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This paper designs an intelligent groundwater level monitoring system based on image 

recognition and Internet of things (IoT). Image recognition technology was employed to 

process the water level image, and determine the water level line. The IoT was adopted to 

transmit the collected multimedia data accurately to the monitoring end, thereby realizing 

the automatic remote monitoring of real-time water level. After analyzing the image 

recognition technology and the key algorithm of water level recognition, the authors 

designed the whole process of groundwater level monitoring with two modules:  water level 

monitoring base station, and remote monitoring management center. The water level 

monitoring base station is embedded with a data acquisition module to periodically collect 

data, including water level, videos, and images. The collected data were sent to the remote 

monitoring management center through the cellular network. Then, flood or low water 

warning could be determined according to the historical data. Finally, the proposed 

groundwater level monitoring system was tested. The results show that the system not only 

solves the problem of measurement accuracy, but also improves the work efficiency.  
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1. INTRODUCTION

Groundwater resources and water security have great 

impacts on social stability, economic development, and 

ecological protection. The two issues can be reflected well by 

the important hydrological index of water level, which could 

be detected by many methods at the water level station. 

However, the traditional manual measurement of water level 

puts monitoring personnel at risk, and has a poor real-time 

performance. If water level gauge is adopted, the working 

mode will be very complex, and the measuring accuracy will 

be limited by the environment. In addition, neither manual 

measurement nor gauge measurement supports remote 

measurement. With technological progress, the traditional 

water level measuring approaches will be inevitably replaced 

by intelligent automatic water level monitoring methods. 

As an important means of non-contact measurement, 

computer vision can automatically process and analyze the 

images collected by cameras, identify, locate, and track the 

targets in the monitoring scene, and analyze, judge, and predict 

target behaviors. To realize automatic remote acquisition of 

real-time water level at a high accuracy, it is necessary to build 

an automatic water level detection system based on the mature 

Internet of things (IoT) and image processing technology. 

Based on image recognition and IoT, this paper designs and 

develops an intelligent remote monitoring system of 

groundwater level. The system relies on image recognition 

technology to process water level images, and determine the 

water level line. Then, the collected multimedia data were 

transmitted accurately to the monitoring end via the IoT, such 

as to realize the automatic, remote monitoring of groundwater 

level in real time. 

2. LITERATURE REVIEW

Currently, groundwater level is generally measured by 

manual reading of water level gauge [1], or collection by 

automatic water level sensors [2]. By the detection principle, 

automatic water level sensors can be divided into float type, 

pressure type, capacitance type, radar type, ultrasonic type, etc. 

The float-type water level gauge [3] uses the float to sense 

the rise and fall of water level, and directly drives the float to 

record the data mechanically. The investment cost is high, 

because a logging device is needed to sense the rising and 

falling water level. 

The pressure-type water level gauge measures the water 

pressure with a pressure probe [4]. The different currents at 

different depths are converted into water levels. The advantage 

of the method is that the sensor can be fixed at the bottom of 

water without logging, and the atmospheric pressure can be 

eliminated by pressure pipe, enabling the direct measurement 

of water level. 

The capacitance-type water level gauge [5] converts the 

water level detection into the induction of capacitance 

parameters, and displays it on the meter through the current. 

The radar-type and ultrasonic-type water level gauges [6, 7] 

send radar/ultrasonic wave to the liquid level, and then receive 

the echo from the liquid level. The distance to the liquid level 

is obtained from the water level gauge, by calculating the 

return time of the echo. The water level is thus derived. The 

weaknesses of the two methods include high cost, device 

complexity, maintenance difficulty, and susceptibility to 

environmental disturbance. As a result, the two water level 

gauges often encounter measured water level drift. 

In general, the above water level sensors work under a 

complex mode, and their accuracy is greatly affected by the 
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environment. Hence, none of them can support remote 

monitoring of water level. 

In recent years, digital image processing has been applied to 

water conservancy management. Zhang et al. [8] adopted 

image graying, horizontal edge detection, and K-means 

clustering (KMC) to detect the water level. Ding et al. [9] drew 

a calibration line near the water gauge to enhance the features 

of the video image, e.g., gray equalization and binarization, 

detected image edges with Robert operator, extracted the 

straight lines (i.e., water level line and calibration line) from 

the image through Hough transform, and derived the water 

level from the relationship between the two values. Kim et al. 

[10] used light intensity correction, shape correction, corrosion 

expansion to extract the approximate region of the water level 

from the original image, and then denoised the approximate to 

obtain the accurate water level. Based on Kalman filter, 

Hwung et al. [11] proposed a predictive correction method to 

estimate the position of horizontal plane. Fleury et al. [12] 

positioned the pre-installed calibration line and water level 

line by subtracting the two adjacent frames of the video image, 

and calculated the water level value according to their relative 

position. Hu and Li [13] held that the energy of flowing water 

area is relatively low in the high frequency area of the 

continuous video frames, and calculated the water level by 

spectral transformation of the video image. 

To sum up, the existing water level detection methods can 

detect the water level, but at a relatively accuracy. This paper 

presents a novel image recognition algorithm to identify the 

water level, which improves the recognition accuracy. Besides, 

a complete system was built to transmit and store groundwater 

level data, as well as monitoring field images and videos. 

 

 

3. ALGORITHM DESIGN 

 

The automatic image recognition algorithm of water level 

focuses on water surface and water level gauge of the water 

level image. The other contents of the image are essentially 

interferences. The water level line could be identified by the 

pixel value located at the boundary between the water level 

gauge and the water surface. Because the position of the water 

gauge is fixed in the water level image, the known information 

can be used to convert the said pixel value into the actual water 

depth.  

This paper proposes a water level recognition algorithm 

based on dictionary learning. More precisely, the basis of our 

algorithm is supervised dictionary learning, which is more 

suitable for water level image recognition. As shown in Figure 

1, the algorithm flow includes the following steps: image 

preprocessing, water gauge positioning, and water level 

recognition.  

 

 
 

Figure 1. The flow of water level recognition algorithm 

 

3.1 Image preprocessing 

 

The color water level image collected by the camera 

contains lots of redundant information, which pushes up the 

computing load and drags down the recognition speed of the 

water level monitoring system. To improve system efficiency 

and accuracy, the image being collected should be 

preprocessed first. The preprocessing can ensure the accurate 

recognition of draft related information, improve the visual 

effect of draft image, and underpin rapid and accurate 

recognition. In our algorithm, the image is preprocessed 

through image graying, image enhancement, image 

segmentation, and classification. 

Image enhancement is used to highlight the meaningful 

information in the image, and weaken the redundant 

information. Considering the large brightness deviation of the 

processed draft image, it is necessary to enhance the water 

level image and adjust the brightness to suit the processing 

effect. Image enhancement can be realized by the spatial 

domain method [14], which corrects and transforms the gray 

value of the image. It can also be achieved by the frequency 

domain method, which regards the image as a two-

dimensional (2D) spectrum data, and improves image purity 

through low- or high-pass filtering. The other common image 

enhancement methods include: gray transformation, histogram 

processing, filtering, etc. 

For the water level monitoring system, the original image is 

a color image. The color information takes up a large storage 

space, which slows down the recognition speed. Through 

preprocessing, the color image was converted into a gray 

image with much fewer data. This conversion greatly 

improves the speed of operation. Here, the weighted average 

method [15] is adopted for image graying. Figure 2 displays 

the grayed color image. 

 

 
 

Figure 2. The effect of color image graying 

 

During the real image shooting process, the contrast of the 

obtained image is very small, owing to the narrow gray 

distribution. As a result, the image details are not clear enough. 

For better clarify, the difference of gray value larger should be 

increased, i.e., widen the gray distribution, making the gray 

distribution more uniform. Then, the number of pixels will be 

roughly the same between gray intervals, and the image 

contrast will increase. In this case, the details will become 

clear and visible. 

Histogram equalization [16] was introduced to stretch the 

image nonlinearly, resulting in a transformed image with 
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uniform histogram distribution. Gray level histogram is the 

distribution function of gray level, which represents the 

number of pixels of each gray level in the image, and reflects 

the frequency of each gray value in the digital image. 

In the gray interval of [0, 𝐿-1], the histogram of digital water 

level image can be expressed as a discrete function: 

 

𝑝𝑘 = ℎ(𝑔𝑘) (1) 

 

where, 𝑘 = 0,1, … , 𝐿 − 1 ; 𝑔𝑘  is the gray value of the 𝑘 -th 

level; 𝑝𝑘 is the number of pixels with gray level 𝑔𝑘; 𝐿 is the 

total grayscale. 

If each value in the histogram is divided by the total number 

𝑁 of pixels in the digital water level image, the histogram can 

be normalized as: 

 

𝑃(𝑔𝑘) = 𝑝𝑘 𝑁⁄ = ℎ(𝑔𝑘) 𝑁⁄  (2) 

 

Let P(𝑔𝑘)  be the estimated probability of occurrence of 

pixels with gray level 𝑔𝑘 . The sum of all parts in the 

normalized histogram should equal 1. Equalization 

transformation can be defined as: 

 

s(𝑔𝑘) = ∑ P(𝑔𝑘)
𝑘
𝑖=0 = ∑ 𝑝𝑘 𝑝⁄𝑘

𝑖=0   (3) 

 

where, 𝑝 is the total number of pixels. 

 

3.2 Sobel-based recognition 

 

The location of water level gauge is an important parameter 

in water level recognition. The local area of the gauge needs 

to be extracted by segmentation algorithm. Because the water 

level gauge has vertical edges, this paper chooses Sobel 

operator, which is sensitive to vertical and horizontal edges, to 

detect image edges. Then, the water level image was binarized 

to obtain the water level. 

The Sobel-based recognition algorithm involves the 

following steps: 

Step 1. The image is collected and preprocessed through 

graying and gray histogram equalization, producing image P. 

Step 2. The Sobel operator for vertical edge detection is 

called to filter image P, calculate the coordinates of each 

vertical edge line of the gauge, and extract the local area of the 

gauge. 

(1) The Sobel operator is adopted to filter image P, yielding 

the gradient image 𝐺𝑥 in the vertical direction: 

 

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] ∗ 𝑃  

 

(2) The gradient image is traversed to find the two vertical 

edges, whose gradient values are larger than the points on the 

left and right. The gradient values are summed by column, and 

two peaks appear on each vertical edge line. Then, a threshold 

is defined to extract the coordinates of the two vertical edge 

lines 𝑥1 and 𝑥2. 

(3) The water level image Q is extracted from 𝑥1 − 𝑥2. 

Step 3. The pixel values on water level image are calculated 

by difference operation and threshold segmentation. 

(1) Two images collected with a time interval t are 

processed through Steps 1 and 2, yielding the local areas Q1 

and Q2 of the gauge. Then, a gray difference image C is 

obtained by differential operation of Q1 and Q2. 

(2) In the difference image C, the gray value difference 

between Q1 and Q2 benchmarking parts is close to zero. This 

is because the position of the benchmarking remains stable, 

while the gray value difference of the water surface part 

changes with the continuous rippling of the water surface. The 

gray value of image C is normalized to the interval of [0, 255]. 

Then, the roughly dividing position between the benchmark 

and horizontal plane can be distinguished clearly. 

Step 4. Threshold segmentation is performed on pixel value 

of water level. 

(1) The relationship is drawn between the product between 

mean and variance of the gray value of image C and image 

ordinate. 

(2) The relationship is properly filtered to reduce noise 

interference. 

(3) The obtained water level coordinates are smoothed to 

minimize the influence of individual outliers on the monitored 

water level, and several images taken at similar time are taken 

to execute the above steps in pairs, yielding obtain their 

respective water level coordinates. After statistical processing, 

the extremely large and small values of these coordinates are 

removed, and the mean of the remaining data is taken as the 

pixel value of the current water level. 

Step 5. The actual water level is calculated according to the 

mapping relationship between the actual benchmark length 

and image coordinates. According to the ratio of gauge width 

in the image to the gauge length above the horizontal plane, 

the gauge length above the actual water level line is calculated, 

and used to derive the real-time water level: 

 

𝐿 = 𝐿′
𝑊

𝑊′  (4) 

 

𝑌 = 𝐻 − 𝐿  (5) 

 

where, 𝐿′  is the gauge length above horizontal plane in 

geometric mathematical model; 𝐿 is the actual gauge length 

above the horizontal plane; 𝑊 is the overall gauge width; 𝐻 is 

the total gauge length; 𝑌 is the measured water level. 

 

3.3 Dictionary learning-based recognition 

 

Dictionary learning is applied to image processing, that is, 

the dictionary is trained with the target image or an image 

similar to the target image, and then the trained dictionary is 

used to process the target image [17]. The following rules are 

observed during the application: the signal of an image can be 

well represented by a linear combination of several elements 

from a set of representative modes; the whole set of 

representative modes is called a dictionary, and each element 

is called an atom. Dictionaries provide an effective tool for 

sparse representation of signals, and open a meaningful way to 

capture high-level semantics hidden in signals. 

To construct a compact but discriminative dictionary 

suitable for the recognition task, an iterative supervised 

learning algorithm is called to label the training set. 

Supervised classification algorithms mainly use 1-norm or 0-

norm to realize sparse coding, and usually adopt iterative 

optimization to handle non-smoothness.  

Let 𝑇 = [𝑡1, 𝑡2, … , 𝑡𝑘] ∈ ℝ𝑀×𝑁  be the dictionary to learn, 

where 𝑁 is a user-defined vocabulary; 𝑀 is the dimension of 

each atom; 𝑘 is the total number of atoms in the dictionary. 

Suppose the samples are selected from 𝑊 classes, and 𝑆𝑊 =

[𝑠1
𝑤 , 𝑠2

𝑤 , … , 𝑠𝑁𝑤
𝑤 ] ∈ ℝ𝑀×𝑁𝑤  denotes the training samples of 
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class 𝑤 , where 𝑠𝑖
𝑤 ∈ ℝ𝑀×1  is the i-th sample. Let 𝑋𝑊 =

[𝑥1
𝑤 , 𝑥2

𝑤, … , 𝑥𝑁𝑤
𝑤 ] ∈ ℝ𝑘×𝑁𝑤  represent the related 

representation of 𝑆𝑊  in dictionary. Then, the classical 

dictionary learning model can be expressed as: 

 

min
𝑇,𝑋

∑ (‖𝑆𝑊 − 𝑇𝑋𝑊‖𝐹
2 + 𝛽∑ ‖𝑥𝑖

𝑤‖𝑝
𝑁𝑤

𝑖=1 )𝑊
𝑤=1   (6) 

 

where, 𝑝-norm is a sparse regularization term belonging to [0, 

1]; the first term is the reconstruction error of dictionary 𝑇; the 

second term is sparse regularization with coefficient 𝛽, with 

the aim to maximize the sparsity of the dictionary. The 

objective function is minimized such that each sample in 𝑆 can 

be well represented as a sparse linear combination of the atoms 

in the learning dictionary. 

After iterative learning, the learned dictionary can represent 

the testing image, and judge its label. According to the 

proposed dictionary structure and learning model, the large 

representation coefficient of a signal to be tested in the whole 

dictionary should concentrate in the atoms closely related to it. 

Therefore, this paper proposes a global coding classifier 

(GCC). 

In addition, the signal should also be reconstructed well, if 

only the atoms of their specific labels and common atoms are 

used, because the atoms of other specific labels contribute 

little to its reconstruction. Hence, this paper presents another 

classifier called local coding classifier (LCC). 

For a testing sample 𝑤  and a learning dictionary 𝑇 , the 

representation coefficient without cross suppression can be 

described as follows, because its label is unknown: 

 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥
‖𝑤 − 𝑇𝑥‖2

2 + 𝛽‖𝑤‖2
2  (7) 

 

According to the dictionary structure and learning algorithm, 

if sample 𝑤 belongs to class 𝑐, the large coefficients should 

concentrate in the atoms and shared classes associated with the 

label of class 𝑐. 

The images obtained by the camera are either about water 

gauge or about water flow. Therefore, the water level 

recognition algorithm aims to use the dictionary learning 

method to divide each image into two classes: water gauge and 

water flow. The water level can be easily calculated by looking 

for the boundary between the two classes. 

Therefore, the water level recognition algorithm can be 

divided into three steps: First, all training images are 

transformed into a training matrix 𝑊 , where each column 

represents a training sample and corresponds to a class label. 

Then, matrix 𝑊 is imported into the dictionary learning model, 

and the trained dictionary 𝑇  is obtained through iterative 

training. Next, the target image is classified into water gauge 

and water flow by dictionary 𝑇 , which is compact and 

discriminatory for water level calculation. 

Overall, image preprocessing is implemented through the 

following steps: 

Step 1. Each training image is grayed, turning into a gray 

image. 

Step 2. The region of interest (ROI) is extracted from the 

water level image, while the other regions are removed. 

Step 3. The ROI is classified. 

Step 4. The training samples are extracted from each class. 

Step 5. Several training samples are synthesized into a 

training matrix 𝑊, and the corresponding class label vector 𝐿 

is obtained. 

The dictionary training can be implemented through the 

following steps: 

Step 1. Several training images are processed and converted 

into gray images. 

Step 2. Through a series of preprocessing operation, each 

training image is transformed into a matrix 𝑊 , where each 

column represents a training sample with a specific class label. 

Step 3. The training matrix is input into the cross-

suppression dictionary learning model, using group 

regularization, and the discriminative structured dictionary 𝑇 

is obtained through iterative training. 

The water level is calculated in the following steps: 

Step 1. The test samples are extracted from the testing set. 

Step 2. A classifier is called to classify each test sample in 

the form of column vector, which is extracted from the water 

level image. 

Step 3. The gauge-flow interface is found, yielding the value 

of pixel water level. 

Step 4. The pixel water level is converted to the actual water 

level. 

The proposed Sobel-based recognition algorithm was 

compared with the dictionary learning-based recognition 

algorithm on 700 water level images with different water 

levels, which were taken under natural conditions (Table 1). 

 

Table 1. Comparison of recognition algorithm accuracy 

 

Algorithm 

Mean 

processing 

time 

Proportion of 

images with 

error < 2cm 

Proportion of 

images with 

error > 5cm 

Sobel-based 

recognition 

algorithm 

169ms 81% 5% 

Dictionary 

learning-based 

recognition 

algorithm 

201ms 86% 2% 

 

As shown in Table 1, the Sobel-based recognition algorithm 

had a greater error in water level recognition than the 

dictionary learning-based algorithm. The main reason is that 

the former is easy to be affected by noise. Under poor 

illumination conditions, the water level in the test images is 

vague, which suppresses the detection effect of edge detectors. 

By contrast, the dictionary learning-based algorithm achieved 

a relatively small processing error and a relatively short 

processing time, and thus satisfies user demand for accurate 

detection of water level in real time.  

 

 

4. SYSTEM DESIGN 

 

Our intelligent water level monitoring system consists of 

two parts: water level monitoring base station and remote 

monitoring management center. The system structure is shown 

in Figure 3. 

The operation process of the system is as follows: 

Step 1. The user initializes the system through the web 

server, which submits the input parameters to the water level 

image analyzer and web camera. 

Step 2. The analyzer completes the initialization of the 

recognition algorithm. 

Step 3. The camera transmits real-time streaming protocol 

(RTSP) video stream to the analyzer and web server. Then, the 

analyzer collects, analyzes, and processes the water level 
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image to obtain the current water level. The web server will 

display the monitoring image in real time. 

Step 4. The water level data, along with the field image data, 

are transmitted back to the web server via the IoT technology. 

The web server stores and analyzes the data, and enables query, 

early warning, and real-time display. 

In general, the video collected by the web camera is 

transmitted to the water level image analyzer, where it is 

processed in real time to get the measurement results. After 

that, the water level data are transmitted to the web server 

through the IoT. The flow of water level image analysis is 

shown in Figure 4. 

 

 
 

Figure 3. Structure of intelligent water level monitoring system 

 

 
 

Figure 4. Flow of water level image analysis 

 

Further, the video collected by the camera is transmitted to 

the water level image analyzer for real-time processing. The 

dictionary learning algorithm is called to get the measurement 

results. After that, the water level data are transmitted to the 

server at a specific time through the IoT. The specific steps are 

as follows: 

Step 1. A measuring pole is fixed in the monitoring area, 

and the measuring pole and the area near the water surface are 

captured in real time by the camera. 

Step 2. Several images are set as training samples, and 

classified one by one. Then, a sliding window is adopted to 

collect training data for each image block, and the 

corresponding classes are labeled. 

Step 3. The training data are trained through dictionary 

learning, producing a dictionary. 

Step 4. The dictionary is used to classify the collected 

images in real time, and the label vector of each image block 

is obtained, so as to obtain the water level value. 

The actual recognition effect of the system is shown in 

Figure 5. 

 

 
 

Figure 5. Historical data of water level at an actual 

monitoring point
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5. CONCLUSIONS 

 

Image recognition-based water level monitoring provides a 

novel non-contact recognition method for water level. This 

paper explores the automatic monitoring of water level using 

images captured in complex environments, and discusses the 

image recognition technologies related to the water level 

monitoring system, including video frame extraction, image 

preprocessing, image enhancement under harsh conditions, 

image denoising, and image classification, to name but a few. 

On this basis, the authors examined the key algorithms of 

water level recognition, and applied the recognition algorithm 

based on dictionary learning to the water level monitoring 

system. To facilitate data acquisition and display, this paper 

develops a remote water level monitoring system, in which the 

IoT is adopted to acquire, process, recognize, and transmit 

water level images. The proposed automatic, remote system 

can obtain the water level with intelligent recognition 

techniques, and provide data support to the monitoring of 

water regime. 
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