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 The present work analyzes both numerically and analytically mixed convection heat 
transfer in shallow rectangular enclosure files confining ferrofluid, and exposed to 
temperature conditions of Neuman type with uniform heat flux applied to the short vertical 
sides, while the top wall is moving with a uniform velocity in the same direction as the 
applied heat flux. The finite volume method and the SIMPLER algorithm were used to 
numerically solve the governing equations, while the analytical solution is based on the 
parallel flow approximation. Simulations are conducted a wide range of controlling 
parameters, namely, the Reynolds, Hartmann and Richardson numbers and the solid 
volume fraction of ferroparticles. Effects of mentioned parameters, on the flow structure, 
temperature fields, and heat transfer rate, were studied and discussed. 
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1. INTRODUCTION 
 

Ferrofluids are colloidal liquids of nanometric particles of 
ferromagnetic stably suspended in carrier liquid. By stability 
we refer to the fact that the suspension remains permanently 
homogenous, meaning that the particles remain unseparated 
from the carrier liquid and do not settle at the bottom of the 
container (do not sediment), nor creates mutual aggregations. 
To avoid the said aggregations, a stabilizer is used to cover the 
particles. Each magnetic particle is commonly assimilated to a 
sphere which is a magnetic dipole. The dipole can be oriented 
according to the presence of an external magnetic field. In the 
absence of the magnetic field, the ferrofluids have properties 
similar to nanofluids. When a field is applied, the behavior of 
the ferrofluid is changed. Ferrofluid is a liquid that becomes 
strongly magnetized when a magnetic field is applied. Owing 
to strong interaction between base fluid and magnetic 
nanoparticles, the ferrofluid shows surprising thermophysical 
properties when affected by a magnetic field. Thus, the liquid 
gains a magnetic behavior from the nanoparticles allowing to 
the assembly of liquid and nanoparticles to acquire the 
magnetic behavior. 

Given its wide and central technological applications, 
chemist and physicists spared no effort throughout the last 
century to produce stable magnetic fluids. Many of those 
applications are built on the following properties of magnetic 
fluids: at suitable frequencies, they absorb electromagnetic 
energy and heat up, go where the strongest magnetic field is, 
and finally, when subjected to a magnetic field the physical 
properties may change. Thanks to the mentioned properties, 
materials and engineering research, technological applications, 
biology and medical research are all fields that make use of 
magnetic fluids. The process begins with Chemists who 
synthesize ferrofluids, while the physicists study and explain 
the physical properties, then their applicability is investigated 

and how suitable they are to be applied in practice. 
The few studies (rheological, thermal, magnetic ...) carried 

out on ferrofluids, present them a priori as fluids eligible for 
the intensification of heat exchanges. However, the 
discrepancies between these studies do not allow a conclusion 
to be drawn on the real potential of these fluids, in particular 
for application in cooling systems. 

The thermal characterization of ferrofluids under magnetic 
field for cooling applications necessarily involves the 
determination of the coefficient of convection denoted h. We 
have therefore investigated the literature on this aspect. Most 
studies show local improvements in the convection coefficient, 
indicating an intensification of heat exchange. These 
improvements are essentially achieved with laminar flows. 
Moreover, we also notice that the nature of the magnetic field 
applied affects the coefficient h. Several field configurations 
are identified. However, a few studies have been carried out to 
explain the origin of the improvement of h, compared with the 
case without field. Even so, this point remains at the 
hypothetical stage. 

As in the case of a nanofluid, the thermal conductivity of a 
ferrofluid depends on several parameters, namely: 
ferroparticles volume fraction, their size, the nature of the base 
fluid, and the intensity of the magnetic field. Recent studies 
have shown a significant improvement in the thermal 
conductivity coefficient of ferrofluids when subjected to 
magnetic field. The results of the work of Philip et al. [1] 
represent the thermal conductivity ratio of the ferrofluid and 
that of the base fluid. By increasing the intensity of the 
magnetic field, the thermal conductivity increases. The same 
reasoning applies to the volume fraction. The improvement 
thus obtained reaches 130% with respect to the base fluid. 
Gavili et al. [2] measured the conductivity of a ferrofluid with 
a water-based carrier fluid containing 5% Fe3O4 ferroparticles. 
Their results show a 200% increase in the thermal conductivity 
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coefficient. Studies on the convective coefficient of exchange 
of ferrofluids are promising. Lajvardi et al. [3] experimentally 
studied the convective coefficient of exchange for a ferrofluid 
at different concentrations. They conclude that, due to the 
increase in concentration and the magnetic field, the 
ferrofluid’s thermal capacity along with its thermal 
conductivity are increased and as a result, the heat exchanges 
are better (improvements up to 30% compared with the 
ferrofluid without field).  

Most studies inspecting heat transfer of ferrofluids have 
considered the phenomena of natural convection, while mainly 
focusing on the numerical work [4]. Rudraiah et al [5] 
numerically examined natural convection with applied 
magnetic field parallel to gravity of electrically conducting 
fluid. The study inspects how the strength of the magnetic field 
affects the flow structure inside a cavity. Jafari et al. [6] 
numerically studied heat transfer of a kerosene based 
ferrofluid in two cylinders with different geometries. They 
found that the heat transfer depends on both the magnetic field 
strength and direction. On the other hand, increasing the 
magnetic particles’ diameter decreases heat transfer. Khanafer 
et al. [7] investigated heat transfer enhancement numerically 
in a two-dimensional cavity. The results showed that 
increasing the nanoparticles volume fraction increases the heat 
transfer rate, and that their presence in the fluid change the 
fluid flow structure. Yamaguchi et al. [8] studied natural 
convection of a magnetic fluid inside three-dimensional cavity 
both experimentally and numerically. The results showed that 
applying a magnetic field enhances heat transfer, while 
increasing the field strength increases heat transfer further. 
Meherz and El Cafsi [9] used the finite volume method to 
numerically examine natural heat exchange of ferrofluids in 
the presence of a magnetic field. They showed that both 
inserting ferromagnetic nanoparticles and applying a magnetic 
field leads to 86% increases in heat exchange, while adding 
ferro-particles alone leads only to 20% increase. 
Sheikholeslami and Vajravelu [10] studied the influence of a 
variable magnetic field on flow and heat transfer of a nanofluid. 
They found that increasing Lorentz force increases heat 
transfer rate while buoyancy force produces the opposite effect. 
Szabo and Früh [11] investigated the transition from natural 
convection to thermomagnetic convection numerical of a 
magnetic fluid subjected to a non-uniform magnetic field. 
Yamaguchi et al. [12] analyzed flow and heat transfer 
characteristics of magnetic fluid natural convection inside a 
two-dimensional cavity. They found that the vertical magnetic 
field has a destabilizing effect on the flow transition as the 
critical Rayleigh number decreased when the field is applied. 
Cheng and Li [13] studied the heat transfer characteristics of 
diester-based ferrofluid natural convection in a horizontal 
channel under a permanent magnetic fluid. On the other hand, 
Bian et al. [14] considered an inclined rectangular porous 
enclosure saturated with an electrically conducting fluid to 
examine the outcome on buoyancy-driven convection when 
subjected to a transverse magnetic field. There are many other 
studies that explores the results of applied magnetic field on 
natural convection heat transfer for cavities filled with 
ferrofluids, that we cite here to refer to for more details [15-
20]. 

Mixed convection on the other hand, attracted less interest 
compared to natural one, even that it is present in a widely 
range of applications such as heat transfer in solar ponds, 
cooling technics, glass production, food processing, and many 
others. Mixed convection is due to both buoyancy force that 

results from thermal gradient and shear force caused by the 
moving walls. Studies [21-23] considered different 
combinations of cavities and imposed temperature gradients. 
Abu-Nada and Chamkha [24] conducted a numerical study of 
the characteristics of heat transfer in an inclined square 
encloser with moving top wall, they found that those 
characteristics improved due to the presence of nanoparticles. 
Mahmoudi [25] investigated heat transfer in a rectangular 
enclosure occupied with nanofluid while the bottom wall is 
moving, the results show that the Nusselt number enhances 
when increasing volume fraction of the nanoparticles. 
Gibanov et al. [26] numerically studied ferrofluid mixed 
convection in a lid-driven square cavity under the effect of a 
uniform inclined magnetic field. The conclusions showed that 
the magnetic field inclination can be used to control heat 
transfer enhancement. On the other hand, increasing Hartman 
number decreased the average Nusselt number. Hekmat et al. 
[27] investigated magnetic field gradient on thermomagnetic 
mixed convection of a ferrofluid in a three- dimensional 
annular space between two cylinders. While a negative 
magnetic field gradient increased friction coefficient and the 
Nusselt number on the inner wall, a magnetic field with a 
positive gradient leads to the opposite effect as both 
characteristics reduce. Job and Gunakala [28] analyzed mixed 
convection flow of a water-based ferrofluid in a wavy channel 
with two porous blocks mounted on the heated sections of the 
walls under the effect of an alternating magnetic field. They 
found that when the porous block thickness increases in a 
small values range, The average Nusselt number reduces, 
while the opposite is true when the thickness increases through 
large values. Mehmoud [29] conducted a numerical study 
thermomagnetic convection within lid-driven trapezoidal 
cavities occupied with a kerosene-cobalt ferrofluid. The 
results showed that the fluid flow strongly depends on ferro 
particles concentration, Grashof, Darcy, and Hartman 
numbers. Sheikholeslami and Chamkha [30] studied the 
influence of a variable magnetic field on heat transfer in a 
double lid-driven cavity with a wavy hot wall and filled with 
a ferro-nanofluid. They found that increasing the magnetic 
number, Reynolds number, and the volume fraction of 
particles increases Nusselt number, while increasing 
Hartmann number leads to an inverse trend. 

The review of the literature shows clearly that a minor share 
of investigations considers the effect of magnetic field on 
mixed convection. Furthermore, most of the existing studies 
treated the case of imposed temperatures at the active walls. 
Hence, the problem of mixed convection in a rectangular 
cavity with thermal boundary conditions of Neumann Type 
(i.e., imposed heat flux) has not been studied yet. To fill in the 
gap, the present study considers a two-dimensional shallow 
rectangular cavity occupied with Co-water ferrofluids, the 
short vertical walls are subjected to uniform heat fluxes 
whereas the horizontal ones are adiabatic with the top wall is 
sliding in the same direction of the applied heat flux, the main 
objective is to inspect the effect of the magnetic field on heat 
transfer characteristics. As we mentioned before, the majority 
of studies presented a numerical solution of the problem, while 
in our case, two solutions were adopted, a numerical solution 
of the full governing equations using finite volume method 
plus an analytical one build upon the parallel flow 
approximation. The results are given in terms of stream 
function, Nusselt number, streamlines, isotherms, and 
temperature profiles for a wide range of controlling 
dimensionless parameters, namely: Reynolds number, 𝑅𝑅𝑅𝑅 , 
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Hartmann number, 𝐻𝐻𝐻𝐻, Richardson number, 𝑅𝑅𝑅𝑅, and the solid 
volume fraction of nanoparticles, 𝛷𝛷. The paper first introduces 
the governing equations of the problem, then details the 
numeric method before elaborating the analytical approach. 
Finally, both methods are compared against each other to 
verify their agreement and the effect of governing parameters 
on flow characteristics and heat transfer is discussed. This 
study seeks to strengthen the literature on ferrofluids mixed 
convection. 

 
 

2. MATHEMATICAL FORMULATION 
 
The considered configuration is outlined in Figure 1. A 

shallow rectangular cavity with length L’ and height H’, 
occupied with Co-water ferrofluids. The long horizontal walls 
are adiabatic and the top one is sliding with a constant velocity, 
whereas the vertical ones are subjected to a uniform density of 
heat flux, q’. The four walls are rigid and impermeable. 

The frequently used assumptions in such problems are 
expressed as follows:  
 The base fluid and the ferroparticles are in thermal 

equilibrium while flowing at the same velocity; 
 The ferrofluid is Newtonian and incompressible; 
 The thermophysical properties of the considered 

ferrofluids are constant except for the density in the buoyancy 
term, which obeys the Boussinesq approximation; 
 The Boussinesq approximation is used to express the 

density in the buoyancy term, while the rest of the 
thermophysical properties of studied ferrofluids are constant; 
 The problem is considered as two-dimensional, with 

laminar and steady flow; 
 The radiation heat transfer is negligible compared 

with the other mode of heat transfer. 
Using the mentioned assumptions above, the governing 

equations expressing the conservation of mass (1), momentum 
(2)-(3) and energy (4), are given in terms of velocity 
components (𝑢𝑢′, 𝑣𝑣′), pressure (𝑝𝑝′) and temperature (𝑇𝑇′): 
 

𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

+ 𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

= 0  (1) 
 

 
 

Figure 1. Sketch of the cavity and co-ordinates system 
 

𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

+ 𝑢𝑢′ 𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

+ 𝑣𝑣′ 𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

= − 1
𝜌𝜌𝑓𝑓𝑓𝑓

𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

+ 𝜇𝜇𝑓𝑓𝑓𝑓
𝜌𝜌𝑓𝑓𝑓𝑓

�𝜕𝜕
2𝜕𝜕′
𝜕𝜕𝜕𝜕′2

+
𝜕𝜕2𝜕𝜕′
𝜕𝜕𝜕𝜕′2

� + 𝜎𝜎𝑓𝑓𝑓𝑓𝐵𝐵2

𝜌𝜌𝑓𝑓𝑓𝑓
(𝑣𝑣 𝑠𝑠𝑅𝑅𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 − 𝑢𝑢 𝑠𝑠𝑅𝑅𝑠𝑠2 𝜃𝜃)  

(2) 

 
𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

+ 𝑢𝑢′ 𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

+ 𝑣𝑣′ 𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

= − 1
𝜌𝜌𝑓𝑓𝑓𝑓

𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

+ 𝜇𝜇𝑓𝑓𝑓𝑓
𝜌𝜌𝑓𝑓𝑓𝑓

�𝜕𝜕
2𝜕𝜕′

𝜕𝜕𝜕𝜕′2
+ 𝜕𝜕2𝜕𝜕′

𝜕𝜕𝜕𝜕′2
� +

1
𝜌𝜌𝑓𝑓𝑓𝑓

(𝜌𝜌𝜌𝜌)𝑓𝑓𝑓𝑓𝑔𝑔(𝑇𝑇′ − 𝑇𝑇0′) + 𝜎𝜎𝑓𝑓𝑓𝑓𝐵𝐵2

𝜌𝜌𝑓𝑓𝑓𝑓
(𝑢𝑢 𝑠𝑠𝑅𝑅𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 −

𝑣𝑣 𝑐𝑐𝑐𝑐𝑠𝑠2 𝜃𝜃)  

(3) 

 

𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕′

+ 𝜕𝜕(𝜕𝜕′𝜕𝜕′)
𝜕𝜕𝜕𝜕′

+ 𝜕𝜕(𝜕𝜕′𝜕𝜕′)
𝜕𝜕𝜕𝜕′

= 𝛼𝛼𝑓𝑓𝑓𝑓𝛻𝛻2𝑇𝑇′  (4) 
 
The associated boundary conditions are: 

 
𝑢𝑢′ = 𝑣𝑣′ = 0 and 𝜕𝜕𝜕𝜕

′

𝜕𝜕𝜕𝜕′
+ 𝑞𝑞′

𝑘𝑘𝑓𝑓𝑓𝑓
= 0 for 𝑥𝑥′ = 0 and 𝑥𝑥′ =

𝐿𝐿′  
(5) 

 
𝑢𝑢′ = 𝑣𝑣′ + 𝑈𝑈0′ = 0 and 𝜕𝜕𝜕𝜕

′

𝜕𝜕𝜕𝜕′
= 0 for 𝑦𝑦′ = 0 (6) 

 
𝑢𝑢′ − 𝑈𝑈0′ = 𝑣𝑣′ = 0 and 𝜕𝜕𝜕𝜕

′

𝜕𝜕𝜕𝜕′
= 0 for 𝑦𝑦′ = 𝐻𝐻′ (7) 

 
The next formulations are used to define the ferrofluid 

effective physical properties emerged in the above governing 
equations. 

The constant density of ferrofluid can be descried as follows, 
 

𝜌𝜌𝑓𝑓𝑓𝑓 = (1 − 𝛷𝛷)𝜌𝜌𝑓𝑓 + 𝛷𝛷𝜌𝜌𝑠𝑠 (8) 
 

Next, the ferrofluid dynamic viscosity μff and can be defined 
as, 
 

𝜇𝜇𝑓𝑓𝑓𝑓 = 𝜇𝜇𝑓𝑓
(1−𝛷𝛷)2.5  (9) 

 
The thermal expansion coefficient (ρβ)ff, 

 
(𝜌𝜌𝜌𝜌)𝑓𝑓𝑓𝑓 = (1 − 𝛷𝛷)(𝜌𝜌𝜌𝜌)𝑓𝑓 + 𝛷𝛷(𝜌𝜌𝜌𝜌)𝑠𝑠 (10) 

 
The heat capacitance of ferrofluid (𝜌𝜌𝜌𝜌𝑝𝑝)𝑓𝑓𝑓𝑓, 
 

(𝜌𝜌𝜌𝜌𝑝𝑝)𝑓𝑓𝑓𝑓 = (1 − 𝛷𝛷)(𝜌𝜌𝜌𝜌𝑝𝑝)𝑓𝑓 + 𝛷𝛷(𝜌𝜌𝜌𝜌𝑝𝑝)𝑠𝑠 (11) 
 

As for the Effective thermal conductivity, owing to 
Maxwell-Garnett, which is a restriction of the Hamilton-
Crosser model to spherical ferroparticles according to Yu et al. 
[31], it can be defined as, 
 

𝑘𝑘𝑓𝑓𝑓𝑓
𝑘𝑘𝑓𝑓

= 𝑘𝑘𝑠𝑠+2𝑘𝑘𝑓𝑓−2𝛷𝛷(𝑘𝑘𝑓𝑓−𝑘𝑘𝑠𝑠)

𝑘𝑘𝑠𝑠+2𝑘𝑘𝑓𝑓+𝛷𝛷(𝑘𝑘𝑓𝑓−𝑘𝑘𝑠𝑠)
  (12) 

 
The ferrofluid thermal diffusivity is rather different from the 

base fluid and can be written as follows, 
 

𝛼𝛼𝑓𝑓𝑓𝑓 = 𝑘𝑘𝑓𝑓𝑓𝑓
(𝜌𝜌𝜌𝜌𝜕𝜕)𝑓𝑓𝑓𝑓

  (13) 
 

Finally, Maxwell [32] described the ferrofluid effective 
electrical conductivity as shown below: 
 

�̄�𝜎 = 𝜎𝜎𝑓𝑓𝑓𝑓
𝜎𝜎𝑓𝑓

= 1 +
3(𝜎𝜎𝑠𝑠𝜎𝜎𝑓𝑓

−1)𝜑𝜑

(𝜎𝜎𝑠𝑠𝜎𝜎𝑓𝑓
+2)+(𝜎𝜎𝑠𝑠𝜎𝜎𝑓𝑓

−1)𝜑𝜑
  (14) 

 
On the other hand, Table 1 shows the thermophysical 

properties of both base fluid (Water) and the ferromagnetic 
particle (Cobalt) adopted for the present study. 

The following dimensionless equations and the associated 
boundary conditions are obtained using the appropriate 
characteristic scales 𝐻𝐻′, 𝜌𝜌𝑓𝑓𝑈𝑈′

0
2, 𝐻𝐻′ 𝑈𝑈0′⁄ , 𝑈𝑈0′ , and 𝑞𝑞′𝐻𝐻′ 𝑘𝑘𝑓𝑓⁄ , for 

length, pressure, time, velocity, and temperature, respectively. 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0  (15) 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 1
�̄�𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ �̄�𝜈
𝑅𝑅𝑅𝑅
�𝜕𝜕

2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

� +
�̄�𝜎
�̄�𝜌
𝐻𝐻𝑎𝑎2

𝑅𝑅𝑅𝑅
(𝑣𝑣 𝑠𝑠𝑅𝑅𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 − 𝑢𝑢 𝑠𝑠𝑅𝑅𝑠𝑠2 𝜃𝜃)  

(16) 

 
∂𝜕𝜕
∂𝜕𝜕

+ 𝑢𝑢 ∂𝜕𝜕
∂𝜕𝜕

+ 𝑣𝑣 ∂𝜕𝜕
∂𝜕𝜕

= − 1
�̄�𝜌
∂𝜕𝜕
∂𝜕𝜕

+ �̄�𝜈
𝑅𝑅𝑅𝑅
�∂

2𝜕𝜕
∂𝜕𝜕2

+ ∂2𝜕𝜕
∂𝜕𝜕2

� +
�̄�𝛽
�̄�𝜌
𝑅𝑅𝑅𝑅𝑇𝑇 + �̄�𝜎

�̄�𝜌
𝐻𝐻𝑎𝑎2

𝑅𝑅𝑅𝑅
(𝑢𝑢 𝑠𝑠𝑅𝑅𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 − 𝑣𝑣 𝑐𝑐𝑐𝑐𝑠𝑠2 𝜃𝜃)  

(17) 

 
∂𝜕𝜕
∂𝜕𝜕

+ 𝑢𝑢 ∂𝜕𝜕
∂𝜕𝜕

+ 𝑣𝑣 ∂𝜕𝜕
∂𝜕𝜕

= �̄�𝛼
𝑃𝑃𝑅𝑅
�∂

2𝜕𝜕
∂𝜕𝜕2

+ ∂2𝜕𝜕
∂𝜕𝜕2

�  (18) 
 

𝑢𝑢 = 𝑣𝑣 = ∂𝜕𝜕
∂𝜕𝜕

+ 1
�̄�𝑘

= 0 for 𝑥𝑥 = 0 and 𝐴𝐴  (19) 
 

𝑢𝑢 = 𝑣𝑣 + 1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 for 𝑦𝑦 = 0 (20) 
 

𝑢𝑢 − 1 = 𝑣𝑣 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 for 𝑦𝑦 = 1 (21) 
 
where: 
�̄�𝑘 = 𝑘𝑘𝑓𝑓𝑓𝑓 𝑘𝑘𝑓𝑓⁄ ; �̄�𝛼 = 𝛼𝛼𝑓𝑓𝑓𝑓 𝛼𝛼𝑓𝑓⁄ ; �̄�𝜈 = 𝜈𝜈𝑓𝑓𝑓𝑓 𝜈𝜈𝑓𝑓⁄ , 
�̄�𝜌 = (𝜌𝜌𝜌𝜌)𝑓𝑓𝑓𝑓 (𝜌𝜌𝜌𝜌)𝑓𝑓⁄ ; �̄�𝜎 = 𝜎𝜎𝑓𝑓𝑓𝑓 𝜎𝜎𝑓𝑓⁄  and �̄�𝜌 = 𝜌𝜌𝑓𝑓𝑓𝑓 𝜌𝜌𝑓𝑓⁄ . 
They are dependent parameters on Φ, conforming to models 

specified above. 
The previous equations illustrate the governing parameters 

of flow and heat transfer, namely: the solid volume fraction 𝛷𝛷, 
the aspect ratio of the cavity, A, plus the Peclet,  𝑃𝑃𝑅𝑅 , 
Reynolds,  𝑅𝑅𝑅𝑅 , Hartmann 𝐻𝐻𝐻𝐻  and Richardson, 𝑅𝑅𝑅𝑅 , numbers, 
which can be expressed for the base fluid as follows, 
 

𝐴𝐴 = 𝐿𝐿′

𝐻𝐻′
, 𝑃𝑃𝑅𝑅 = 𝑈𝑈0

′𝐻𝐻′

𝛼𝛼𝑓𝑓
, 𝑅𝑅𝑅𝑅 = 𝑈𝑈0

′𝐻𝐻′

𝜈𝜈𝑓𝑓
, 𝐻𝐻𝐻𝐻 = 𝐵𝐵𝐻𝐻′�𝜎𝜎𝑓𝑓 𝜇𝜇𝑓𝑓�  

and 𝑅𝑅𝑅𝑅 = 𝑔𝑔𝛽𝛽𝑓𝑓𝑞𝑞′𝐻𝐻′2

𝑘𝑘𝑓𝑓𝑈𝑈′0
2  

(22) 

 
Note that: 

 
𝑃𝑃𝑅𝑅 = 𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 = 𝐺𝐺𝐺𝐺

𝑅𝑅𝑅𝑅2
= 𝑅𝑅𝑎𝑎

𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
 (23) 

 
where:  
 

𝐺𝐺𝑃𝑃 =
𝑔𝑔𝛽𝛽𝑓𝑓

′𝑞𝑞′𝐻𝐻′4

𝜈𝜈𝑓𝑓
2𝑘𝑘𝑓𝑓

, 𝑃𝑃𝑃𝑃 = 𝜈𝜈𝑓𝑓
𝛼𝛼𝑓𝑓

 and 𝑅𝑅𝐻𝐻 = 𝑃𝑃𝑃𝑃 𝐺𝐺 𝑃𝑃 (24) 

 
Local Nusselt number quantifying the local heat transfer 

inside an enclosure filled with a ferrofluid is defined as follows: 
 

Nu(y) = hL′

kf
= q′

ΔT′
L′

kf
= L′

H′
ΔT∗

ΔT′
= A

T(0)−T(A)
  (25) 

 
h refers to the heat exchange coefficient, 𝛥𝛥𝑇𝑇∗ = 𝑞𝑞′𝐻𝐻′ 𝑘𝑘𝑓𝑓⁄  a 

characteristic temperature and 𝛥𝛥𝑇𝑇 = 𝑇𝑇(0,𝑦𝑦) − 𝑇𝑇(𝐴𝐴, 𝑦𝑦)  is 
dimensionless temperature difference between the two vertical 
walls of equations x=0 and x=A, respectively. For the 
definition in question, the thermal conductivity of the base 
fluid, 𝑘𝑘𝑓𝑓, is used, which makes sense according to Corcione 
[33], who showed that for Nusselt number to define the 
thermal performance inside the cavity, with immediacy, it 
needs to vary in the same way as h and vice versa. Still, owing 
to the edge effects problem that emerge near the vertical walls, 

Eq. (25) faces problems of inaccuracy due to uncertainty of the 
measured temperature along the said walls. 

To solve the problem, Nu is measured using the following 
expression: 𝑁𝑁𝑢𝑢(𝑥𝑥, 𝑦𝑦) = 𝐴𝐴−2𝜕𝜕

𝜕𝜕(𝜕𝜕,𝜕𝜕)−𝜕𝜕(𝐴𝐴−𝜕𝜕,𝜕𝜕)
, this expression seems 

logical because it gives the equation (25) for 𝑥𝑥 = 0 and gives 
the one suggested by Lamsaadi et al. [34].  
𝑁𝑁𝑢𝑢(𝑦𝑦) = 𝑙𝑙𝑅𝑅𝑙𝑙

𝛿𝛿𝜕𝜕→0

𝛿𝛿𝜕𝜕
𝛿𝛿𝜕𝜕

= 𝑙𝑙𝑅𝑅𝑙𝑙
𝛿𝛿𝜕𝜕→0

1
(𝛿𝛿𝜕𝜕 𝛿𝛿𝜕𝜕⁄ )

= − 1
(𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ )𝑥𝑥=𝐴𝐴 2⁄

 when 

𝑥𝑥 → 𝐴𝐴
2
.  

The average Nusselt number has the following expression: 
 

�̄�𝑁𝑢𝑢 = 2
𝐴𝐴 ∫ ∫ 𝑁𝑁𝑢𝑢(𝑥𝑥, 𝑦𝑦)

𝐴𝐴
2
0 𝑑𝑑𝑥𝑥1

0 𝑑𝑑𝑦𝑦 =
2
𝐴𝐴 ∫ ∫ 𝐴𝐴−2𝜕𝜕

𝜕𝜕(𝜕𝜕,𝜕𝜕)−𝜕𝜕(𝐴𝐴−𝜕𝜕,𝜕𝜕)
𝐴𝐴/2
0 𝑑𝑑𝑥𝑥1

0 𝑑𝑑𝑦𝑦  
(26) 

 
The velocity components 𝑢𝑢  and 𝜐𝜐  are used to define the 

stream function, which is used to display the flow field 
structure using streamlines. The stream function is given in 
terms of velocity components by the following formulas:  
 

u = ∂Ψ
∂y

 and v = −∂Ψ
∂x

 (with ψ=0 on all boundaries) (27) 
 

Table 1. Thermophysical properties of water and cobalt 
 
 𝑪𝑪𝒑𝒑(𝑱𝑱/

(𝒌𝒌𝒌𝒌.𝑲𝑲))  
𝝆𝝆(𝒌𝒌𝒌𝒌/
𝒎𝒎𝟑𝟑)  

𝒌𝒌(𝑾𝑾/
(𝒎𝒎.𝑲𝑲))  

𝜷𝜷�𝑲𝑲-1�  

𝐇𝐇𝟐𝟐𝐎𝐎 4185.5 1000 0.6071 5 10-5 
𝐂𝐂𝐂𝐂 420 8900 100 1.3 10-5 

 
 
3. NUMERIC 

 
The well-known finite volume method and SIMPLER 

algorithm in a uniform grid system (Patankar [35]) is adopted 
to numerically solve the closed system of Eqns. (15)-(18) 
associated with boundary conditions (19)-(21). The temporal 
terms emerging from Eqns. (16)-(18) are discretized with a 
second order back-wards finite difference scheme. To solve 
the obtained nonlinear discretized equations, a combination of 
a line-by-line tridiagonal matrix algorithm with relaxation and 
an iterative process is implemented. The condition 
∑ �𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘+1 − 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘 �𝑖𝑖,𝑗𝑗 < 10−5 ∑ �𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘+1�𝑖𝑖,𝑗𝑗 , where 𝑓𝑓𝑖𝑖,𝑗𝑗𝑘𝑘  denotes the 
value of 𝑢𝑢, 𝑣𝑣, 𝑝𝑝 𝑐𝑐𝑃𝑃 𝑇𝑇 at the kth iteration level and grid point 
(𝑅𝑅, 𝑗𝑗) in the two-dimensional plan (𝑥𝑥,𝑦𝑦). Numerical tests were 
conducted to pick the mesh size with the optimal arrangement 
between running time and accuracy. The mesh size is refined 
until a reasonable agreement is found between the numerical 
results and the analytical ones established based on the parallel 
flow approach as shown in the next section. A uniform grid of 
160×40 with an aspect ratio 𝐴𝐴 = 16, is found to be sufficient 
to accurately model the flow structure and temperature fields 
inside the enclosure. Given the values of controlling 
parameters, the time step, 𝛿𝛿𝛿𝛿, is chosen from the range 10−7 ≤
𝛿𝛿𝛿𝛿 ≤ 10−4. 

 
 

4. APPROXIMATE PARALLEL FLOW ANALYTICAL 
SOLUTION 

 
Upon examining Figures 2-4, illustrating streamlines (left) 

and isotherms (right) for 𝐴𝐴 = 16  and several values of 
𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅,𝐻𝐻𝐻𝐻 𝐻𝐻𝑠𝑠𝑑𝑑 𝛷𝛷 , it is observed that for most part of the 
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enclosure, the flow structure shows a parallel aspect while the 
temperature fields reveal a linear stratification in the vertical 
direction. Based on those observations, the following 
simplifications are made 
 
𝑣𝑣(𝑥𝑥, 𝑦𝑦) =  0, 𝑢𝑢(𝑥𝑥, 𝑦𝑦) =  𝑢𝑢(𝑦𝑦), 𝜓𝜓(𝑥𝑥, 𝑦𝑦) =  𝜓𝜓(𝑦𝑦) and 

𝑇𝑇(𝑥𝑥, 𝑦𝑦) = 𝜌𝜌(𝑥𝑥 − 𝐴𝐴 2⁄ ) + 𝜃𝜃(𝑦𝑦) (28) 

 
With C is the unknown constant temperature gradient in the 

x-direction, as a result, the next non-dimensional governing 
equations are obtained: 
 

𝑑𝑑3𝑢𝑢
𝑑𝑑𝑦𝑦3

− (𝐻𝐻𝐻𝐻 𝑠𝑠𝑅𝑅𝑠𝑠 𝛼𝛼)2
𝑑𝑑𝑢𝑢
𝑑𝑑𝑦𝑦

= �̄�𝛼𝛺𝛺 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅
𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥

= �̄�𝛼𝛺𝛺 𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅𝑅𝜌𝜌 
(29) 

�̄�𝛼
𝑃𝑃𝑅𝑅

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑦𝑦2

= 𝜌𝜌𝑢𝑢 (30) 

 
With:  

 
𝑢𝑢 + 1 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝜕𝜕
= 0 for 𝑦𝑦 = 0 and 𝑢𝑢 − 1 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝜕𝜕
= 0 for 

𝑦𝑦 = 1 
(31) 

 
∫ 𝑢𝑢(𝑦𝑦)𝑑𝑑𝑦𝑦 = 01
0   (32) 

 
∫ 𝜃𝜃(𝑦𝑦)𝑑𝑑𝑦𝑦 = 01
0   (33) 

 
They are the associated boundary conditions, the return 

flow and the mean temperature conditions, respectively.  
 

  
a) 

  
b) 

  
c) 
 

Figure 2. Streamlines (left) and isotherms (right) for 𝐴𝐴 = 16, 𝑅𝑅𝑅𝑅 = 1, 𝑅𝑅𝑅𝑅 = 103, 𝛷𝛷 = 0 and various values of 𝐻𝐻𝐻𝐻 ((𝐻𝐻):𝐻𝐻𝐻𝐻 =
1, (𝑏𝑏):𝐻𝐻𝐻𝐻 = 10 𝐻𝐻𝑠𝑠𝑑𝑑 (𝑐𝑐):𝐻𝐻𝐻𝐻 = 50) 

 

  
a) 

  
b) 

  
c) 
 

Figure 3. Streamlines (left) and isotherms (right) for 𝐴𝐴 = 16,𝐻𝐻𝐻𝐻 =  5,  𝑅𝑅𝑅𝑅 = 1,𝛷𝛷 = 0 and various values of 𝑅𝑅𝑅𝑅 ((𝐻𝐻):𝑅𝑅𝑅𝑅 =
10, (𝑏𝑏):𝑅𝑅𝑅𝑅 = 102 𝐻𝐻𝑠𝑠𝑑𝑑 (𝑐𝑐):𝑅𝑅𝑅𝑅 = 104) 

 

  
a) 

  
b) 

  
c) 
 

Figure 4. Streamlines (left) and isotherms (right) for 𝐴𝐴 = 16, 𝐻𝐻𝐻𝐻 =  5, 𝑅𝑅𝑅𝑅 = 103, 𝛷𝛷 = 0 and various values of 𝑅𝑅𝑅𝑅 ((𝐻𝐻):𝑅𝑅𝑅𝑅 =
 0.1, (𝑏𝑏):𝑅𝑅𝑅𝑅 =  1 𝐻𝐻𝑠𝑠𝑑𝑑 (𝑐𝑐):𝑅𝑅𝑅𝑅 =  10) 
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Exploiting such an approach, Eqns. (29) and (30), satisfying 
Eqns. (31), (32) and (33), where 𝛺𝛺 = �̄�𝛽

�̄�𝜌�̄�𝛼�̄�𝜈
, are generalized as 

follows:  
 

𝑢𝑢(𝑦𝑦) = 𝜌𝜌 �𝐵𝐵𝑅𝑅𝜔𝜔𝜕𝜕 + 𝐷𝐷𝑅𝑅−𝜔𝜔𝜕𝜕 − 𝑅𝑅𝑖𝑖 𝑅𝑅𝑅𝑅
𝜔𝜔2 𝑦𝑦 + 𝐸𝐸� +

𝐹𝐹𝑅𝑅𝜔𝜔𝜕𝜕 + 𝐺𝐺𝑅𝑅−𝜔𝜔𝜕𝜕 + 𝐾𝐾  
(34) 

 
𝜃𝜃(𝑦𝑦) = 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝜌𝜌2 � 𝐵𝐵

𝜔𝜔2 𝑅𝑅𝜔𝜔𝜕𝜕 + 𝐷𝐷
𝜔𝜔2 𝑅𝑅−𝜔𝜔𝜕𝜕 −

𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅
6𝜔𝜔2 𝑦𝑦3 +

𝐸𝐸
2
𝑦𝑦2 − 𝑋𝑋1𝑦𝑦 + 𝑍𝑍1� + 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝜌𝜌 � 𝐹𝐹

𝜔𝜔2 𝑅𝑅𝜔𝜔𝜕𝜕 + 𝐺𝐺
𝜔𝜔2 𝑅𝑅−𝜔𝜔𝜕𝜕 +

𝐾𝐾
2
𝑦𝑦2 − 𝑋𝑋2𝑦𝑦 + 𝑍𝑍2�  

(35) 

 
with: 
 

𝐵𝐵 = 𝑅𝑅
𝐾𝐾1𝑀𝑀2−𝑀𝑀1𝐾𝐾2

�𝑀𝑀2 −
𝐾𝐾2
2
�;  

𝐷𝐷 = 𝑅𝑅
𝐾𝐾1𝑀𝑀2−𝑀𝑀1𝐾𝐾2

�𝐾𝐾1
2
− 𝑀𝑀1�; 𝐸𝐸 = −(𝐵𝐵 + 𝐷𝐷);  

𝐹𝐹 = 2𝑀𝑀2+𝐾𝐾2
𝐾𝐾1𝑀𝑀2−𝑀𝑀1𝐾𝐾2

; 𝐺𝐺 = 2𝑀𝑀1+𝐾𝐾1
𝐾𝐾1𝑀𝑀2−𝑀𝑀1𝐾𝐾2

; 𝐾𝐾 = −(1 + 𝐹𝐹 +

𝐺𝐺); 𝜔𝜔 = 𝐻𝐻𝐻𝐻; 𝑅𝑅 = 𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅
𝜔𝜔2 ; 𝑋𝑋1 = 𝐵𝐵−𝐷𝐷

𝜔𝜔
; 𝑋𝑋2 = 𝐹𝐹−𝐺𝐺

𝜔𝜔
; 

𝑍𝑍1 = 𝐵𝐵−𝐷𝐷
2𝜔𝜔

− 𝐵𝐵
𝜔𝜔3 (𝑅𝑅𝜔𝜔 − 1) + 𝐷𝐷

𝜔𝜔3 (𝑅𝑅−𝜔𝜔 − 1) + 𝑅𝑅
24
− 𝐸𝐸

6
; 

𝑍𝑍2 = 𝐹𝐹−𝐺𝐺
2𝜔𝜔

− 𝐹𝐹
𝜔𝜔3 (𝑅𝑅𝜔𝜔 − 1) + 𝐺𝐺

𝜔𝜔3 (𝑅𝑅−𝜔𝜔 − 1) − 𝐸𝐸
6
; 

𝐾𝐾1 = 𝑅𝑅𝜔𝜔 − 1; 𝐾𝐾2 = 𝑅𝑅−𝜔𝜔 − 1; 𝑀𝑀1 = 𝑅𝑅𝜔𝜔−1−𝜔𝜔
𝜔𝜔

;  

𝑀𝑀1 = 𝑅𝑅𝜔𝜔−1−𝜔𝜔
𝜔𝜔

; 

(36) 

 

Through integration of equation (27), the stream function, 
𝜓𝜓(𝑦𝑦), expression is obtained: 

 
ψ(y) = C �B

ω
(eωy − 1) − D

ω
(e−ωy − 1) −

RiRe
2ω2 y2 + Ey� + F

ω
(eωy − 1) − G

ω
(e−ωy − 1) + Ky  

(37) 

 
which presents the maximum value of |𝜓𝜓(𝑦𝑦)| in the center 
vertical region of the cavity (𝑥𝑥 =  𝐴𝐴/2). 

As for the energy balance in x-direction, as reported by 
Bejan [36]: 
 
∫ − ∂T

∂x
1
0 dy + RePr ∫ uTdy1

0 = ∫ −�∂T
∂x
�1

0 x=0 or A
dy  (38) 

 
Particularly, in the parallel flow region and while condition 

(19) is applied, (39) becomes: 
 

−𝜌𝜌 + 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃� 𝑢𝑢𝑇𝑇𝑑𝑑𝑦𝑦
1

0
= 1 (39) 

 
to which replacing 𝑢𝑢(𝑦𝑦) 𝐻𝐻𝑠𝑠𝑑𝑑 𝜃𝜃(𝑦𝑦)  with their respective 
expressions, leads to the following transcendental equation: 
 

(𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃)2𝜌𝜌1𝜌𝜌3 +  (𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃)2𝜌𝜌2𝜌𝜌2 + ((𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃)2𝜌𝜌3 −
1)𝜌𝜌 − 1 = 0 (40) 

 
where, the expression of 𝜌𝜌1,𝜌𝜌2, 𝐻𝐻𝑠𝑠𝑑𝑑 𝜌𝜌3 are as follows: 
 

 

β1 = � 1
120ω4

�

⎝

⎜
⎛

60B2e2ωω − 60ω(B − D)(B + D + 2E) − 240R(B + D)
+240BDω2 + Rω4(4R − 5E)
−20Beω�R�ω�(ω − 3)ω + 12� − 12� − 6Eω� − 60D2e−2ωω
+20De−ω(R(ω(ω(ω + 3) + 12) + 12) − 6Eω) ⎠

⎟
⎞

+

� 1
24ω3��

12B�E�eω�(ω − 2)ω + 2� − 2� − 2X1(eω(ω − 1) + 1)ω�
+ω3(4E2 − 3E(4X1 + R) + 8X1R)
+12De−ω�E(−ω(ω + 2) + 2eω − 2) + 2X1ω(ω − eω + 1)�

� + EZ1 −
Z1(−2B(eω−1)+2De−ω−2D+Rω)

2ω
  

β2 = � 1
24ω4��

−12F(ω(B − 2Dω + 2E) + 2R) + 12G(ω(2(Bω + E) + D) − 2R)
+Kω�−24B + 24D + ω3(4E − 3R)� − 12eω�2F(R(ω − 1) − Eω) − BKω(ω2 − 2ω + 2)�
+12BFe2ωω + 12e−ω�2G(−Eω + Rω + R) − DKω(ω2 + 2ω + 2)� − 12DGe−2ωω

� −

B(X2+Z2ω)
ω2 + Beω(−X2ω+X2+Z2ω)

ω2 + De−ω(X2ω+X2−Z2ω)
ω2 + D(Z2ω−X2)

ω2 + 1
6

(−3EX2 + 6EZ2 + 2X2R − 3Z2R) +

� 1
24ω4��

−12ω�B(F + 2K) − D(G + 2K)� − 24ω2(BG + DF) + 24R(F + G) + KRω4

−4eω�FR�ω�(ω − 3)ω + 6� − 6� − 6BKω� + 12BFe2ωω
+4e−ω(GR(ω(ω(ω + 3) + 6) + 6) − 6DKω) − 12DGe−2ωω

� +

� 1
6ω3��

E(−6F + 6G + Kω3) − 3X1ω(2(F + G) + Kω2) + 6ω2Z1(−F + G + Kω)

+3Feω �E�(ω − 2)ω + 2� + 2ω(−X1ω + X1 + Z1ω)�

−3Ge−ω�E(ω(ω + 2) + 2) − 2ω(X1ω + X1 − Z1ω)�
�  

β3 = � 1
6ω3��

3F2e2ω − 3(F − G)(F + G + 4K) + 6ω�2FG − X2(F + G)� + 6Z2ω2(G − F)

+Kω3(K − 3X2 + 6Z2) + 3Feω �K�(ω − 2)ω + 4� + 2ω(−X2ω + X2 + Z2ω)�

−3G2e−2ω − 3Ge−ω�K(ω(ω + 2) + 4) − 2ω(X2ω + X2 − Z2ω)�

�  

(41) 

 
Lastly, taking into consideration (25) and (26), the Nusselt 

number is found to be constant and can be written as: 
 

𝑁𝑁𝑢𝑢 = 𝑁𝑁𝑢𝑢 = − 1
𝜌𝜌
  (42) 

 
As for the stream function in the center of the cavity:  

 

𝜓𝜓𝑐𝑐 = 𝑆𝑆𝑢𝑢𝑝𝑝(𝜓𝜓𝑚𝑚𝑎𝑎𝜕𝜕 , |𝜓𝜓𝑚𝑚𝑖𝑖𝑚𝑚|)  (43) 
 
with 𝜓𝜓𝑚𝑚𝑎𝑎𝜕𝜕  and |𝜓𝜓𝑚𝑚𝑖𝑖𝑚𝑚| are the extremums of stream function, 
𝜓𝜓(𝑦𝑦), at the center vertical region of the cavity (𝑥𝑥 = 𝐴𝐴 2⁄ ). 
They present the intensities of forced and natural convection 
regimes, respectively. 
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5. RESULTS AND DISCUSSION 
 
Mixed convection in a two-dimensional shallow rectangular 

enclosure filled with a Cobalt-water ferrofluid is studied. 
Temperature boundary conditions of Neuman type (uniform 
heat flux) are applied to the short vertical sides, while the 
horizontal ones are insulated with the top one is moving from 
left to right in the direction of the imposed flow. The study is 
conducted with 𝐴𝐴 = 16  and a wide range of the explored 
parameters, namely: Re ( 0.1 ≤ 𝑅𝑅𝑅𝑅 ≤ 10 ), 𝑅𝑅𝑅𝑅  ( 1 ≤ 𝑅𝑅𝑅𝑅 ≤
5104), 𝐻𝐻𝐻𝐻 (1 ≤ 𝐻𝐻𝐻𝐻 ≤ 80), 𝛷𝛷 (0 ≤ 𝛷𝛷 ≤ 0.2), 𝐻𝐻𝑠𝑠𝑑𝑑 𝑃𝑃𝑃𝑃 = 7. 

Accordingly, four parameters govern the mixed convection 
flow inside the cavity: 𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅,𝐻𝐻𝐻𝐻 𝐻𝐻𝑠𝑠𝑑𝑑 Φ. In what follows, the 
effects of said parameters on flow structure, temperature field 
and heat transfer will be illustrated and discussed. 
 
5.1 Validation of the approximate analytical solution 
 

Numerical computations were conducted to find the 
smallest value of aspect ratio 𝐴𝐴, that results in flow 
characteristics to become invariant to the aspect ratio, thus 
validating the parallel flow approximation. Table 2 shows the 
evolution of Nusselt number in terms of the aspect ratio 𝐴𝐴, the 

results are given in terms of the three numerical expressions 
mentioned before plus the analytical result. It is found that 
after a value of 𝐴𝐴 = 16, Nusselt number becomes independent 
on the aspect ratio A, and the numerical expression used in the 
present study agrees with the one given by the expression 
suggested by Lamsaadi et al. [34], as both reach an asymptotic 
state, while the expression based on Eq. (25) demonstrates the 
edge effects problem we mentioned, causing its results to be 
imprecise. Thus, 𝐴𝐴 = 16  satisfies the parallel flow 
approximation and both numerical and analytical solutions are 
in good agreement. 

Furthermore, the comparison between numerical results and 
analytical ones depicted in the figures below for an inclusive 
range of governing parameters, 𝐴𝐴 = 16, 0.1 ≤ 𝑅𝑅𝑅𝑅 ≤ 10, 1 ≤
𝑅𝑅𝑅𝑅 ≤ 104 , 1 ≤ 𝐻𝐻𝐻𝐻 ≤ 80  and different values of volume 
fraction 𝛷𝛷 , show a perfect concordance between the 
established analytical solution, presented with solid lines, and 
the numerical ones shown as dots. Also, the results testify of 
the right choice of 𝐴𝐴 = 16 that satisfy the asymptotic limit of 
a shallow enclosure for the current work. 

Table 2 displays the conducted numerical tests that clearly 
show that the expression (26) adopted can also be used to 
determine the Nusselt number. 

 
Table 2. Convergence tests of 𝑁𝑁𝑢𝑢���� for various values of A 

 
 

𝐍𝐍𝐍𝐍 =
𝟏𝟏

(𝛛𝛛𝛛𝛛 𝛛𝛛𝛛𝛛⁄ )𝛛𝛛=𝐀𝐀 𝟐𝟐⁄
 𝐍𝐍𝐍𝐍 =

𝐀𝐀 − 𝟐𝟐𝛛𝛛
𝛛𝛛(𝛛𝛛, 𝐲𝐲) − 𝛛𝛛(𝐀𝐀 − 𝛛𝛛, 𝐲𝐲) 𝐍𝐍𝐍𝐍 =

𝐀𝐀
𝛛𝛛(𝟎𝟎) − 𝛛𝛛(𝐀𝐀) 𝐍𝐍𝐍𝐍 = −

𝟏𝟏
𝐂𝐂 

𝐀𝐀 = 𝟐𝟐 6.8273561 5.9970142 3.1387747 6.678190 
𝐀𝐀 = 𝟒𝟒 6.7249913 6.4415855 4.3809437 6.678190 
𝐀𝐀 = 𝟔𝟔 6.7321044 6.5793372 5.0572561 6.678190 
𝐀𝐀 = 𝟖𝟖 6.7345122 6.6361597 5.4852352 6.678190 
𝐀𝐀 = 𝟏𝟏𝟎𝟎 6.7349439 6.6653806 5.7802962 6.678190 
𝐀𝐀 = 𝟏𝟏𝟐𝟐 6.7349696 6.6825767 5.9946230 6.678190 
𝐀𝐀 = 𝟏𝟏𝟒𝟒 6.7349709 6.6935747 6.1554868 6.678190 
𝐀𝐀 = 𝟏𝟏𝟔𝟔 6.7356533 6.7017405 6.2794116 6.678190 
𝐀𝐀 = 𝟏𝟏𝟖𝟖 6.7350536 6.7064450 6.3746701 6.678190 

 
5.2 Velocity and temperature profiles 

 
The horizontal velocity profiles show the presence of a 

single maximum value for all considered cases displayed in 
Figures 5-7, which testifies of the fact that the flow is 
unicellular and clockwise, mainly driven by the moving upper 
wall, signifying that the shear imposes a one-way flow. 
Whereas the temperature profile shows two zones with 
negative and positive signs, owing to the flow nature and the 
cooperative effects of the moving wall and buoyancy forces. 
The heat got into the left side of the enclosure, driven by the 
fluid near the upper section of the enclosure gets out by the 
right side of the cavity. Hence, the flow becomes cold and goes 
back near the inferior side of the cavity (y = 0). Explaining 
both regions of the temperature profile with signs (-, +) and 
this is independent of the concentration Φ. 

It was further observed that the concentration effect on 
temperature profiles and velocity, becomes increasingly 
insignificant when the Reynolds number increases, because 
the effect of viscosity caused by the addition of the 
ferroparticles is neutralized by the forced convection. As for 
Hartmann number it’s obvious that as 𝐻𝐻𝐻𝐻  increases, the 
extremum values of temperature amplify testifying of the fact 
that the flow loses its intensity which can be confirmed from 
velocity profiles, where as 𝐻𝐻𝐻𝐻 increases the fluid circulation 
becomes slower. 

0,0 0,2 0,4 0,6 0,8 1,0

0,0 0,2 0,4 0,6 0,8 1,0

-1,0

-0,5

0,0

0,5

1,0

1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

Ha=80
Ha=50

Ha=10

Ha=1

Analytical solution

Ri=103

Re=0.1

 

 

φ=0
 φ=0.05 Numérical solution
 φ=0.1

U

y  
a) 

0,0 0,2 0,4 0,6 0,8 1,0

0,0 0,2 0,4 0,6 0,8 1,0

-0,08

-0,04

0,00

0,04

0,08

-0,08

-0,04

0,00

0,04

0,08

Ha=80

Ha=10

Ha=50

Ha=1
Re=0.1

Analytical solution

 

 

φ=0
φ=0.05 Numerical solution
φ=0.1 

T

y  
b) 
 

Figure 5. a) The horizontal velocity and b) temperature 
profiles at a mid-length of the cavity, along the vertical 
coordinate for 𝐴𝐴 = 16, 𝑅𝑅𝑅𝑅 = 103, 𝑅𝑅𝑅𝑅 = 0.1 for various 

values of 𝛷𝛷 and various values of 𝐻𝐻𝐻𝐻 
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Figure 6. a) The horizontal velocity and b) temperature 
profiles at a mid-length of the cavity, along the vertical 

coordinate for𝐴𝐴 = 16, 𝑅𝑅𝑅𝑅 = 103, 𝑅𝑅𝑅𝑅 = 1 for various values 
of 𝛷𝛷 and various values of 𝐻𝐻𝐻𝐻 
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Figure 7. a) The horizontal velocity and b) temperature 
profiles at a mid-length of the cavity, along the vertical 

coordinate for 𝐴𝐴 = 16, 𝑅𝑅𝑅𝑅 = 103, 𝑅𝑅𝑅𝑅 = 10 for various values 
of 𝛷𝛷 and various values of 𝐻𝐻𝐻𝐻 

 

5.3 Heat transfer rate 
 
The evolution of the average Nusselt number, 𝑁𝑁𝑢𝑢  , are 

reported, against 𝑅𝑅𝑅𝑅, for 𝑅𝑅𝑅𝑅 given, each 𝐻𝐻𝐻𝐻 and various 𝛷𝛷, in 
Figures 8, 9 and 10, it is found that the heat transfer rate 
increases with 𝑅𝑅𝑅𝑅 , because increasing 𝑅𝑅𝑅𝑅  increases the 
buoyancy effect causing the convection to become the driving 
force for movement. On the other hand, 𝑁𝑁𝑢𝑢  reduces when 
Hartmann number increases which agrees with earlier findings.  

 

 
 

Figure 8. Evolution of the Nusselt number with 𝑅𝑅𝑅𝑅 for 
𝑅𝑅𝑅𝑅 = 0.1, 𝐴𝐴 = 16 for various values of 𝛷𝛷 and various values 

of 𝐻𝐻𝐻𝐻 
 

 
 

Figure 9. Evolution of the Nusselt number with 𝑅𝑅𝑅𝑅 for 
𝑅𝑅𝑅𝑅 = 1, 𝐴𝐴 = 16 for various values of 𝛷𝛷 and various values of 

𝐻𝐻𝐻𝐻 
 

 
 

Figure 10. Evolution of the Nusselt number with 𝑅𝑅𝑅𝑅 for 
𝑅𝑅𝑅𝑅 = 10, 𝐴𝐴 = 16 for various values of 𝛷𝛷 and various values 

of 𝐻𝐻𝐻𝐻 
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where, increasing Hartmann number was proven to reduce the 
flow intensity within the enclosure. Moreover, increasing the 
concentration of ferroparticles decreases the heat transfer rate, 
𝑁𝑁𝑢𝑢, despite that thermal conductivity of ferroparticles is great 
compared to that of the pure fluid. As can be seen, the curves 
that have high concentrations are always below the others that 
have low concentrations for a given 𝑅𝑅𝑅𝑅. This can be explained 
by the increase in viscosity due to the increase in the 
concentration of ferroparticles, and the lengthening of the 
cavity. 

On the other hand, these results show that heat transfer 
enhances with 𝑅𝑅𝑅𝑅 as a beneficial result of the shear force on 
Nusselt number. In addition, an increase / (a decrease) of 𝑅𝑅𝑅𝑅, 
implies that the heat transfer is governed by forced / (natural) 
convection.  

To further investigate how 𝐻𝐻𝐻𝐻 affects heat transfer rate, we 
refer to Figures 11 and 12, that portray changes in 𝑁𝑁𝑢𝑢 with 
Hartmann numbers at 𝑅𝑅𝑅𝑅 = 1 and 𝑅𝑅𝑅𝑅 = 103. Heat transfer rate 
shrinks fast up to 𝐻𝐻𝐻𝐻 = 20. However, for larger Hartmann 
number (𝐻𝐻𝐻𝐻 ≥ 40), the value of 𝑁𝑁𝑢𝑢  becomes more or less 
constant for ferrofluid. It’s worth mentioning, that for a strong 
𝑅𝑅𝑅𝑅 number, the particle concentration has no effect on heat 
transfer, but for low values of 𝑅𝑅𝑅𝑅 , the effect of 𝛷𝛷  becomes 
visible. 
 

 
 

Figure 11. Evolution of the Nusselt number with 𝐻𝐻𝐻𝐻 for 
𝑅𝑅𝑅𝑅 = 1, 𝐴𝐴 = 16 for various values of 𝛷𝛷 and various values of 

𝑅𝑅𝑅𝑅 
 

 
 

Figure 12. Evolution of the Nusselt number with 𝐻𝐻𝐻𝐻 for 
𝑅𝑅𝑅𝑅 = 103, 𝐴𝐴 = 16 for various values of 𝛷𝛷 and various values 

of 𝑅𝑅𝑅𝑅 
 

5.4 Flow intensity 
 
The evolution of Ψ𝜌𝜌  as reported, against 𝑅𝑅𝑅𝑅, for 𝑅𝑅𝑅𝑅 = 0.1, 

and various values of 𝐻𝐻𝐻𝐻 and Φ, is given in the Figure 13. 

It is clear that increasing 𝐻𝐻𝐻𝐻 leads to reducing the strength 
of the flow as shown by Figure 13 where 𝜓𝜓𝑐𝑐 decreases. Such 
phenomenon can be explained by the fact that higher 
Hartmann numbers induces magnetic field; as a result, Lorentz 
force acting on the flow domain is introduced. The said force 
plays the role of a magnetic viscosity lessening the intensity of 
the flow circulation within the cavity. Increasing Hartmann 
number (𝐻𝐻𝐻𝐻 = 50,𝐻𝐻𝐻𝐻 = 80)  strongly impacts ferrofluid 
compared to plain fluid owing to the presence of magnetic 
particles, causing it to be more vulnerable to magnetic fields. 
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Figure 13. Evolution of the stream function in the central 
part of the cavity, with Ri for 𝑅𝑅𝑅𝑅 = 0.1 and 𝐴𝐴 = 16 for 

various values of 𝛷𝛷 and various values of 𝐻𝐻𝐻𝐻 
 

On the other hand, and for low values of 𝐻𝐻𝐻𝐻 , the fluid 
intensity increases with 𝑅𝑅𝑅𝑅 as a beneficial effect of increasing 
the buoyancy force. On the other hand, increasing 𝛷𝛷 slows the 
ferrofluid circulation, where increasing the concentration 
increases the viscosity; hence, reduce the flow intensity. The 
said effect of ferroparticles concentration becomes more 
pronounced as 𝑅𝑅𝑅𝑅  increases causing natural convection to 
dominate the convective regime. As for high values of 
Hartman, Ψ𝜌𝜌  becomes practically constant and the effect of 𝛷𝛷 
vanishes as the magnetic viscosity induced by high values of 
𝐻𝐻𝐻𝐻 is more important compared to the viscosity caused by the 
ferroparticles concentration. 
 

 
6. CONCLUSIONS 

 
The present work investigates mixed convection within a 

closed shallow rectangular cavity (Aspect ratio 𝐴𝐴 = 16 ) 
occupied with a ferrofluid in the presence of a magnetic field, 
both analytically and numerically. Uniform density of heat 
fluxes is applied to short vertical walls, while the horizontal 
ones are adiabatic with the top wall sliding with a uniform 
velocity from left to right (i.e., the direction of applied heat 
fluxes). 

The numerical solution is obtained using the well-known 
finite volume method to solve the governing equations. On the 
other hand, the parallel flow approximation, valid in the 
central region of the cavity is adopted for the analytical 
solution. Results were given for a wide range of controlling 
parameters, 𝑅𝑅𝑅𝑅 (0.1 ≤ 𝑅𝑅𝑅𝑅 ≤ 10),𝑅𝑅𝑅𝑅 (1 ≤ 𝑅𝑅𝑅𝑅 ≤
104),𝐻𝐻𝐻𝐻 (1 ≤ 𝐻𝐻𝐻𝐻 ≤ 80) 𝐻𝐻𝑠𝑠𝑑𝑑 𝛷𝛷 (0 ≤ 𝛷𝛷 ≤ 0.1).  The key 
findings can be listed as follows: 

 
• Analytic and numerical solutions agree perfectly for the 

considered wide range of controlling parameters, hence, 
validates both the numeric code and the analytical 
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approach. 
• The addition of ferroparticles in large numbers of 𝑅𝑅𝑅𝑅, 

decreases stream function. 
• The increase of 𝐻𝐻𝐻𝐻 decreases the intensity of the flow; 

this is related to the reduction of the fluid circulation 
owing to the retarding role of the Lorentz force 
associated with high values of 𝐻𝐻𝐻𝐻  towards the 
conductive regime in the presence of a magnetic field. 

• Heat transfer always decreases with the concentration of 
ferroparticles, 𝛷𝛷 , independent of 𝑅𝑅𝑅𝑅  and Ri, and 
increase as Richardson number increases. 

• Heat transfer rate decreases as Hartmann number 
increases. The impact of 𝐻𝐻𝐻𝐻 on heat transfer becomes 
more obvious for high convection intensities.  

• Finally, we can say that, Hartmann numbers and 
Richardson number have opposite impacts on heat 
transfer. 

Given that most works in the field adopt a numerical 
approach, the analytical solution elaborated in the present 
work can be of importance, as it agrees perfectly with the 
numerical solution which testify the accuracy of both solutions 
and gives further authentication to the reached conclusions for 
the wide range of governing parameters. The present results 
are intended to clarify some inconsistencies between previous 
studies on ferrofluids in terms of heat transfer intensification 
and the role of magnetic field in the case of mixed convection, 
especially their capabilities for applications such as cooling 
systems. 
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NOMENCLATURE 
 

A aspect ratio of the cavity (𝐿𝐿′ 𝐻𝐻′⁄ ) 
B magnetic field (𝑇𝑇𝑅𝑅𝑠𝑠𝑙𝑙𝐻𝐻) 
C dimensionless temperature gradient in the x-

direction 
𝑔𝑔 gravitational acceleration (𝑙𝑙 𝑠𝑠2⁄ ) 
𝐺𝐺𝑃𝑃 Grashof number 
𝐻𝐻′ height of the enclosure (m) 
𝐻𝐻𝐻𝐻 Hartmann number 
h heat exchange coefficient (𝑊𝑊 𝑙𝑙2𝐾𝐾⁄ ) 
k thermal conductivity of fluid (𝑊𝑊 𝑙𝑙𝐾𝐾⁄ ) 
�̄�𝑘 dimensionless parameter, �= 𝑘𝑘𝑓𝑓𝑓𝑓 𝑘𝑘𝑓𝑓⁄ � 
𝐿𝐿′ length of the rectangular enclosure (m) 
𝑁𝑁𝑢𝑢 local Nusselt number 
𝑁𝑁𝑢𝑢 average Nusselt number 
𝑃𝑃𝑅𝑅 Peclet number 
𝑃𝑃𝑃𝑃 Prandtl number 
𝑝𝑝 Dimensionless pressure [= 𝑝𝑝′/𝜌𝜌𝑓𝑓𝑈𝑈′

0
2] 

𝑞𝑞′ constant heat flux per unit area (𝑊𝑊 𝑙𝑙2⁄ ) 
𝑅𝑅𝐻𝐻 Rayleigh number 
𝑅𝑅𝑅𝑅 Reynolds number 
𝑅𝑅𝑅𝑅 Richardson number 
t dimensionless time, [= 𝛿𝛿 ′𝑈𝑈0′ 𝐻𝐻′⁄ ] 
T dimensionless temperature, [= (𝑇𝑇 ′ − 𝑇𝑇𝑐𝑐′) 𝛥𝛥𝑇𝑇∗⁄ ] 
𝑇𝑇𝑐𝑐′  reference temperature at the geometric centre of 

the enclosure (K) 
𝛥𝛥𝑇𝑇∗ characteristic temperature �= 𝑞𝑞′𝐻𝐻′ 𝑘𝑘𝑓𝑓� � (K) 
(𝑢𝑢,𝑣𝑣) dimensionless velocity components  

[= (𝑢𝑢′, 𝑣𝑣 ′) 𝑈𝑈0′⁄ ] 
𝑈𝑈0′  lid-velocity(𝑙𝑙 𝑠𝑠⁄ ) 
(𝑥𝑥, 𝑦𝑦) dimensionless coordinates [= (𝑥𝑥 ′, 𝑦𝑦′) 𝐻𝐻′⁄ ] 
 
Greek symbols 
 
α thermal diffusivity (𝑙𝑙2 𝑠𝑠⁄ ) 
�̄�𝛼 dimensionless parameter, �= 𝛼𝛼𝑓𝑓𝑓𝑓 𝛼𝛼𝑓𝑓⁄ � 
β thermal expansion coefficient (1 𝐾𝐾⁄ ) 
�̄�𝜌 dimensionless parameter, �= (𝜌𝜌𝜌𝜌′)𝑓𝑓𝑓𝑓 (𝜌𝜌𝜌𝜌′)𝑓𝑓� � 
ν kinematic viscosity (𝑙𝑙2 𝑠𝑠⁄ ) 
�̄�𝜈 dimensionless parameter, �= 𝜈𝜈𝑓𝑓𝑓𝑓 𝜈𝜈𝑓𝑓⁄ � 
µ dynamic viscosity (Pa ⋅ 𝑠𝑠) 
ρ density of base fluid (kg 𝑙𝑙3⁄ ) 
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𝜎𝜎𝑓𝑓𝑓𝑓 dimensionless conductivity of ferrofluid 
�̄�𝜎 conductivity of ferrofluid 
𝛷𝛷 ferroparticle volume fraction 
𝜓𝜓 dimensionless stream function, �= 𝜓𝜓′ 𝛼𝛼𝑓𝑓� � 
𝛺𝛺 dimensionless parameter, �= �̄�𝜌 (�̄�𝜌�̄�𝜈�̄�𝛼)⁄ � 
 
Superscripts 
 
′ dimensional variable 

Subscripts 
 
𝑐𝑐 value relative to the centre of the enclosure or 

critical value 
𝑓𝑓 base fluid 
𝑙𝑙 minimum value 
𝑓𝑓𝑓𝑓 ferrofluid 
𝑓𝑓𝑝𝑝 ferroparticle 
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