝐵𝑖,𝑗𝐵−𝑖,−𝑗) and that all the template entries satisfy one of the 

following set of inequalities: 
 

∀(𝑖, 𝑗) ≠ (0,0), 𝐵𝑖,𝑗 ≥ 0 

∀(𝑖, 𝑗) ≠ (0,0), (−1)𝑖𝐵𝑖,𝑗 ≥ 0 

∀(𝑖, 𝑗) ≠ (0,0), (−1)𝑗𝐵𝑖,𝑗 ≥ 0 

∀(𝑖, 𝑗) ≠ (0,0), (−1)𝑖+𝑗𝐵𝑖,𝑗 ≥ 0 

(27) 

 

For our CeNN system, the output function of state Eq. (25), 

(𝐼𝑦(𝑖, 𝑗) = 𝐼𝑥(𝑖, 𝑗) = 𝑑𝑖,𝑗)  is linear, which is a strictly 

monotonic and differentiable function, and template entries 

of 𝐵 are  

 

𝐵0,0 = −4, 𝐵−1,0 = 1, 𝐵1,0 = 1, 𝐵0,−1 = 1 

𝐵0,1 = 1, 𝐵−1,−1 = 0, 𝐵−1,1 = 0, 𝐵1,−1 = 0 
(28) 

 

and 𝐵1,1 = 0 satisfies the cell-linking property as 𝐵−1,0𝐵1,0 >

0, 𝐵0,−1𝐵0,1 > 0, 𝐵−1,−1𝐵1,1 > 0, 𝐵−1,1𝐵1,−1 > 0; and also, all 

the template entries satisfy the first inequality-1. Based on the 

above, the proposed CeNN iteration converges to the restored 

image 𝑑(𝑥, 𝑦). 
 

 

4. NUMERICAL DEMONSTRATIONS AND 

DISCUSSIONS  
 

In this section, we have presented the numerical results 

obtained by the CeNN approach on different images. The 

initial disparity is calculated by using the belief propagation 

method. The structure of the proposed scheme is efficient and 

easy to implement. The proposed method's accuracy is 

estimated using the bad-matching percentage (BMP) and the 

root-mean-square error (RMSE) matrices. For BMP and 

RMSE calculation, we need the ground truth data. 

Mathematically, the RMSE is defined between the ground 

truth disparity map 𝑑𝐺(𝑥, 𝑦) and the estimated disparity map 

𝑑𝑒(𝑥, 𝑦) as, 
 

𝑅𝑀𝑆𝐸 = {
1

𝑁
∑ [𝑑𝑒(𝑘, 𝑙) − 𝑑𝐺(𝑘, 𝑙)]

2
(𝑘,𝑙) }

1/2

  (29) 

 

where, 𝑁 is the total number of matching pixels. 

Zitnick and Kanade [36] have introduced the BMP of the 

obtained disparity map. The BMP shows the rate of incorrect 

disparities. The disparity that differs from the image of the 

ground truth by pixel 1 is considered correct.  

The percentage of BMP is defined as 
 

𝐵𝑀𝑃 = {
1

𝑁
∑ (|𝑑𝑒(𝑘, 𝑙) − 𝑑𝐺(𝑘, 𝑙)|) > 𝛿(𝑘,𝑙) }  (30) 

 

where, 𝛿 is the disparity error tolerance. 
 

4.1 Data collection 
 

Parameter 𝜆1, 𝛼  and time steps 𝛥𝑡  are taken for 

implementation in this model. The choice of 𝜆1 and 𝛼 are not 

case sensitive for different images. The value of parameters 

fixed for all the images, and these parameters' values are 

𝜆1=0.2 and 𝛼=0.8. We have taken five Middlebury stereo 

benchmark images with ground truth disparity left and the 

right frame of images; Poster, Venus, Map, Tsukuba, and 

Lamp. The original images are shown in Figure 3. We have 

compared our RMSE and BMP values with block matching 

(BM) [37], simple block matching (SB) [38], block matching 

with dynamic programming (BMDP) [39], stereo matching 

with belief propagation (SMBP) [31] models for two different 

values 1, 0.1 of 𝛿 . The initial disparity is computed as in 

subsection 2.2. We used a classic stereo pair whose exact 

disparity is known. 

 

4.2 Qualitative and quantitative results 

 

Tables 1, 2, 3, 4, and 5 list the RMSE and BMP values for 

the time step 𝛥𝑡 = 0.1. The numerical values have shown our 

results' effectiveness and claim that the proposed model 

preserves the edges well. The performance of BM, SB, BMDP, 

and SMBP methods belongs to the average results for both 

RMSE and BMP values, but the RMSE values of the block 

matching method are not desired effective. Alternatively, it 

could only mean that the proposed method produces the best 

results in RMSE and BMP. The regularization algorithm 

suppresses the main errors in blockage. The neighborhood 

properties of the CeNN algorithm have led to good BMP 

results. The visual effects of estimated disparity have been 

shown in Figures 4, 5, 6, 7, and 8. The proposed visual results 

are compared with the traditional methods BM [37], SB [38], 

BMDP [39], SMBP [31]. Figure 3 shows the five different 

tests for left and right images. The capturing sequence of these 

paintings is made up of some posters or pictures with cut-out 

edges. Figures 4, 5, 6 display the Poster, Tsukuba, and Venus 

images' visual results, respectively, and obtained the required 

planar scenes in the disparity map. The disparity of the 

monochromatic map is shown in Figure 7. In Figure 8, the 

obtained inequality map clearly shows the transfer to the Lamp 

and Head pixels. It is clearly evident that the proposed 

methodology did not suffer to preserve edges. The proposed 

method achieves a statistically significant improved visuality 

compared to SB and BMDP methods. The depth discontinuity 

of edges preserves in our suggested results and contains no 

extra information. 

 

Table 1. Comparison of RMSE and BMP values for Poster 

image between BM [37], SB [38], BMDP [39], SMBP [31], 

and proposed method 

 
Poster  BM [37]   SB [38]   BMDP [39]   SMBP [31]  Proposed 

RMSE2.9342  4.12083.3396  3.58130.5667 

BMP 

𝛿 = 0.1   0.78911   1 1   0.6920 

𝛿 = 1 0.7478 0.8037 0.7126 0.9951  0.0256 

 

Table 2. Comparison of RMSE and BMP values for Venus 

image between BM [37], SB [38], BMDP [39], SMBP [31], 

and proposed method 

 
Venus  BM [37]   SB [38]   BMDP [39]   SMBP [31]  Proposed 

RMSE2.29286.08132.84073.20040.5257 

BMP 

𝛿 = 0.10.78070.9992 0.9988   0.99980.5203 

𝛿 = 1   0.72450.7917 0.6991   0.99510.0044 
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Table 3. Comparison of RMSE and BMP values for Map 

image between BM [37], SB [38], BMDP [39], SMBP [31], 

and proposed method 

 
Map  BM [37]   SB [38]   BMDP [39]   SMBP [31]  Proposed 

RMSE6.7882  6.78826.7584 5.4047  0.7936 

BMP 

𝛿 = 0.1   0.6416   0.9966 1 0.99970.8465 

𝛿 = 1 0.64010.8282 0.74520.98990 

 

Table 4. Comparison of RMSE and BMP values for Tsukuba 

image between BM [37], SB [38], BMDP [39], SMBP [31], 

and proposed method 

 
Tsukuba  BM[37]  SB[38]  BMDP[39]  SMBP[31]  Proposed 

RMSE1.8269   3.48543.4891 2.8027  0.1619 

BMP 

𝛿 = 0.1   0.7885  1  1 1 0.4121 

𝛿 = 1  0.5249  0.6825 0.47020.90080 

Table 5. Comparison of RMSE and BMP values for Lamp 

image between BM [37], SB [38], BMDP [39], SMBP [31], 

and proposed method 

 
Lamp  BM [37]   SB [38] BMDP [39]   SMBP [31]  Proposed 

RMSE7.4729  7.3585 7.75197.7344 0.2989 

BMP 

𝛿 = 0.1   0.6909   0.9190 0.89920.9939   0.8402 

𝛿 = 1  0.6904   0.8264 0.83850.99390 

 

Table 6. Taken time for the proposed algorithm computation 

 

Images Time (s) 
"Poster"75.249 

"Venus"76.5735 

"Map" 20.2213 

"Tsukuba" 69.2015 

"Head_Lamp"27.2172 

 
 

 
 

Figure 3. We have shown five different tests for left and right images (first row for left images and second row for right images). 

The images are shown in the first column: Poster; second column: Tsukuba; third column: Map; fourth column: Venus; last 

column: Lamp 
 

 
 

Figure 4. The computed disparity for Poster image using BM [37], SB [38], BMDP [39], SMBP [31], and the proposed method 

are given from left to right, respectively 
 

 
 

Figure 5. The computed disparity for Tsukuba image using BM [37], SB [38], BMDP [39], SMBP [31], and the proposed 

method are given from left to right, respectively 
 

 
 

Figure 6. The computed disparity for Venus image using BM [37], SB [38], BMDP [39], SMBP [31], and the proposed method 

are given from left to right, respectively 
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Figure 7. The computed disparity for Map image using BM [37], SB [38], BMDP [39], SMBP [31], and the proposed method are 

given from left to right, respectively 

 

 
 

Figure 8. The computed disparity for Head_Lamp image using BM [37], SB [38], BMDP [39], SMBP [31], and the proposed 

method are given from left to right, respectively 

 

To show the overall performance, the computational time 

has been shown. The operation time of the proposed model on 

MATLAB R2018a on the desktop with an i5 processor, 8GB 

RAM are listed in Table 6. The other methods are executed 

under different conditions. Therefore, it might not be possible 

to compare the proposed method's computational efficiency 

with other methods.  

In the proposed method, a significant time step can be used 

for solving the PDE. The numerical results ignite that the 

proposed scheme can deal with different boundary conditions, 

nonlinear properties, and complex geometry with a simple and 

efficient approach. However, when comparing our results to 

state-of-the-art studies, it must be pointed out that the 

proposed method easy to implement and preserves depth 

discontinuity. Our results cast a new light on disparity 

estimation through CeNN. 

 

 

5. MANAGERIAL IMPLICATIONS 

 

The variation in illumination is always non-uniform and 

located in between the left and right images. There are various 

real and difficult situations in which we cannot avoid non-

uniform illumination differences between stereo images. 

Energy minimization approaches are not sensitive to non-

uniform illumination differences, though they provide good 

results by locating local minima over large areas. The energy 

minimization algorithm has been proposed to provide a 

disparity map as an output from the illuminated variant stereo 

pair. The energy minimization approach's computational cost 

is very high and may not be cost-wise suitable for real-time 

applications. The proposed model decreases the computation 

cost and is highly effective on non-uniform illumination due 

to its structure. The disparity map obtained using the energy 

minimization approach can reconstruct the 3D surface, and the 

obtained reconstructed results are close to the real depth 

information. 

 

 

6. CONCLUSIONS 
 

The proposed PDE estimates the disparity maps of the 

images by preserving the discontinuity between different 

regions without any parameter settings. This was achieved by 

converting the prepared PDE into CeNN form using the finite 

difference method, and the obtained template matrices serve 

as the transformation matrices. The obtained CeNN system 

allows the use of significant time steps to reduce the number 

of iterations and computation time while maintaining 

sufficient numerical accuracy. The convergence of the 

numerical scheme has been proved, and the proposed 

algorithm is easily implemented with low computation costs. 

Therefore, the numerical results of the proposed algorithm are 

highly competitive with the other state-of-the-art algorithms 

with respect to the ground truth values. The numerical results 

showed that the proposed algorithm obtained improved RMSE 

and BMP values and a sharp spatially correlated disparity 

vector field. The limitation of the proposed scheme is the 

computational load to define PDE. The improvement in the 

algorithm for the disparity of the quadric surfaces is needed 

for further research. In the future, one can investigate the 

optical flow and multiview reconstruction using a dense 

matching approach. 
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