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 Solar radiation components (SRC) forecasting with different tilt angles plays a key role 

for planning, managing, and controlling the solar energy system production. To overcome 

the gaps related to the intermittence and to the absence of SRC data, an accurate predictive 

model needs to be established. The main goal of the present work is to develop for solar 

system engineers and grid operators a precise predictive approach based on multi-target 

learning algorithm to forecast the hourly SRC measurements that is related to the city of 

Marrakesh (latitude 31°37′N, longitude 08°01′W, elevation 466m), Morocco, received by 

different inclined solar panels’ surfaces. For this purpose, eight training algorithms 

(Resilient back Propagation (Rp), One step secant (OSS), Levenberg-Marquardt (LM) 

Algorithm, Fletcher-Reeves algorithm (Cgf), Polak-Ribiere algorithm (Cgp), Powell-

Beale algorithm (Cgb), gradient descent (Gd) algorithm and scaled conjugate gradient 

algorithm (Scg)) are tested to optimize the developed approach’s parameters. The 

forecasting results were performed based on the angle of inclination desired by the 

operator and some accessible meteorological measurements that are recorded at each hour, 

comprising time variables. The achieved performance demonstrates the stability and the 

accuracy of the established approach to estimate the hourly SRC time series compared to 

several recent literature studies. 
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1. INTRODUCTION 

 

Solar energy is a source of abundant energy that depends on 

the sun. This energy is used to produce electricity from 

sunlight captured by solar panels. Solar energy is considered 

to be the most effective, economic, clean, and renewable 

energy resource. Planning, managing, and controlling of these 

systems depend on SRC measurements [1].  

During the last years, solar energy plays a vital role in 

making a rapid transition towards clean energy production, 

sustainable and intelligent energy supply [2]. Solar radiation 

components are the key parameters needed to monitor and 

design solar energy systems [3]. As the absence or the 

intermittence of SRC data affect directly the control and the 

management of solar energy systems, many predictive 

approaches were developed in order to overcome these gaps 

by performing accurate SRC predictions in the case of solar 

sensor or acquisition chain damage [4]. 

Some efforts have focused on solar radiation time series 

forecasting for areas where such measurements are not 

available. Jallal et al. developed a new machine learning based 

on the hybridization of deep neural networks with the multi-

model approach to predict accurately the hourly global solar 

radiation (GSR) time series for Marrakech, Morocco, using the 

most pertinent exogenous inputs measured during seven years 

(2008-2014) [5]. The same authors have developed an 

effective AI-data driven approach to forecast the global solar 

radiation measurements at each half-hour based only on 

endogenous inputs [6]. They have also developed an 

autoregressive moving average model based on Box- Jenkins 

approach to enhance the accuracy of daily global solar 

radiation prediction [7]. Sun et al. developed a new forecasting 

strategy for solar radiation (SR) time series based on ensemble 

mode decomposition and clustering algorithm [8]. Garcia-

Hinde et al. proposed a learning strategy for SR data regression 

based on input dimensionality reduction [9]. Bailek et al. 

predicted diffuse SR measurement over the Algerian Sahara 

using an empirical approach [10]. 

Hence, a precise SRC forecasting technique is needed to 

plan and control solar energy installations [3]. Among of the 

applied approaches, artificial intelligence techniques known a 

large application with promising results in the last two decades 

[11], such as the models based on artificial neural network 

(ANN) [12], and fuzzy logic methodology [13]. Based on 

latest pieces of literature, the nonlinear behavior of the SRC 

time series and the uncertainties associated to weather 

conditions the creation of an efficient predictive model 

become a huge challenging problem for engineers and grid 

operators [14]. Besides, most of the research studies are 

focused on the application of single output machine learning 

algorithms to predict just one component of solar radiation 

time series due to the complexity and divergence of these 

techniques in multi-target problems during the training 

process. 

The key contributions of this work are:  

• A dynamic approach named Elman ANN is 

applied to approximate the nonlinear behavior and 

the rapid fluctuations of SRC evolutions; 
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• Raw meteorological data are used as exogenous 

inputs to evaluate the efficiency of the developed 

model; 

• The performance of eight optimizers is 

investigated to select the best training algorithm 

for our proposal; 

• Solar radiation components (global, direct, and 

diffuse solar radiation) predictions at each tilt 

angle, which is fixed by the operator was 

successfully implemented. 

The remaining part of this article is organized as follows: 

The meteorological time series description and Elman 

artificial neural network are discussed in Section 2. The 

forecasting results of the multi-targets Elman ANN model are 

presented and discussed in Section 3. Finally, conclusions are 

given in Section 4. 

 

 

2. MATERIALS AND METHODS 
 

2.1 Meteorological time series description 
 

In the present work, the typical years given by Meteonorm 

software of the SRC measurements are computed based on the 

data recorded from 1991 to 2010; and the and air temperature 

(AT) time series measurements are measured from 2000 to 

2009. SRC and AT measurements are recorded in the hourly 

scale in the city of Marrakesh city, Morocco (Latitude [°] = 

31,650, Longitude [°] = -8,017, Altitude [m] = 437) at different 

angles of inclination (from 0° to 90° with a step of 5°). The 

typical year of different meteorological parameters are used to 

train and evaluate the proposed model. The set of the 

exogenous inputs that is used to build the proposed model was 

given in Table 1 with their abbreviations and units. The 

parameters are standardized according to Meteonorm software. 

 

Table 1. Input meteorological parameters 

 
Exogenous Input variables Abbreviation Unit 

Month 

Day of month 

Day of year 

Hour of day 

Air temperature 

Relative humidity 

Wind speed 

Wind direction 

Precipitation 

Effective sunshine duration 

Cloud cover 

Solar altitude 

Linke turbidity factor 

Extraterrestrial solar radiation 

m 

dm 

dy 

h 

Ta 

RH 

FF 

DD 

RR 

Sd 

N 

hs 

tl 

𝐺𝑒𝑥 

- 

- 

- 

- 

℃ 

% 

m/s 

° 

mm 

h/day 

okta 

° 

- 

W/m2 

 

Table 2 presents the solar radiation components with their 

abbreviations and units that are used as targets in the present 

paper. 

 

Table 2. Target solar radiation components 

 
Target variables Abbreviation Unit 

Global horizontal solar radiation 

Direct solar radiation 

Diffuse solar radiation 

Gh 

GBn 

Gd 

W/m2 

W/m2 

W/m2 

 

 

2.2 Elman artificial neural network (ENN) description 

 

In this paper, the nature-inspired ENN technique is applied 

for GSR time series forecasting. The ENN model is adopted 

for its robustness and its dynamic behavior to handle the 

chaotic patterns of a time series during the training process 

[15]. Figure 1 shows the design scheme of the ENN model. 

The model of ENN is usually involves 4 layers (input, hidden, 

feedback links, and output layers). The feedback links layer is 

applied to incorporate the past-generated values of the hidden 

layer’s output as inputs. This technique includes internal 

delayed feedback connections of order TDL that have a main 

role to handle the nonlinear patterns into meteorological time 

series [15].  

With, 

𝑛: Number of inputs 𝑥. 

𝑚: Number of outputs 𝑜. 

𝑙: Number of hidden neurons and feedback links are, 

𝑘: Current iteration. 

𝑤1: Weight vector that links the input layer to the hidden layer. 

𝑤2: Weight vector that connect the feedback links layer to the 

hidden layer. 

𝑤3: Weight vector that associate the hidden layer to the output 

layer. 

𝑥(𝑘): ENN input vector. 

𝑦ℎ(𝑘): Output vector of hidden layer, calculated by (1); 

𝑦𝑐(𝑘) : Output of the feedback links layer, determined 

according to (2); 

𝑜(𝑘): Output of ENN computed by using (3). 

 

𝑦ℎ(𝑘) = Ψ(𝑤2𝑦𝑐(𝑘) + 𝑤1𝑥(𝑘))  (1) 

 

Or 

 

𝑦𝑐(𝑘) = 𝑦ℎ(𝑘 − 1)  (2) 

 

where, 

Ψ: Hidden layer activation function,  

Υ : Output layer activation function that is often a linear 

function. 

Several activation functions can be adopted by the ENN 

model, such as: radial activation function (radbas), logistic 

sigmoid function (logsig), and hyperbolic function (tansig) 

[16]. 

The Output of the ENN model is calculated as follows: 

 

𝑜(𝑘) = Υ(𝑤3𝑦ℎ(𝑘))  (3) 

 

ENN adjust its parameters (weights and biases) based on 

network error minimization represented by (4), using an 

efficient training optimizer.  

 

𝐸 = ∑(𝑑𝑖 − 𝑜𝑖)2

𝑛

𝑖=1

 (4) 

 

where, 𝑑𝑖 is the output target. 

In the present work, eight training optimizers (Resilient 

back Propagation (Rp), One step secant (OSS), Levenberg-

Marquardt (LM) Algorithm, Fletcher-Reeves algorithm (Cgf), 

Polak-Ribiere algorithm (Cgp), Powell-Beale algorithm (Cgb), 

gradient descent (Gd) algorithm and scaled conjugate gradient 

algorithm (Scg)) are applied to estimate the ENN model 

parameters [6, 17, 18], with the mean square error (MSE) that 
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is used as a loss function. More details about the training 

process of artificial neural networks are presented in Ref. [6]. 

 

 
Figure 1. Elman neural network design scheme 

 

 

3. FORECASTING RESULTS AND DISCUSSIONS 

 
3.1 Implementation and analysis of the proposed model 
 

In the present study, a multi-targets learning algorithm is 

proposed to forecast the three components of solar radiations 

(global, direct, and diffuse) received at any tilt angle desired 

by the operator. The forecasting results are based on some raw 

meteorological measurements, including time features as 

exogenous inputs. These later present their correlation to be 

applied to forecast the three solar components in different 

pieces of literature [5]. Subsequently, solar energy systems 

engineers and grid operators can apply this forecasting 

approach to perform accurate predictions of the SRC received 

by a solar energy system’s surface at each tilt angle.  

Figure 2 depicts the architecture of the proposed approach. 

In this study, the performance of training the proposed model 

using eight optimizers was investigated in order to minimize 

the difference between the forecasted and the desired targets.  

All training algorithms are applied to train the proposed 

model by using a training dataset of input and output variables, 

which are associated to the angles of inclinations (0°; 10°; 20°; 

30°; 40°; and 50°). The rest of measurements, which are 

associated to the angles of inclinations (5°; 15°; 25°; 35°; 45°; 

55°; 60°; 65°; 70°; 75°; 80°; 85°; and 90°) are used to evaluate 

the accuracy and the robustness of our proposal.  

A trial and error approach is used to determine the ENN 

model’s hyper-parameters, where there is no deterministic 

technique to determine them efficiently [16]. For that raison, 

we have varied the number of hidden layers, number of 

neurons in the hidden layers and the activation function in 

order to determine the optimal structure that minimize the 

mean square error (MSE) metric. More details are presented in 

[19].  

In Figure 3, the MSE results of the developed model were 

depicted as a function of hidden layers number. From the 

attained performance, the single hidden layer is the most suited 

for the developed predictive model, and the increase of hidden 

layers number reduce the accuracy of prediction and increase 

the burden of the computational process.  

In Figure 4, the variation of the neurons number in the 

hidden layer is presented. From the obtained results, the 

hidden layer with 11 neurons was the best configuration. 

By varying the type of activation functions in the hidden 

layer, the radial basis activation function shows the best 

performance compared to the other activation function in 

terms of the MSE indicator. 

 

 
 

Figure 2. Basic structure of the developed model 
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Figure 3. Hidden layers number variation as a function of the 

MSE metric for global, direct, and diffuse solar radiation 

time series 

Figure 4. Neurons number variation as a function of the 

MSE metric for global, direct, and diffuse solar radiation 

time series 

The ENN model performance was evaluated using the MSE 

and the correlation coefficient (R) metrics [19], which are 

computed by Eq. (5) and (6). 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑑𝑖 − 𝑝𝑖)2𝑁

𝑖=1 (5) 

𝑅 =

 √
∑ (𝑝𝑖 − 𝑑𝑚𝑖)2𝑁

𝑖=1
∑ (𝑑𝑖 − 𝑑𝑚𝑖)2𝑁

𝑖=1
⁄

(6) 

𝑝𝑖: The predicted output;

𝑑𝑖: The desired output;

𝑑𝑚𝑖: The average value of 𝑑𝑖;

N: The number of samples. 

Subsequently, the influence of the Elman ANN’s feedback 

links order (TDL) on the forecasting accuracy is investigated 

by changing its value between 1 and 48. The achieved results 

in Figure 5, demonstrate that the feedback links’ order 7 is the 

best value for the current implementation, and its increase 

distresses the accuracy of the developed model. A small 

feedback links’ order that ensures a good precision is preferred, 

when this order increases, the computation complexity of ENN 

increases too. 

After the determination of the predictive model’s 

configuration, eight backpropagation optimizers are adopted 

to tune the parameters of the developed model in order to 

select the best training optimizer for our proposal. 

In Table 3, the performance of each training optimizer 

during the testing phase are presented for each solar radiation 

components (GBn, Gh, and Gd). 

From the R results given by Table 3, the LM optimizer is 

the most performant one to optimize the developed model 

parameters. The other training optimizers recorded large 

differences between the forecasted and the measured SRC 

time series and less accuracy in terms of the R metric 

compared to LM optimizer. The attained results allow the 

application of the LM optimizer to adjust the parameters of the 

developed model. 

In Figure 6, the optimal obtained ENN’s configuration is 

depicted. 

Figure 5. TDL variation as a function of the MSE metric of predicted global, direct, and diffuse solar radiation time series 
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Table 3. Performance of the training optimizers for 

forecasting each solar radiation components in terms of the 

correlation coefficient (R) 
 

Training optimizer Solar radiation component R(%) 

Cgp 

 

 

 

Cgb 

 

 

 

Cgf 

 

 

Oss 

 

 

 

Gd 

 

 

 

Rp 

 

 

 

LM 

GBn 

Gh 

Gd 

 

GBn 

Gh 

Gd 

 

GBn 

Gh 

Gd 

GBn 

Gh 

Gd 

 

GBn 

Gh 

Gd 

 

GBn 

Gh 

Gd 

 

GBn 

Gh 

Gd 

97.86 

97.70 

78.49 

 

99 

99.13 

94.16 

 

98.81 

98.54 

90.83 

97.91 

97.59 

73.85 

 

1.66 

50.04 

26.72 

 

98.80 

99.21 

96.44 

 

99.8 

99.9 

99.8 

 

 
 

Figure 6. Optimal ENN’s structure 

 
3.2 Results and discussion 

 

After determining the optimal Elman ANN model’s 

configuration. The efficiency in terms of the stability and the 

accuracy of the developed model need to be evaluated on a 

new dataset that is not used during the training phase. For this 

raison, the developed model was applied on other data that are 

reserved for the testing phase. Figures 7, 8 and 9 depict the 

scattering graphs of the desired targets (direct, diffuse, and 

global solar radiation) and their forecasting data with the 

associated correlation coefficient (R). These assessments 

provide precise statistics about the correlation existing 

between the desired and the forecasted time series.  

The achieved results demonstrate a high correlation 

between the predicted and the measured SRC, which prove the 

efficiency of the proposed approach to forecast the three 

components of solar radiation, global, direct, and diffuse solar 

radiation for any tilt angle desired by the operator in one time 

by using only one model without using a set of three models. 

Besides, the developed model proves a high accuracy to 

handle the nonlinear and stochastic comportment of the 

meteorological time series that are used in this work. 

In Table 4, the developed model achieved a high accuracy 

compared to different forecasting techniques developed in 

several literature contributions in terms of the correlation 

coefficient (R). 

 

 
 

Figure 7. Scattering diagram of direct solar radiation based 

on the testing phase 
 

 
 

Figure 8. Scattering diagram of diffuse solar radiation based 

on the testing phase 
 

 
 

Figure 9. Scattering diagram of global solar radiation based 

on the testing phase 
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Table 4. Comparison of the proposed approach with well-

established forecasting techniques on solar radiation 

components forecasting 
 

References locations Parameters 
Applied 

methods 
R (%) 

[20] (2019) 

 

[21] (2019) 

 

 

[22] (2019) 

 

 

 

[23] (2019) 

 

[13] (2019) 

 

[24] (2020) 

 

[24] (2020) 

 

[25] (2020) 

 

Present 

study (2020) 

Present 

study (2020) 

Present 

study (2020) 

Beijing, 

China  

90 

stations, 

China 

Hong 

Kong, 

China 

 

Henan, 

China 

Antakya, 

Turkey 

Wien, 

Austria 

Valentia, 

Ireland 

Muğla, 

Turkey 

Marrakesh

, Morocco 

Marrakesh

, Morocco 

Marrakesh

, Morocco 

GSR 

 

GSR 

 

 

GSR 

 

 

 

Diffuse 

 

Diffuse 

 

Direct 

 

Diffuse 

 

Diffuse 

 

Direct 

 

Diffuse 

 

GSR 

Empirical 

model 

ResnetTL 

 

 

MARS 

 

 

 

BRL-1 

 

DENFIS 

 

Fourier 

expansions 

Fourier 

expansions 

HELIOSAT 

 

Proposed 

approach 

Proposed 

approach 

Proposed 

approach 

93 

 

88 

 

 

91.3 

 

 

 

82 

 

97.9 

 

85.71 

 

96.5 

 

97.6 

 

99.8 

 

99.8 

 

99.9 

 

 

4. CONCLUSIONS 

 

The angle of inclination is an important factor that penalize 

hardly the energy production of a solar energy system. 

Therefore, this later need to be adjusted regularly and 

efficiently to produce the maximum of electricity. In the 

present paper, a multi-targets learning algorithm is proposed 

to forecast the three components of solar radiations, global, 

direct, and diffuse, relative to the city of Marrakesh, Morocco, 

received by any tilted solar panel’s surface desired by the 

operator. The forecasting results are based on a set of 

meteorological parameters and time variables. This kind of 

forecasting gives a precise information to solar engineers and 

grid operators about the variation of these solar radiation 

components by siting the desired angle of inclination. 

Subsequently, they might predict accurately their targets. The 

prediction accuracy attained by the developed model 

demonstrate its efficiency and its robustness to be used by 

solar energy engineers and electrical grid operators in case of 

solar sensor or acquisition chain damage. 
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