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 High complexity and low recognition rate are two common problems with the current finger 

vein recognition methods. To solve these problems, this paper integrates two-dimensional 

kernel principal component analysis (K2DPCA) plus two-dimensional linear discriminant 

analysis (2DLDA) (K2DPCA+2DLDA) into convolutional neural network (CNN) to 

recognize finger veins. Considering the row and column correlations of the finger vein 

image matrix and the classes of finger vein images, the authors adopted K2DPCA and 

2DLDA separately for dimensionality reduction and extraction of nonlinear features in row 

and column directions, producing a dimensionally reduced compressed image without row 

or column correlation. Taking the dimensionally reduced compressed image as the input, 

the CNN was introduced to learn higher-level features, making finger vein recognition more 

accurate and robust. The public dataset of Finger Vein USM (FV-USM) Database was 

adopted for experimental verification. The results show that the proposed approach 

effectively overcome the common defects of original image feature extraction: the 

insufficient feature description, and the redundancy of information. When the training 

reached 120 epochs, the model basically realized stable convergence, with the loss 

approaching zero and the recognition rate reaching 97.3%. Compared with two-directional 

two-dimensional Fisher principal component analysis ((2D)2FPCA), our strategy, which 

integrates K2DPCA+2DLDA with CNN, achieved a very high recognition rate of finger 

vein images. 
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1. INTRODUCTION 

 

The recent boom of information technology (IT) has raised 

a growing concern about information security. Biological 

feature identification is widely recognized by users for its 

safety and convenience. This technology implements 

identification based on the intrinsic biometric features of the 

human body, which are not easily forgotten or stolen [1]. 

Finger veins are a type of biometric features that support in 

vivo detection. There are many advantages of finger veins: 

they are stable, easily to acquire, difficult to copy, and 

recognizable without any contact. Hence, the recognition 

based on finger veins is superior to that based on other 

biometric features, such as human face [2], and fingerprints [3], 

attracting extensive attention from the academia. 

Typically, the key to finger vein recognition algorithms lies 

in feature extraction and identification, which has been a 

research hotspot at home and abroad [4-20]. There are 

primarily three types of feature extraction and identification 

methods: 

(1) Structure-based methods 

The structure-based methods describe palm veins by 

extracting their linear or point features. The typical examples 

include scale-invariant Fourier transform (SIFT), which can 

extract locally invariant features of palm veins [12], and 

histogram of oriented gradients (HOG) [14]. 

(2) Subspace-based methods  

Treating each palm vein image as a high-dimensional vector 

or matrix, subspace-based methods convert the image into a 

low-dimensional vector or matrix through projection or 

transformation, and represent and match palm veins in the 

low-dimensional space. The typical examples include two-

directional two-dimensional linear discriminant analysis 

(2D)2LDA [15], principal component analysis (PCA) [16], and 

singular value decomposition (SVD)-based minutiae matching 

(SVDMN) [17]. 

(3) Texture-based methods 

The texture-based methods firstly extract the direction, 

frequency, and phase of the local features of the palm vein 

texture image, treat them as palm vein features, and then 

encode the features for matching and recognition. The typical 

examples include Gabor filter [17], local binary pattern (LBP) 

[18], and pose part-based model [19]. 

The above methods achieve desired results from different 

perspectives. However, each type of methods has its defects. 

Structure-based methods can describe the local shapes, but the 

descriptor is generated slowly over a long period, i.e., the real-

time performance is poor. Subspace-based methods can reduce 

dimensionality, but at the cost of simple computing. Texture-

based methods, such as Liu et al.’s SVDMN extended from 
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SVD [20], usually computes the discriminant similarity of 

local features around detail points like the intersections and 

ends of veins. Nonetheless, the extracted detail points are 

insufficient for feature matching, when the veins are sparse. 

For dimensionality reduction and extraction of the linear 

features of finger veins, some scholars have developed two-

way two-dimensional principal component analysis (2D)2PCA 

algorithms, namely, two-dimensional principal component 

analysis (2DPCA), two-dimensional Fisher's linear 

discriminant (2DFLD), and two-dimensional linear 

discriminant analysis (2DLDA). However, these algorithms 

overlook the nonlinear correlations between features, failing 

to thoroughly extract finger vein features. 

In recent years, deep learning (DL) [21] has made great 

breakthroughs in the fields of computer vision, such as image 

classification [22-24], image recognition, image detection [25], 

image segmentation [26], etc. Notably, convolutional neural 

network (CNN) [27] achieved remarkable success in many 

aspects, ranging from human action identification action 

identification [28], signal reconstruction [29, 30], and other 

applications. 

Considering the research status above and the 

characteristics of finger vein recognition, this paper integrates 

two-dimensional kernel principal component analysis 

(K2DPCA) plus 2DLDA (K2DPCA+2DLDA) into CNN to 

recognize finger veins. Specifically, K2DPCA was adopted to 

extract nonlinear features, solving the problem of extracting 

nonlinear separable features of finger veins; 2DLDA was 

employed for supervised linear dimensionality reduction and 

extraction of features, aiming to reduce redundant information; 

CNN was introduced to learn higher-level semantic features. 

Experimental results show that our approach achieved a good 

recognition effect on a public database. 

 

 

2. FINGER VEIN RECOGNITION BASED ON 

K2DPCA+2DLDA AND CNN 

 

This paper combines K2DPCA+2DLDA and CNN into a 

novel way to recognize finger veins. Firstly, nonlinear 

dimensionality reduction and feature extraction were carried 

out with K2DPCA+2DLDA to screen out the massive 

redundant information in the original image. Next, the CNN 

was introduced to extract and learn the higher-level semantic 

features (Figure 1). 

For an input image I of the size r×c, our method involves 

the following steps: 

Stage 1: 

Input: Finger vein region-of-interest (ROI) image  𝐴𝑚×𝑛. 

Output: Finger vein feature data 𝐶𝑑×𝑟. 

Step 1. Perform K2DPCA transform of the input image 

 𝐴𝑚×𝑛  in the row direction to obtain the projection of the 

mapping Ф(A) of image A in feature space F on eigenvector, 

producing the corresponding feature matrix 𝑌𝑚×𝑟. 

Step 2. Perform 2DLDA transform of the feature matrix in 

the column direction to obtain the transform matrix V, and 

transpose V into VT. 

Step 3. Reduce the dimensionality of the data again with the 

transposed matrix 𝑉𝑇 , yielding the final feature 𝐶𝑑×𝑟 =
𝑉𝑇𝑌𝑚×𝑟 = 𝑉𝑇. 

Stage 2: 

Import the dimensionality reduced training set obtained in 

the above stage into the designed CNN, and train the network 

through forward propagation and error backpropagation. After 

the training, import the training set into the network, and 

obtain the recognition result through forward propagation. 

 

 
 

Figure 1. Principle of K2DPCA+2DLDA combined with 

CNN 

 

2.1 K2DPCA 

 

The high-dimensional computation of PCA might result in 

the curse of dimensionality, while 2DPCA lacks the ability to 

extract nonlinear features. In this paper, these two problems 

are overcome by K2DPCA [31]. 

As a nonlinear feature extractor, K2DPCA nonlinearly 

maps each row of the input image matrix to a high-

dimensional space, and performs the PCA transform in that 

space. However, it is very difficult to solve the eigenvalues 

and eigenvectors of the scatter matrix corresponding to the 

data mapped to the high-dimensional space. To avoid complex 

direct calculation, this paper overcomes the difficulty by 

solving the eigenvalues and eigenvectors of kernel matrix. The 

specific steps are as follows: 

Let m be the total number of training samples; Xk be the k-

th training sample; Xk
i be the i-th row vector of the k-th training 

sample; X=[X1,X2,……,Xm], Xi=[(Xi
1)T,(Xi

2)T,……,(Xi
m)T]T; Ф 

is the corresponding nonlinear mapping. 

By inner product kernel function K, the inner product of the 

projections of input data Xi and Xj in higher-dimensional space 

F can be calculated by: 

 

𝐾(𝑋𝑖 , 𝑋𝑗) = 𝛷(𝑋𝑖) ⋅ 𝛷(𝑋𝑗) = 𝛷(𝑋𝑖)𝛷(𝑋𝑗)
𝑇
 (1) 

 

The mapping �̂�  can be established through the 

centralization of all data. Then, the covariance matrix CФ of 

space F can be expressed as: 

 

𝐶𝛷 =
1

𝑚
∑ �̂�(𝑋𝑖)�̂�(𝑋𝑗)

𝑇𝑚

𝑖=1
  (2) 

 

where, �̂�(𝑋𝑖) = [�̂�(𝑋𝑖
1), �̂�(𝑋𝑖

2), … … , �̂�(𝑋𝑖
𝑚)]. By solving 

the eigenvalues and eigenvectors of the covariance matrix, 

there is no need to conduct complex computation with every 

column vector. 

Each �̂�(𝑋𝑖
𝑗) can be projected to the eigenvector xk of space 

F: 

 

𝑥𝑘�̂�(𝑋𝑖
𝑗)

𝑇
= ∑ ∑ 𝛼𝑙

𝑝×𝑞𝑛

𝑞=1

𝑚

𝑝=1
(�̂�(𝑋𝑝

𝑞
)�̂�(𝑋𝑖

𝑗
)

𝑇
)  (3) 

 

= ∑ ∑ 𝛼𝑙
𝑝×𝑞

𝐾(𝑋𝑝
𝑞

, 𝑋𝑖
𝑗
)

𝑛

𝑞=1

𝑚

𝑝=1

  (4) 

 

where, l=m×n-d+1, m×n-d+1,……, m×n. 

Then, the projection Yi of the i-th mapping image �̂�(𝑋𝑖) can 

be obtained as:  

 

1182



 

𝑌𝑖 = 𝑥𝑘�̂�(𝑋𝑖) = 𝛼𝑇(𝛹𝛷)𝑇�̂�(𝑋𝑖)  (5) 

 

where, 

 

𝛼 = (𝛼𝑚×𝑛−𝑑+1, 𝛼𝑚×𝑛−𝑑+2, … , 𝛼𝑚×𝑛)  (6) 

 

𝛹𝛷 = [[�̂�(𝑋1
1), … , �̂�(𝑋1

𝑛)], … , [�̂�(𝑋𝑚
1 ), … , �̂�(𝑋𝑚

𝑛 )]]  (7) 

 

The row vectors of all training images are projected to the 

first d eigenvectors in the feature space. Then, the features in 

the row direction can be extracted from the projection matrix 

of each image obtained through K2DPCA transform. 

 

2.2 2DLDA 

 

To extract features in the column direction, this paper 

chooses 2DLDA proposed by Ming Li et al., which follows 

similar ideas as 2DPCA. Like 2DPCA, 2DLDA directly 

reduces the dimensionality on the image matrix, and thus 

avoids the heavy load of vector computation, without 

sacrificing the dimensionality reduction performance. The 

steps of 2DLDA are as follows: 

Suppose the training set contains M images in c classes. Let 

Ai,j be an m×n matrix of the j-th image in class i. Let �̅� be the 

mean matrix of all training samples; �̅�𝑖 be the mean of class i 

images. Then, the inter-class scatter matrix 𝑆𝑏
𝑟𝑜𝑤 and the intra-

class scatter matrix 𝑆𝑤
𝑟𝑜𝑤 can be respectively written as: 

 

𝑆𝑏
𝑟𝑜𝑤 =

1

𝑀
∑ (�̅�𝑖 − �̅�)𝑇(�̅�𝑖 − �̅�)𝐶

𝑖=1   (8) 

 

𝑆𝑤
𝑟𝑜𝑤 =

1

𝑀
∑ ∑ (𝐴𝑖,𝑗 − �̅�𝑖)

𝑇(𝐴𝑖,𝑗 − �̅�𝑖)
𝑛
𝑗=1

𝐶
𝑖=1   (9) 

 

Sorting the eigenvalues of (𝑆𝑤
𝑟𝑜𝑤)−1𝑆𝑏

𝑟𝑜𝑤  in descending 

order, the eigenvectors corresponding to the top-q eigenvalues 

can be combined into a mapping axis:  

 

𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑞) (10) 

 

Finally, the matrix is mapped to axis V to obtain the 

eigenmatrix of each training image, and maximize the total 

scatter matrix. After 2DLDA dimensionality reduction, the 

eigenmatrix C of Y can be obtained as:  

 

𝐶 = 𝑉𝑇𝑌 (11) 

 

K2DPCA and 2DLDA have a common defect: they are only 

capable of eliminating the correlation in one direction via 

feature compression. The features can only be extracted in the 

row or column direction in the 2D image. It is impossible to 

eliminate the correlations in both column and row directions. 

To overcome the limitation, this paper couples K2DPCA with 

2DLDA. Firstly, K2DPCA transform was applied to the image 

matrix in the row direction to eliminate row correlation; Next, 

2DLDA transform was implemented in the column direction 

to eliminate column correlation. In this way, a dimensionally 

reduced compressed image could be obtained without row or 

column correlation. Figure 2 shows the process of 

K2DPCA+2DLDA method. In addition, supervised learning 

was introduced to classify the information, which simplifies 

the computation, improves recognition accuracy, increases 

compression rate, and saves storage space. As a result, the 

proposed algorithm K2DPCA+2DLDA is expected to have a 

good performance. 

 

 
 

Figure 2. Process of K2DPCA+2DLDA transform 

 

2.3 DL 

 

DL, an extension of traditional machine learning, has been 

widely applied in many fields, because it can automatically 

learn the suitable representation of features. During image 

recognition, general DL algorithms would lose the structural 

information of the original image, exerting a negative impact 

on recognition effect. As a DL network, CNN performs 

convolution with the aid of local receptive fields, which 

preserves the structural relationship of the original signal 

space. Besides, weights are shared to reduce the parameters to 

be trained. Hence, the CNN has been extensively implemented 

in image recognition. 

CNN is a deep feed-forward neural network, whose 

structure is easy to set up and train. Compared with the earlier 

fully-connected neural network, the CNN boasts excellent 

generalization and robustness. The efficient network 

architecture attracts wide attention from computer vision 

teams. The classic structure of the CNN encompasses 

convolutional layers and a fully-connected layer. Normally, a 

convolutional layer involves convolution, nonlinear activation, 

and pooling operations. During the learning, the training set is 

inputted to the convolutional layers in the front of the network 

for learning and training, while the overall feature is integrated 

in the fully-connected layer in the rear. On this basis, more 

abstract higher-level semantics are learned through training. 

The defining feature of CNN structure is the adoption of three 

key processes: local receptive field processing, weight sharing 

mechanism, and pooling technology. These processes not only 

reduce the computing load, but also enhance network 

robustness and generalization. 

(1) Convolutional layer 

Different features are extracted from the input image via the 

local receptive fields, using convolution kernels. The kernels 

of any dimension need to completely traverse the input, and 

share weights and biases through the weight sharing 

mechanism. In this way, the kernels of any dimension can 

extract the corresponding abstract information. Drawing on 

the principle of local image perception, the computation can 

be speed up by defining different strides for local receptive 

fields, and the bias sharing can reduce the target parameters in 

the network. In this paper, the kernel size 1×1 is applied before 

the kernel size 3×3 (Figure 3). Instead of changing height or 

width, the 1×1 kernel increases or reduces the original data 

volume by changing the number of channels. Under the 

premise of scale invariance, the kernel can substantially 

enhance nonlinear features, and deepen the network, thereby 

improving the expression ability and increasing the number of 

parameters. Meanwhile, 3×3 kernels promote information 
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exchange between channels, making finger vein recognition 

more accurate. 

 

 
 

Figure 3. Convolution operation 

 

(2) Nonlinear layer 

The nonlinear layer generally receives the results from the 

previous layer, and then performs nonlinearization on the 

results. This layer introduces more nonlinearity to the model, 

and enables the model to better fit nonlinear targets, making 

up for the defect of linear models. There are many commonly 

used nonlinear activation functions, including sigmoid, 

rectified linear unit (ReLU), and Leaky ReLU. This paper 

chooses ReLU as the activation function. Unlike sigmoid, 

ReLU has a relatively small computing load, and rarely 

encounter vanishing gradients. It is a desirable tool for deep 

network training. ReLU makes some nodes to output zero, 

which ensures network sparsity, reduces parameter 

interdependence, and mitigates overfitting (Figure 4). 

 

 
 

Figure 4. Nonlinear activation function 

 

(3) Pooling layer 

The pooling layer essentially downs samples the output of 

the previous layer, aiming to preserve feature description 

ability while reducing image resolution. This layer often 

comes right after a convolutional layer to simplify the 

convolutional output. There are two types of operations of the 

pooling layer: average pooling and max pooling. Finger vein 

recognition mainly targets images, which only contain a few 

useful information in the convolution process. Most 

information of images is redundant. Max pooling (Figure 5) 

helps to prevent the interference of lots of redundant 

information. In addition, average pooling can reduce the first 

type of error (increase of estimation variance caused by the 

limited neighborhood size), and preserve the most of 

background information; max pooling can reduce the second 

type of error (shift of mean estimation induced by the error of 

convolutional parameters), and preserve texture information. 

This paper adopts max pooling, because finger vein 

recognition needs to preserve much of the texture information. 

As shown in Table 1, our CNN has four learning layers, 

including 2 convolutional (conv) layers and 2 fully-connected 

(fc) layers. During the training, the probability of overfitting 

was reduced through dropout regularization, the training speed 

was increased with ReLU, and the recognition accuracy was 

enhanced through pooling and normalization. 

 

 
 

Figure 5. Max pooling with stride of 1 and operator of 2×2 

 

Table 1. CNN parameters 

 
Layer Layer Type Size 

1 Convolution 64, 1×1, stride:2 

1 ReLU － 

1 Max Pooling 3×3, stride:1 

1 Dropout p:0.2 

2 Convolution 64, 3×3, stride:1 

2 ReLU － 

2 Max Pooling 3×3, stride:1 

2 Dropout p:0.5 

3 Full connection 2048 

3 ReLU － 

4 Full connection 512 

 

The original finger vein image has several defects, namely, 

redundant information, high-dimensional data, and lack of 

information representation. These defects can be effectively 

solved by the proposed K2DPCA+2DLDA, coupled with 

CNN. 

 

 

3. EXPERIMENTS AND RESULTS ANALYSIS 

 

3.1 Experiments on K2DPCA+2DLDA+CNN 

 

Our experiments were carried out on Finger Vein USM 

(FV-USM) Database, which was proposed by Prof. Bakhtiar 

Affendi Rosdi at Universiti Teknologi Malaysia (UTM). The 

database offers images on the left index finger, left middle 

finger, right index finger, and right middle finger of 83 males 

and 40 females. Six images were taken on each of the four 

fingers of every subject. The spatial and depth resolutions of 

the images are 640×480 and 256 (grayscale). In total, 

123×4×6=2,952 images were acquired in 492 classes. 

 

 
 

Figure 6. Finger vein feature extraction 
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As shown in Figure 6, the original dataset was expanded by 

rotating each image by 0°, ±1°, and ±2°, turning the original 

2,952 samples to 13,260 samples. Then, the ROI was extracted 

from each image, and subjected to scale normalization. 

Cross-validation was adopted for our experiments. Out of 

the 30 same-class samples of each finger, 25 were randomly 

selected to form a training set, and the remaining 5 were 

grouped into a test set. Hence, our training set has a total of 

11,050 samples, and our test set has a total of 2,210 samples. 

The training was accelerated by mini-batch strategy and 

graphics processing unit (GPU). Under Adam optimizer, the 

batch size was set to 500, the training time to 120 epochs, and 

the learning rate to η=0.0001. L2 regularization was adopted 

with the parameter λ=0.0005.  

 

 
 

Figure 7. Training recognition rate of 

K2DPCA+2DLDA+CNN 

 

 
 

Figure 8. Training loss of K2DPCA+2DLDA+CNN 

 

Figures 7 and 8 show the variation of recognition rate and 

loss with the iterative training epochs. Under the iteration of 

Adam optimizer + L2 regularization, the greater the training 

epochs, the higher the recognition rate, and the lower the 

training loss. When the training reached 120 epochs, the model 

basically realized stable convergence, with the recognition rate 

reaching 97.3%. 

 

3.2 Comparison with (2D)2FPCA 

 

To verify its recognition effect, the proposed 

K2DPCA+2DLDA+CNN was compared with the (2D)2FPCA, 

which is improved from classic pattern recognition algorithms 

like PCA and FLD. Both recognition methods were applied on 

the FV-USM dataset. The recognition rate of each method was 

calculated. The experimental results of (2D)2FPCA are 

recorded in Table 2. 

 

Table 2. Recognition rates of (2D)2FPCA under different 

feature dimensions 

 
Feature 

dimension 

Recognition 

rate % 

False accept rate 

(FAR) % 

6×3 95.83 4.17 

10×5 94.12 5.88 

 

Under the dimensionality of 6×3, the training process 

(Figure 9) and feature mapping (Figure 10) of the ROI image 

on finger veins were obtained. Our method firstly derives the 

mean map (Figure 9(a)) of all finger veins in the training set, 

performs 2DPCA transform on the mean map to obtain Figure 

9(b), and then performs 2DFLD transform to obtain Figure 

9(c). Obviously, the extracted features are already very 

abstract. Meanwhile, the ROI image (Figure 10(a)) was 

directly imported to (2D)2FPCA, which outputted a feature 

map (Figure 10(b)) through transform and mapping. The 

feature map contains highly abstracted features. 

 

 
(a) Mean map of training set 

 

 
(b) Result of 2DPCA transform on mean map 

 

 
(c) Result of 2DFLD transform 

 

Figure 9. Training process 

 

                 
(a) Input image        (b) Feature map 

 

Figure 10. Before and after feature mapping 
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Further, the proposed K2DPCA+2DLDA+CNN was 

compared with (2D)2FPCA, and SIFT in terms of recognition 

effect. The comparison results are shown in Table 3. 

 

Table 3. Comparison of recognition effects 

 
Method Recognition rate % FAR % 

K2DPCA+2D 

LDA+CNN 
97.3% 2.7% 

(2D)2FPCA 95.83% 4.17% 

SIFT 96.6% 6.3% 

 

The above experiments demonstrate that the proposed 

K2DPCA+2DLDA+CNN is highly accurate, and works well 

on the classification of finger vein images. 

 

 

4. CONCLUSIONS 

 

Considering the characteristics of finger veins, this paper 

integrates K2DPCA+2DLDA with CNN to process finger vein 

images, and verifies the proposed approach through 

experiments on FV-USM dataset. The following conclusions 

were draw: 

(1) Concerning the finger vein image, the 

K2DPCA+2DLDA and supervised learning can reduce 

dimensionality through training more accurately, extract 

nonlinear features more effectively, compress the image 

greatly, and remove redundant information from the image. In 

this way, the data volume is reduced, the data representation is 

improved, and the data are depicted accurately. 

(2) The CNN was introduced to train and learn the finger 

vein images after dimensionality reduction, and to extract 

higher-level features. After that, the recognition rate could 

reach as high as 97.3%. 

(3) The proposed K2DPCA+2DLDA+CNN is much more 

accurate in recognizing finger vein images than (2D)2FPCA. 
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