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 This research paper deals with the problem of Metal-Oxide Surge Arrester (MOSA) 

condition monitoring and a new methodology in surge arrester monitoring and diagnostics 

is presented. A machine learning algorithm (back propagation regression) is used to 

estimate the non-linearity coefficient of the surge arrester, based on operating voltage and 

leakage current of the arrester. Using a simulated system, this research investigates the 

possibility of application and efficiency of machine learning. It is shown that the applied 

learning algorithm results are competitive with the model results parameters calculated as 

R2 = 0.999 and mean absolute real error computed as 0.005 which has shown that the 

proposed model can be used for MOSA monitoring and diagnostic purposes. 
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1. INTRODUCTION 

 

Metal-oxide surge arresters (MOSAs) play an important 

role in power system protection. Malfunction of MOSAs can 

cause dangerous overvoltage which can damage electrical 

power equipment and endanger human life. Therefore, 

periodical monitoring of MOSAs has to be conducted in order 

to diagnose their condition. There are many contributions 

related to monitoring indicators and diagnostic procedures. 

Some of them are based on on-line monitoring while the others 

investigate off-line monitoring procedures. Newly developed 

MOSA monitoring methods are based on artificial intelligence 

[1-6]. Most researches propose the measurement of leakage 

current in order to extract MOSA’s condition indicators [7-

14]. These indicators are mostly 1st or 3rd order harmonic of 

resistive current component, and 3rd order harmonic of total 

current. The reason for current leakage distortion results in the 

mentioned harmonic components. Therefore, even with pure 

sine wave operating voltage, the current leakage is distorted. 

It has been shown that the level of non-linearity, consequently 

the level of leakage current distortion, depends on the 

condition of MOSA. The more degraded the arrester is, the 

higher the current and all of the mentioned indicators are. This 

happens due to reduced non-linearity of the arrester with 

degradation. 

Nevertheless, leakage current is not only dependent on 

MOSA condition but also on operating voltage, voltage 

harmonics and ambient conditions. This is why the reliability 

of the current based indicators has been questioned. Instead, 

non-linearity coefficient of MOSA is a physical parameter that 

does not depend on voltage harmonics, operating voltage level 

or ambient conditions, except temperature. This statement has 

been fully elaborated in [15]. Namely, non-linearity 

coefficient should be observed as resistance. The resistance of 

an element does not change at different applied voltages. The 

resistance only changes due to temperature change if it is 

heated by current flowing through the resistor or an external 

heat source. This implies that non-linearity coefficient, if 

estimated, represents one of the best indicators of MOSA. The 

previous conclusion is based on the fact that condition 

indicators should only be sensitive to condition of an element, 

clearly showing whether the element is new or degraded. If an 

indicator is sensitive to other parameters, let's say voltage 

harmonics, it can falsely indicate that a new element is old if 

it is operated in the condition with high voltage harmonics. 

More details and analysis about reliability of MOSA indicators 

are given in [15]. 

Currently, methods that estimate non-linearity coefficient of 

MOSA are based on the assumption that MOSA equivalent 

circuit is known. Moreover, these methods use simplified 

MOSA circuits that have some discrepancies when compared 

to real surge arrester. This causes errors in the obtained results 

of non-linearity coefficient. The authors propose the 

elimination of equivalent circuit from the estimation 

methodology by using machine learning system that can be 

trained on real measurement data. Therefore, instead of using 

simplified MOSA model, MOSA machine learning system is 

used to represent MOSA behavior.      

The proposed machine learning system estimates non-

linearity coefficient of MOSA using operating voltage and 

leakage current as input values. As voltage and current are 

measured as time domain signals, Fourier transform is used to 

make them appropriate input parameters. The simulation is 

performed to prepare training, validation and test data for the 

system. 

A different approach of using machine learning algorithm 

in the enhancing voltage stability of multi-machine power 

system have been shown in [16] which was used for alteration 

of the parameters of the static var compensator controller. The 

authors in [17] used the back propagation neural network 

algorithm for time sequence prediction. They showed that the 

caution threshold can be used to alarm about abnormalities and 
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estimate the abnormal probability. Fuzzy expert system is also 

applied in MOSA monitoring procedure [18]. 

As a learning algorithm, back-propagation is used to train 

the neural network. The upsides of the back propagation neural 

network strategy over conventional classifiers are its 

nonparametric nature, simple variation to innumerable 

varieties of data and information structures.  

The paper is systematized as follows: Introduction and 

background deliver an insight of the problem. Methodology 

section explains the MOSA simulation and presents machine 

learning system. The full procedure details used in this study 

to obtain non-linearity coefficient is given also in 

methodology section. The upshots of research strays using the 

presented research mock-ups and their discussion are 

presented in the result section. Finally, the last section delivers 

concluding contemplations with specific standards and 

instructions for further research. 

 

 

2. BACKGROUND 

 
The neural network architectures depend on back-spread to 

diminish or reduce the miscalculations. The planning design 

of data is done by framing portrayal in the hidden layers. This 

ability of back-propagation, as it is shown in [15], is suitable 

for the problems where no direct known relationship is found. 

The adaptability and learning abilities of back propagation has 

been effectively carried out in wide scope of uses. 

Moreover, the important updates are given by learning rate 

and momentum used to speed-up the system convergence. 

Back-propagation with Fixed Momentum (BPFM) is typical 

methods that is applied to haste up convergence and preserve 

optimal performance. The short come of the BPFM is that 

update of the weights is in the upward direction instead of 

downward. Therefore, the momentum should be varied rather 

than keeping it fixed as shown in [16, 17]. The energy 

coefficient updates consider all the weights in the Multi-layer 

Perceptron (MLP) to assure its main advantage.  The neural 

net with the Gradient Descent Back Propagation Algorithm 

(GDAM) has been used for all grouping issues unlike the past 

methods [19-21]. Back-spread calculations using the force, 

speed and angle updates are shown to have an impact on the 

learning rate. Utilizing the optimum initialization technique 

guarantees that the yield neurons are in the dynamic district 

and that the scope of enactment work is completely used [22-

24]. The ideal introduction technique has been executed on 

worthless equality issues, four-bit equality checkers, and 

encoder issues as demonstrated in ref. [25, 26]. 

The additional important updates are a technique that uses 

Variation Auto-Encoder (VAE) demonstrated in ref. [27, 28]. 

The given network is inferential network that tries to 

regularize the back dispersion of the inactive elements. It has 

been shown that VAE doesn't perform the express clarify away 

induction. The other commonly used strategy is the Generative 

Adversarial Networks (GAN) [29, 30]. The helping network is 

a discriminator network that assumes an ill-disposed part 

against the generator organization. The GAN tries not to 

deduce the dormant factors. Experiments conducted [31] 

showed that the rotating back-spread calculation is more 

straightforward and more fundamental, without turning to an 

additional organization. It outlines the strength of rotating 

back-propagation by gaining from inadequate and backhanded 

information. In the interim, substituting back-spread is 

correlative to VAE and GAN preparing. It might utilize VAE 

to introduce the inferential back-engendering, and 

subsequently, may improve the induction in VAE. 

Furthermore, it may help derive the inert variables of the 

noticed models for GAN, subsequently giving a technique to 

test if it can clarify the whole preparing set as shown in [31, 

32]. 

 

 

3. METHODOLOGY 

 
3.1 MOSA simulation 

 

In order to design the machine learning system, computer 

simulations of MOSA are conducted. In these simulations, the 

widely accepted simplified arrester equivalent circuit is used 

(Figure 1). 

 

 
Figure 1. MOSA equivalent circuit 

 

In Figure 1, total leakage current (IT) comprises of two 

components: capacitive current (Ic) and resistive current (IR). 

Capacitance of the arrester is linear while the resistance is non-

linear. The leakage current can be calculated according to: 

 

𝐼𝑇 = 𝐶 ∙
𝑑𝑉

𝑑𝑡
+ 𝐼𝑟𝑒𝑓 ∙ 𝐾 ∙ (

𝑉

𝑉𝑟𝑒𝑓
)

𝛼

, (1) 

 

where, C is capacitance, V is the operating voltage, Iref  and Vref 

are reference values of current and voltage, while K is constant. 

Capacitance, as proven before, doesn’t change due to MOSA 

condition. Therefore, it has been kept constant in the 

simulations. The only parameter that changes due to 

degradation is the non-linearity coefficient α. This parameter 

has been varied in the simulations between the values of 2 and 

7 randomly. Additionally, operating voltage usually contains 

harmonics. These harmonics also affect the leakage current. 

Therefore, the simulations include randomly changing voltage 

harmonics up to the 11th order. All harmonics change the 

value of the voltage in the range of 0 to 5%. In addition, each 

harmonic phase can take any value between 0° and 90°.  

Combining all components, the simulation algorithm is as 

follows: 

1. Enter capacitance value 

2. Randomly select the non-linear coefficient in the 

range 2 to 7. 

3. Randomly select operating voltage harmonics (3rd, 

5th, 7th, 9th and 11th) in the range 0 to 5%. 

4. Randomly select the 1st order of voltage in the range 

90 to 110% of rated value. 

5. Calculate leakage current according to Eq. (1). 

6. Use Fourier transform on leakage current to obtain 

first 25 harmonics. 
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After initializing the simulation, leakage current and 

operating voltage harmonics are used as input parameters to 

the machine learning system. Non-linearity coefficient is used 

as the output value. After training, the system is able to 

estimate the non-linearity coefficient for any input values of 

voltage and current. This system can be used for real MOSA 

with measured values of voltage and current as its inputs to 

estimate the real value of non-linearity coefficient. 

 

3.2 Machine learning system 

 

The Broyden-Fletcher-Goldfarh-Shanno (BFGS) algorithm 

decides the plunge heading by preconditioning the angle with 

arch data. It performs by progressively improving estimation 

to the Hessian matrix of the misfortune work, gotten uniquely 

from gradient evaluations [33-35]. 

BFGS enhancement calculation is typically utilized for 

nonlinear calculations. By introducing least squares, 

multilayer perceptron (MLP) achieves faster training and 

better accuracy. The methodology line introduced in the paper 

comprise of three main stages:  

(1) Data set normalization with standard scalar and robust 

scalar; 

(2) Introducing “logistic” span of the activation function;  

(3) Calculating the gradient descent of individual errors 

with respect to the weights and gains values. The MLP learns 

iteratively the halfway subordinates of the misfortune works 

on the improvements of the model accuracy. 

The new methodology improved the preparation 

proficiency of back engendering calculation by adaptively 

changing the underlying inquiry bearing, demonstrated by 

BFGS given by scikit-learn libraries [36].  

Feature scaling of a dataset is a typical prerequisite for AI 

assessors. Normally, this is completed by eliminating the mean 

and scaling to unit variance. Notwithstanding, anomalies can 

frequently impact the mean/fluctuation in a negative manner. 

In such cases, the median and the local range regularly give 

better outcomes [37]. As mentioned, the first step is to scale 

input parameters or to find the best fit for controlling the size 

of a vector in an iterative cycle, a boundary vector during 

preparation for example, to evade mathematical hazards 

because of quantity variation. One of the key points to create 

a successful model is to optimize input parameter variation, 

the mentioned harmonics, voltages (V) and currents (I) inputs. 

RobustScaler and StandardScaler preprocessing functions 

within scikit-learn libraries are used so that an understanding 

and effects of the fluctuation can be observed. The functions 

mentioned above eliminate the variance in the dataset per the 

quintile range by focusing and scaling individually on each 

feature by computing the relevant statistics on the samples in 

the training set input parameters. 

The goal of MLP regressor training can be expressed as 

optimization of a cost function and can be formulated as 

 

𝐸𝑇𝑟𝑢𝑒 = ∫ 𝑒(𝑓(𝑥, 𝑤), 𝑑)𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦,
𝐸,𝑦

 (2) 

 

where, “e” denotes a local cost function, “f” is the BFGS 

function implemented by the MLP, “x” are model inputs 

(19981 points for each set), “y” is the anticipated output, “w” 

denotes the weights in the system, and p symbolizes the 

probability dispersal. The impartial of training is to adjust the 

parameters “w” such that ETrue is diminished where ETrue, 

denotes the generalization error. Methods used to prevent 

overfitting in MLP are: model choice, early ending, weight 

deterioration, and pruning [38-40]. 

In order to confirm model results or predictions, different 

error parameters are calculated with the main focus on the 

mean absolute error (MAE), root mean squared error (RMSE) 

and R-squared. 

 

𝑀𝐸𝐴 =
1

𝑚
∑|𝑦𝑘 − ¥𝑘|

𝑚

𝑘=1

, (3) 

 

where, ¥𝑘  represents predicted values for interval k and y𝑘 

represents the real output. Similarly, the RMSE formula is 

given as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑦𝑘 − ¥𝑘)

2

𝑚

𝑘=1

. (4) 

 

Both MAE and RMSE characterize normal model 

expectation mistake with the units of the variable of interest 

where the two measurements can go from 0 to ∞ and are 

apathetic regarding the course of blunders. They are called 

contrarily arranged scores which mean that lower esteems 

address a superior model. 

 

 

4. RESULTS AND DISCUSSION 

 

The final dataset used for training is created from the 32 

harmonics with total of 20000 sample inputs where 70% is 

used for training and 30% for testing. The results in Figures 2 

and 3 and Tables 1-3 show very good accuracy for the model. 

 
 

Figure 2. StandardScaler MLP predictions on test data. 

Green color diamonds represent the real alpha reading (no 

unit) and the red stars represent predicted value 

 

All the MLP prediction is performed using random datasets, 

with the same training to testing ratio. The MLP model trains 

using the back-propagation algorithm based on the least square 

error as the loss function which optimizes the squared-loss 

using limited-memory-BFGS. The MLP model errors and 

accuracy parameters are given in Table 1. 

In Table 1, the error outputs are shown for both 

methodologies within the MLP model. The difference in 

accuracy is negligible. This indicates there aren’t many 

outlying points in the dataset used within our testing inputs. 

Overall, the error parameters indicate that the MLP model 

205



 

precision is very high with 𝑅2 = 0.999  and mean absolute 

real error computed as 0.005 for both scalers. This has shown 

that the proposed model can be used for MOSA monitoring 

and diagnostic purposes.  

 
 

Figure 3. RobustScaler MLP predictions on test data 

 

Table 1. MLP parameters and errors 

 

Scaling techniques 
Standard 

Scaler 

Robust 

Scaler 

Absolute relative error of the 

mean 
0.005 0.005 

median_abs_error 0.013 0.014 

rmse 0.032 0.036 

rmsle 0.005 0.006 

rmspe 0.006 0.007 

rmsse 0.021 0.024 

rrse 0.024 0.027 

r2_mod 0.999 0.999 

nse_bound 0.999 0.999 

nse_mod 0.982 0.981 

nse_rel 1 0.999 

 

To be more vibrant, a tabular form of the data with new 

output parameters and the MLP predictions are shown in Table 

2 with corresponding error. The “Real” 𝛼  parameter is 

MATLAB simulation result of the dataset whereas the 

“Predicted” values are the output of MLP model presented 

here.% Error is the percent discrepancy between the Real and 

Predicted values. 

 

Table 2. MLP results on new a new input data 

 
MATLAB Standard Scaler Robust Scaler 

Real Predicted % Error Predicted % Error 

5.736 5.72055 0.269391 5.70604 0.522392 

5.2938 5.29456 0.0143454 5.3097 0.300301 

4.5853 4.56463 0.450874 4.56253 0.496687 

2.8952 2.89138 0.131932 2.90747 0.423732 

3.0171 3.02252 0.179704 3.01138 0.189468 

4.1989 4.17175 0.64651 4.18125 0.420329 

2.5196 2.52097 0.0542386 2.52792 0.330396 

4.6163 4.62211 0.125937 4.56811 1.04381 

3.7707 3.76115 0.253349 3.74029 0.806423 

5.6426 5.61984 0.403319 5.62949 0.232389 

4.053 4.07315 0.497093 4.0669 0.343048 

3.957 3.95151 0.138698 3.95581 0.02996 

5.8245 5.84609 0.370758 5.83534 0.186136 

 

The results given in Table 2 have shown the model 

prediction on the unknown input, which is the key point that 

describe the model accuracy. In combination with Table 1, the 

overall model results are very precise. Error parameters 

presented in Table 1 are based on the testing stage with 5995 

inputs, which is 30% of the total amount of the data. For all 

outputs, the error values (Table 1) are very small while the 

output values (Table 2) are very close to the expected value 

obtained from MATLAB.  

Besides the non-linearity coefficient, other indicators are 

also used for MOSA monitoring and diagnostics. These 

indicators are: the first order of resistive current component 

(Ir1), the third order of resistive current component (Ir3), the 

maximum value of resistive current (Irm), active power losses 

(P). Different methods are used to estimate these parameters. 

These methods are: harmonic analysis (HARM), direct 

method (DIR), active power method (P), iterative method 

(ITER), and point on wave method (POW), variable 

coefficient compensation method (VCC), compensation 

method (COM), and genetic algorithm method (GA). 

So far, only GA method estimates the value of non-linearity 

coefficient [4]. This method has been analyzed in three 

different cases: (1) changing the nonlinearity coefficient; (2) 

changing fundamental voltage harmonic between 0.9 and 1.1 

of rated value and (3) adding higher order voltage harmonics. 

The estimation errors in all of these cases have proven that GA 

performs extremely well. The GA outcomes are displayed in 

Table 3. Table 3 can be used to relate the results with the newly 

suggested method which has shown that MLP can achieve 

better accuracy than GA and that it represents a potential 

method for future MOSA monitoring and diagnostics 

algorithms. MLP has been tested for all three cases at the same 

time, so the error is presented as a unique range for all three 

cases, taken from Table 2.  

 

Table 3. Indicator estimation relative errors 

 

Methods Errors 

Changing 

non-linearity 

coefficient 

Changing 

voltage 

RMS 

Changing 

voltage 

harmonics 

GA 
δα 

[%] 
0.56 0.42 0.75 

MLP 
δα 

[%] 
0.014 – 1.044(average from Table 2 0.40) 

 

Taking into consideration that GA is based on MOSA 

equivalent circuit equations it can be concluded that GA 

algorithm is more prone to errors due to simplifications behind 

the equivalent circuit.  

 

 

5. CONCLUSION 

 

The paper shows that machine learning can be used for 

MOSA monitoring and diagnostics. The created MLP model 

is used to estimate MOSA non-linearity coefficient based on 

leakage current and voltage input parameters. The input-

output parameters are generated by MATLAB script where 

harmonics of the operational voltage and leakage current are 

used as input and non-linearity coefficient α as the output 

parameter. After input scaling, a MLP back propagation model 

is used to train, so that the corresponding weights can be 

obtained. The prediction results are evaluated by calculating 

different error values which demonstrated that the MLP can be 

used as a trustworthy tool for non-linearity prediction. 

Considering that non-linearity is a great indicator of MOSA 

condition, the proposed methodology can be used for MOSA 
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diagnostics. Additional testing is performed by preserving 

some of the input output data which was used for error 

calculations. The obtained results meet satisfaction with all 

calculated errors less than 1%. Additionally, comparing the 

achieved results to other methods, like GA, showed that the 

proposed machine learning method is effective and provides 

better results in various scenarios. Therefore, the suggested 

machine learning algorithm is competitive in estimation of 

non-linear coefficient, particularly taking into consideration 

that the algorithm improves itself over time.    
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