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 The understanding of fluid flow and heat transfer (HT) through a rotating curved duct 
(RCD) is important for different engineering applications. The available literature 
improved the understanding of the fluid flow and HT through a large-curvature rotating 
duct. However, the comprehensive knowledge of fluid flow and HT through an RCD with 
small curvature is little known. This numerical study aims to perform fluid flow 
characterization and HT through an RCD with curvature ratio 0.001. The spectral based 
numerical approach investigates the effects of rotation on fluid flow and HT for the Taylor 
number −1000 ≤ 𝑇𝑇𝑇𝑇 ≤ 1500. A constant pressure gradient force, the Dean number Dn = 
100, and a constant buoyancy force parameter, the Grashof number Gr = 500 are used for 
the numerical simulation. Fortran code is developed for the numerical computations and 
Tecplot software is used for the post-processing purpose. The numerical study investigates 
steady solutions and a structure of two-branches of steady solutions is obtained for positive 
rotation. The transient solution reports the transitional flow patterns and HT through the 
rotating duct, and two- to four-vortex solutions are observed. In case of negative rotation, 
time-dependent solutions show that the Coriolis force exhibits an opposite effect to that of 
the curvature so that the flow characteristics exhibit various flow instabilities. The 
numerical result shows that convective HT is increased with the increase of rotation and 
highly complex secondary flow patterns influence the overall HT from the heated wall to 
the fluid. To validate the numerical results, a comparison with the experimental data is 
provided, which shows that a good agreement is attained between the numerical and 
experimental investigations. 
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1. INTRODUCTION 
 

The fluid flow through the differentially heated curved duct 
(CD) or channels has been attracted the interest of the 
researchers and industry people for the wide applications like 
flow separation, heat exchangers, centrifugal pumps, cooling 
system, gas turbines, and many more. The fluid flow through 
the curved channel also attracts the interest of the biomedical 
researchers and pharmaceutical industry due to the real-life 
application, such as blood flow through the complex non-
dichotomously curved network of the blood vessels, fluid flow 
through the complex bifurcating airways of the human lung, 
etc. The fluid flow pattern inside the aorta and the bifurcation 
airways of the lung are complex due to the complex curvature 
of the aorta and lung airways. The complex curvature 
distribution of the vessels, an aorta, and lung airway show 
interesting flow feature under the action of the centrifugal 
force. The blood flow inside the aorta or the fluid flow inside 
the lung airways creates secondary flows due to the centrifugal 
force, and the flow acts at the right angle of the main flow 
direction [1]. The curvature of the aorta and the lung airways 
shows different physically interesting flow characteristics for 

the pressure driven flow. The curvature of the terminal airways 
of the human lung and the blood vessels are very small. Apart 
from the small curvature, the rotation of the fluid flow domain 
is important as the many engineering applications consist of 
rotating flow domain, and most of the biological applications 
are dynamic. A precise understanding of the transitional fluid 
flow through a rotating duct with small curvature is important 
for the engineering and biological applications. A wide range 
of studies [2-6] has performed the theoretical and experimental 
investigations of fluid flow through the CD for large aspect-
ratios.  

The fluid flow through the rotational curved domain 
produces the Coriolis and the centrifugal force. The heated 
surface of the flow domain creates buoyancy force which helps 
to form Dean vorticity. Ghia and Sokhey [7] investigated the 
transitional fluid flow through a channel, and the study reports 
that the channel aspect ratio and curvature influence the Dean 
vorticity. Ishigaki [8] investigated the laminar flow pattern in 
a rotating curved pipe. The study reports the flow 
configuration and friction factor for rotating and co-rotating 
case. Selmi et al. [9] investigated the viscous fluid flow 
through a curved domain. The two-dimensional (2D) study 
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reports the revolution and curvature effect on the bifurcation 
flow. Very recently, Hasan et al. [10, 11] represented the 
curvature and rotational influence for a square-shaped curved 
duct. They obtained that the critical points of the steady 
solutions are certainly induced by these forces. Selmi and 
Namdakumar [12] investigated the flow characteristics in 
rotating bent rectangular channels. Wang and Cheng [13] 
report the flow features and temperature shifting in a curved 
square duct for the co-rotating cases. The study investigates 
the combined effects of free and forced convection on heat 
transfer.  

Time-dependent investigation of the fluid flow through a 
curved rectangular channel is performed [14]. The study 
reports dual solutions for the rectangular cross-sectional 
domain. Nevertheless, unsteady characteristics of flow in a 
convex duct having higher aspect-ratio were explored by 
Yanase et al. [15]. Different types of hydrodynamic instability 
including steady-state, periodic, multi-periodic, and chaotic 
flow have been analyzed by Wang et al. and Hasan et al. [16, 
17]. Recently, Hasan et al. [18] conducted a computational and 
laboratory-based experiment on fully developed periodic 
oscillating flow in a square channel. Mondal et al. [19] studied 
a time-dependent assessment of isothermal flow. The study 
analyzed the transitional flow behavior for a CD and reports 
pressure driven flow influences the Dean vortices. An 
experimental study visualized the Dean flow features in a 
curved square channel [20]. Recently, Mondal et al. [21, 22] 
reported combined effects of the centrifugal and the Coriolis 
force on the rotating rectangular duct. However, the 
transitional nature of time-dependent flow is still unresolved 
for the flow having rectangular-shaped geometry with small 
curvature but at large revolution speed, which inspired the 
authors to fill up this gap. 

In the studies of curved channel HT, Chandratilleke [23] 
reported experimental results for a CD. The study analyzed the 
outer wall temperature effects on convective HT. Several 
studies performed a transient analysis of the fluid flow through 
a rectangular/square channel and revealed that secondary flow 
contributes to heat generation [24, 25]. Norouzi et al. [26] 
conducted heat conduction of viscoelastic fluids in square 
geometry, treating certain heat flux. Chandratilleke et al. [27] 
performed a three-dimensional (3D) computational fluid 
dynamics (CFD) investigation utilizing helicity function that 
illustrates additional vortex configuration and advection 
properties in the flow through a rectangular channel. Norouzi 
and Biglari [28] performed an analytical study for the flow in 
a curved rectangular duct (CRD) by applying the perturbation 
technique. Wu et al. [29] employed spectral scheme for the CD 
flow. The computational study analyzed the secondary flow 
pattern by introducing an azimuthal pressure at the outer 
surface of the wall. Recently, Razavi et al. [30] used the 
control volume principle and analyzed the flow characteristics. 
The study also reports heat and entropy production in a 
revolving curved channel. Hasan et al. [31, 32] calculated the 
total heat generation for both non-rotating and rotating curved 
ducts. They showed that the overall heat transfer is induced by 
the centrifugal and Coriolis forces of the duct. Very recently, 
Chanda et al. [33] applied spectral method to investigate heat-
flux effect on fluid flow and energy distribution in a CRD. 
They obtained four SS comprising with 2- to 12-vortex 
solutions. Effects of curvature on secondary vortices were also 
obtained and displayed in the bar diagrams. All of these studies 
have performed the flow analysis for the domain of large 
curvature. The understanding of the transitional fluid flow and 

HT in a curved domain with small curvature is important for 
different engineering and biological real-life related problem. 
This study is, therefore, aims to investigate the flow 
characterization and HT in a rotating curved rectangular-
shaped duct with small curvature.  

 
 

2. PHYSICAL MODEL & GOVERNING EQUATION 
 
A 2D curved rectangular duct is considered for the present 

study. The rotating CRD is developed with a curvature ratio 
0.001. Figure 1 illustrates the cross-sectional view and the 
coordinate system of the computational domain with the 
necessary notations. The x’ and y’ axes are considered to be in 
the horizontal and vertical directions, respectively and z’ along 
the center-line of the channel. The system rotates at a fixed 
angular motion ΩT around y’ axis. The outer wall of the 
domain is heated, and the inner wall is kept in normal room 
temperature. The remaining walls are well insulated to prevent 
any heat loss.  

 

 
 

Figure 1. Coordinate system 
 
Considering the flow as invariant in the z’ direction, which 

is driven by a specific pressure drop G along the center-line of 
the channel. The basic governing equations for the fluid flow 
and HT ([34]), are taken as: 
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where, 𝑇𝑇′ = 𝐿𝐿 + 𝛿𝛿𝛿𝛿′, and u’, v’ and w’ are the dimensional 
velocities along the x’, y’ and z’ directions respectively. The 
wall velocity is considered as zero. P’, T’ and t’ are the 
dimensional pressure, temperature, and time, respectively. In 
Eqns. (1) to (5), ρ, μ, β, κ and g are the density, kinematic 
viscosity, coefficient of thermal expansion, coefficient of 
thermal diffusivity and gravitational acceleration, respectively. 
A proper transformation was applied to make variables 
dimensionless which is not shown here for the brevity.  

Since the flow is uniform along axial direction, the stream 
function Ψ is introduced in the horizontal and vertical 
direction respectively as: 
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So, the transformed basic equations for the Navier-Stokes 

equations and energy equation are expressed as: 
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The parameters Dn, Tr, Gr, and Pr, used in Eqns. (7) to (9) 

are calculated from following expression  
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The applied boundary conditions for ω and Ψ are taken as: 
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and the temperature T is treated as constant on the walls as 
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There is class of solutions which satisfy the following 

symmetry condition with respect to the horizontal plane y = 0: 
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The solution which satisfies condition (12) is called a 

symmetric solution otherwise it is an asymmetric solution. In 
the present study, Tr varies from -1000 to 1500 while Dn, Gr, 
Pr and curvature (δ) are fixed as Dn = 100, Gr = 500, Pr = 7.0 
(water) and δ=0.001.  

 
 

3. NUMERICAL CALCULATION & SOLUTION 
ACCURACY 

 
To solve the Eqns. (7) to (9) numerically, the spectral 

scheme is employed. According to the principle of this scheme, 
variables are expressed in a series of functions known as 
Chebyshev polynomials (detail calculations can be found in 
[19] and [24]). 

The resistance coefficient (λ) is considered to investigate 
the representative quantity of the flow-state. It is defined as:  
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where, < > are the mean over the cross-section and the 
hydraulic diameter is 𝑑𝑑ℎ

∗. ⟨𝑤𝑤 ∗⟩ is the axial velocity.  
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axial velocity <w> as: 
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〈 〉 = . 

The numerical accuracy of the present study is performed. 
For the curved rectangular duct of aspect ratio 2, Yanase et al. 
[15, 24] showed that N = 2M gives sufficient accuracy of the 
solution, where M and N represent the truncation numbers 
(grid points) in the x- and y-directions respectively. Therefore, 
to test the accuracy of the present numerical solution we have 
chosen 5 test cases of M and N from low to high values such 
as 16×32, 18×36, 20×40, 22×44 and 24×48 as presented in 
Table 1, where it is showed that a small change in grid points 
affects the numerical accuracy. In Table 1, λ is the resistance 
coefficient defined in Eq. (13) and w(0,0) is the axial velocity 
of the steady solution at (x, y) = (0,0). As seen in Table 1, 
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sufficient accuracy is attained if 𝑀𝑀 ≥ 20 and 𝑁𝑁 ≥ 40. In the 
present study, however, to minimize the computational cost, 
we have used M = 20 and N = 40 to obtain numerical data, 
which gives sufficient accuracy. 

 
Table 1. The values of resistance coefficient (λ) and axial 
velocity w(0, 0) for various of M and N at Dn=100, Tr = 

1000, Gr = 500 and δ=0.001 
 

M N λ w(0, 0) 
16 32 0.10818253577 737.7593943610 
18 36 0.10818339665 737.9873011866 
20 40 0.10818327852 738.1101355561 
22 44 0.10818315944 738.1329848552 
24 48 0.10818303917 738.1505493243 

 
 

4. RESULTS AND DISCUSSION  
 

4.1 Case I: Positive rotation 
 

4.1.1 Steady solutions and flow patterns 
The steady solution and corresponding flow patterns are 

investigated for the positive rotation of the CD. The path 
continuation technique is employed with different 
assumptions, and the numerical result reports two-branches 
asymmetric solution (Figure 2(a)). The overall investigation is 
performed for a wide range of the rotational parameter 0 <
𝑇𝑇𝑇𝑇 ≤ 1500. The two branches are defined as first and second 
steady solution branch, respectively. 

The velocity contour and isotherms are investigated for 
different Tr. Figure 2(b) represents the secondary flow 
velocity contour and temperature distribution at different 
selected Tr on the steady solution branch. The overall velocity 
streamlines report that the number of Dean vortices increases 
with the rotational value. For the first branch, a two-vortex 
velocity contour is observed, and the Tr shows no flow 
instability. However, a complex flow behavior is observed for 
the second branch. The numerical results show two- to four-
vortex solutions for different Tr. The second branch started at 
Tr = 126, and a transitional four-vortex solution is observed. 
A two-vortex solution is found at Tr = 500. The overall 

secondary flow pattern shows a highly asymmetric flow 
behavior at different Tr on the second branch. 

The first steady solution, shown by a solid red line in Figure 
2(a), starts at point a (Tr = 0) and ends at the point b at Tr = 
1500. The first steady branching solution shows an increasing 
trend of resistance coefficient and the resistance coefficient 
increases with the Tr. The second branch steady solution is 
investigated for the CD. The branching pattern of the second 
steady solution, shown in Figure 2(a) with solid blue line, 
started at point c (Tr = 1500), and the Tr started decreasing. At 
point d (Tr = 125.065), the solution branch makes turns and 
started increasing again up to point e. The relationship of the 
calculated resistance coefficient and Tr is found proportional 
for the second steady branch.  

As seen in the secondary flow patterns, the secondary flow 
consists of two- or more-vortex solutions which are 
asymmetric with respect to the horizontal plane y = 0. The 
reason is that heating the outer wall causes deformation of the 
secondary flow and yields asymmetry of the flow. With the 
heating and cooling the sidewalls changes of fluid density that 
induce thermal convection in the fluid; the resulting flow 
behavior in the cross section is, therefore, determined by the 
combined action of the radial flow caused by the centrifugal 
body force and the convection caused by the buoyancy force 
due to temperature difference between the walls. This 
asymmetry of the flow is well discussed in the papers by 
Yanase et al. [14] and Mondal et al. [25]. 

 
4.1.2 Analysis of transient solution  

The transient solution of the fluid flow has been performed 
for a wide range of Tr. The numerical results illustrate the non-
linear behavior of the transient solutions. The overall 
investigations are performed for a constant pressure gradient 
value (Dn = 100) and the constant heat transfer parameter (Gr 
= 500). The numerical approach investigates the effects of 
rotating CD on fluid flow and HT.  

The transient flow analysis through the rotating duct depicts 
a steady solution for low rotational values (0 ≤ 𝑇𝑇𝑇𝑇 ≤ 490). 
The transient solution against resistance coefficient (Figures 3 
and 4) shows a steady flow pattern for low Tr. The 
corresponding secondary flow contour shows a two-vortex 
(Figure 3(b)) steady solution pattern. 

 

       
(a)                                                                 (b) 

 
Figure 2. (a) Steady solutions (b) Streamlines (top) and isotherms (bottom) for various Tr (The dotted rectangular box represents 

the solution for the first branch) 
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                                                                                     (a)                                                              (b) 

 
Figure 3. Unsteady solution for Tr = 100. (a) Transient solution of λ, (b) velcocity contour (left) and isotherm (right) at t = 10 

 

   
                                                                                 (a)                                                                (b) 

 
Figure 4. Transient solution for Tr = 490. (a) Transient solution of λ, (b) velcocity contour (left) and isotherm (right) at t = 6.0 

 

  
                                                                  (a)                                                                                   (b) 

 
Figure 5. Transient solution for Tr = 495. (a) λ as a function of time, (b) velcocity contour (top) and isotherm (bottom) for 

11.0 11.25t≤ ≤  
 

  
                                                                (a)                                                                                     (b) 

 
Figure 6. Transient solution for Tr = 550. (a) λ as a function of time, (b) velcocity contour and isotherm for 6.95 ≤ 𝑡𝑡 ≤ 7.42 
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                                                                (a)                                                                                     (b) 

 
Figure 7. Transient solution for Tr = 590. (a) λ as a function of time, (b) velcocity contour and isotherm for 8.9 ≤ 𝑡𝑡 ≤ 9.8 

 

 
                                                                 (a)                                                                                   (b) 

 
Figure 8. Transient solution for Tr = 1500. (a) λ as a function of time, (b) velcocity contour and isotherm for 15.45 ≤ 𝑡𝑡 ≤ 16.95 

 

 
                                      (a)                                                                 (b)                                                              (c) 

 
Figure 9. The phase spaces in the λ - γ plane for; (a) Tr = 495, (b) Tr = 550, (c) Tr = 1500 

 
The numerical study investigated the transitional flow 

behavior for a rotating domain, and the steady-periodic 
solution is observed at Tr = 495. At Tr = 495, the transition 
starts, and the velocity contour reports a two-vortex solution 
(Figure 5). A comprehensive analysis has been performed for 
the flow characterization, and the numerical study shows 
steady-periodic solution for 495 ≤ 𝑇𝑇𝑇𝑇 ≤ 530. It is observed 
that the flow transition from steady-state solution to periodic 
solution oscillation holds between Tr = 490 and Tr = 495. If 
Tr is enhanced again, for instance Tr = 550, the periodic flow 
goes into the multi-periodic flow, as shown in Figure 6(a). The 
transition of flow configuration has been discovered as 
periodic oscillation to multi-periodic flow between Tr = 530 
and Tr = 550. The velocity contours and temperature contours 
are shown in Figure 6(b) for Tr = 550 and an asymmetric two-

vortex solution is observed. The fluid flow pattern changes 
with the increase of the rotational value, and a multi-periodic 
flow pattern is observed at Tr = 590. Figure 7 shows the 
transient solutions and the corresponding velocity and 
temperature contours. The velocity contour shows two- to 
three-vortex solutions. The temperature contour shows 
asymmetric temperature distribution at different selected times. 
The time-dependent flow at Tr = 1500 (Figure 8(a)) oscillates 
irregularly in a highly non-linear manner that means the flow 
is a strong chaos at Tr = 1500, Figure 8(b) reports up to four-
vortex solution at Tr = 1500, and the corresponding 
temperature distribution is found highly asymmetric. The 
higher rotational value influences the fluid flow and heat 
transfer through the duct. 
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4.1.3 Phase spaces for positive rotation 
In order to well justify the transition from one state to 

another for various time-dependent solutions, phase spaces are 
sketched for the transient solutions in the λ-γ plane, where 𝛾𝛾 =
∫∫𝜓𝜓𝑑𝑑𝛿𝛿𝑑𝑑𝜓𝜓. Figure 9(a) shows phase plots for Tr = 495, which 
spectacles that the fluid particles form a unique orbit, which 
proves that the fluid travels in a periodic path for Tr = 495. We 
also obtained periodic oscillation by time evolution 
calculation.  

By conducting the time history analysis, we found a multi-
periodic solution for Tr = 550, which is also aligned with the 
phase plotting, as demonstrated in Figure 9(b) for Tr = 550. 
By the time evolution calculation, we could not well justify the 
characteristics of the flow for Tr = 590; however, their phase 
space exhibits that the fluid flow is a transition to chaos rather 
than multi-periodic. Finally, we draw the phase spaces for Tr 
= 1500 in Figure 9(c), which reports that the flow pattern is 
highly chaotic.  

 
4.2 Case II: Negative rotation  

 
4.2.1 Analysis of transient solution 

The fluid flow characterization through a CD is performed 
for negative rotation. A wide range of negative rotational 
parameter (Tr) values is used to investigate the transient 
solution. The numerical results show a steady flow behavior 
for all the values of Tr in −500 ≤ 𝑇𝑇𝑇𝑇 < 0 . The velocity 
contour and temperature distribution contour (Figure 10) are 
performed for Tr = - 450, and an asymmetric two-vortex 
solution is observed.  

A comprehensive fluid flow characterization is performed 
for negative rotation, and the overall numerical calculations 
report that the flow becomes steady to periodic at Tr = -490. 
Figure 11 shows the time-dependent solution for Tr = -500 
which shows a fully periodic behavior. The corresponding 
velocity contour at different selected time shows a symmetric 
two-vortex solution for Tr = -500. The temperature contour 
also shows a symmetric distribution pattern for all selected 
points. The fluid flow pattern becomes fully periodic to multi-
periodic state at higher negative Tr. As seen in Figure 11, the 
time-dependent flow shows almost same behavior after a fixed 
time-period. On the contrary, the multi-periodic flow 
completes more than one cycle before repeating the same 
behavior (Mondal et al. [19]; Islam et al. [5]). In this study, as 
the rotation is increased the periodic flow turns into multi-
periodic flow. The periodic flow in the present study 
corresponds to a travelling-wave solution in real flows. There 
are evidences to describe this flow behavior. Mees et al. [35, 
36] observed traveling wave solutions in the study of curved 
duct flows. They observed the change of secondary flow 
pattern far downstream using a spiral duct, where Dn increases 
in the downstream due to an increase of the curvature. In fact, 
the periodic oscillation observed in the cross-section of their 
duct, was a traveling-wave advancing in the downstream 
direction that was justified in a 3D study of the curved square 
duct flow by Yanase et al. [37]. Therefore, our numerical 
results can accurately predict the existence of 3D traveling 
wave solutions by showing an appearance of periodic or multi-
periodic oscillation in the present study. 

 

 
                                                                                      (a)                                                               (b) 

 
Figure 10. Transient solution for Tr = -450. (a) λ as a function of time, (b) velocity contour (left) and isotherm (right) at t = 6 

 

 
                                                                 (a)                                                                                    (b) 

 
Figure 11. Transient solution for Tr = -500. (a) λ as a function of time, (b) velocity contour and isotherm for 45.10 45.33t≤ ≤  
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                                                                 (a)                                                                                  (b) 

 
Figure 12. Transient solution for Tr = -590. (a) λ as a function of time, (a) velocity contour and isotherm for 7.11 ≤ 𝑡𝑡 ≤ 7.80 

 

  
                                                                 (a)                                                                                    (b) 

 
Figure 13. Transient solution for Tr = -950. (a) λ as a function of time, (b) velocity contour and isotherm for 21.75 ≤ 𝑡𝑡 ≤ 22.50 

 

 
                                       (a)                                                               (b)                                                             (c) 

 
Figure 14. Phase spaces in the λ - γ plane for; (a) Tr = -500, (b) Tr = -590, (c) Tr = -950 

 
Figure 12 shows the resistance coefficient variation against 

time, and the resistance coefficient values fluctuate with the 
time. The velocity contour reports an asymmetric two-vortex 
solution for Tr = -590. The temperature contour also shows 
asymmetric behavior at different selected points. The 
numerical study observed muti-periodic solution for any value 
of Tr in the range −660 ≤ 𝑇𝑇𝑇𝑇 ≤ −590. In order to find the 
chaotic region, we further increased Tr in the negative 
direction, and a highly chaotic solution is observed for all 
values in −1000 ≤ 𝑇𝑇𝑇𝑇 ≤ −675.  Figure 13(a) shows the 
transient result for Tr = -950 and corresponding secondary 
flow patterns are displsyed in Figure 13(b).  

The numerical calculation illustrates that the transition from 
a multi-periodic solution to chaotic solution occurs between Tr 

= -660 and Tr = -675. The chaotic oscillation at Tr = -675 is 
called transitional chaos, while that for Tr = -950 strong chaos 
(Mondal et al. [34]). The secondary flow pattern reports a 
highly asymmetric chaotic oscillation, and up to four-vortex 
solution is observed. The centrifugal, Coriolis, and buoyancy 
forces influence the overall flow pattern and Dean vortices. 

The present study shows that for small Dean number (Dn = 
100), the unsteady flow is steady-state for small Tr. However, 
as Tr is increased, either in the positive or in the negative 
direction, the Coriolis force becomes strong which dominates 
the centrifugal force and consequently the steady-state flow 
turns into chaos via periodic and multi-periodic oscillations 
like “Steady-state → periodic →multi-periodic→ chaotic” if 
Tr is increased. The reason is that due to small Dn, the Coriolis 
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force dominates the centrifugal force so that the flow oscillates 
irregularly with large windows of quasi-periodic oscillations. 
The opposite scenario is observed in the paper by Islam et al. 
[5] where they investigated flow instability for large Dean 
numbers (Dn = 1000 & 1500) with positive and negative 
rotation of the duct. They showed that the unsteady flow 
becomes chaotic for small Tr (Tr = 0); however, as Tr is 
increased in the positive or in the negative direction, the flow 
becomes steady-state via multi-periodic or periodic oscillation 
in the scenario “Chaotic → multi-periodic → periodic → 
steady-state” if Tr is increased. 
 
4.2.2 Phase spaces for negative rotation 

In order to justify the transitional behavior of the fluid flow, 
we explicitly draw the orbits of the phase space in the λ-γ plane. 
Figure 14(a) describes the phase diagram of the transient 
solutions for Tr = -500, where the flow forms a single orbit 
that clearly concludes the periodic solution at Tr = -500. Figure 
14(b) illustrates multiple orbits at Tr = -590, which indicate 
the fluid flow pattern for the specified rotational value is multi-
periodic. The λ-γ plane for higher Tr (Tr = -950) reports very 
irregular orbits in the phase space, which indicates the fluid 
flow pattern is strongly chaotic. This type of flow oscillation 
is termed as strong chaos (Mondal et al. [19] and Yanase et al. 
[24]). 

In this study, it is observed that if Tr is increased, an 
alternating occurrence of the oscillating and chaotic states is 
perceived. The occurrence of the chaotic state, as justified by 
the phase spaces in the present study, suggest that the Ruelle-
Takens [38] mechanism plausibly works for the occurrence of 
chaos in the present system. The transition to chaos of the 
periodic oscillation may correspond to the destabilization of 
the traveling waves in the curved duct flows like that of 
Tollmien-Schlichting waves in a boundary layer. It is, 
therefore, suggested that occurrence of the chaotic state in the 
present study is related with destabilization of the steady 
solutions, which reminds us the case of Lorenz chaos [39]. 

 
4.3 Heat Transfer 

 
The convective HT from the hot wall of the computational 

domain to the working fluid is investigated for different Tr. 
The Nusselt number (Nu) for the hot and cool walls are 
calculated for different rotational values. For unsteady flow 
fields, time-average Nu is calculated for both walls. Figure 15 
shows the calculated Nu for the first steady-state solution 
branch. For small curvature, the overall Nu at the heated wall 
and the cooled wall is found proportional to the Tr. The 
calculated Nu at the hot wall is 2.2 times higher than the cool 
wall at Tr = 1500 for both steady and time-averaged cases 
(Figure 15). The numerical calculation reports that the 
calculated Nu is for the steady and time-averaged approach is 
different for both walls. However, for lower Tr (Tr ≤ 500), the 
Nu is found almost similar for both steady and time-averaged 
cases. The overall investigation shows higher Nu at the heated 
wall for higher Tr, which eventually indicate the higher HT 
from the hot wall to the fluid. The Nu variation for the time-
averaged and steady case indicate that the transitional flow 
pattern affects the HT. 

For a better understanding of the convective HT from the 
hot wall to the fluid, a comprehensive temperature profile is 
calculated for both walls. Figures 16(a) and 16(b) show the 
corresponding temperature drop with different Tr for the cool 
and hot wall, respectively. The temperature profile for the 

cooled wall for different Tr reports higher temperature drop at 
the centre of the wall (y = 0). The centrifugal force and 
corresponding advective heat generation to the outward 
direction influence the HT at the centre of the wall. On the 
contrary, the temperature profile shows an increasing trend 
near the wall irrespective to the Tr. The secondary flow in the 
inward direction and corresponding advective HT influences 
the temperature drop near the wall. For the heated wall, the 
temperature profile for different Tr shows a similar increasing 
trend and the temperature gradient is found maximum at the 
centre of the domain. 

 

 
 

Figure 15. Variation of Nu with Tr for the first steady 
solution branch 

 

 
(a) 

 
(b) 

 

Figure 16. Temperature gradients at the (a) cool wall, (b) hot 
wall 
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4.4 Validation of the numerical result 
 
The numerical findings of the present study are validated 

with some available experimental measurements. Figure 17 
shows a comparative study of the contour of secondary flow 
structure between the experimental data obtained by Mees et 
al. [40] and the numerical result by the authors for the 
stationary curved square duct flow. The experimental duct in 
their study was formed for incompressible Newtonian fluid 
that were observed at 40∘inlet. Figure 18 shows the velocity 
contour for positive rotation of the duct. Yamamoto et al. [20] 
adopted the visualization technique to explore the 
experimental outcome considering the rotation of the three 
walls except the outer-wall. The experimental measurements 
of Yamamoto et al. [20] for small curvature show a good 
agreement with the findings of the present study. At Tr = 150 
and Dn = 114, the experimental and the numerical study shows 
a similar four-vortex solution. The rotational speed and 
curvature are the same for both studies. For negative rotation 
at Tr = -150 and Dn = 153 (Figure 19) both measurement 
shows similar two-vortex solutions, which clearly indicates 
that the present numerical approach is accurate enough to 
predict the transitional behavior of the fluid flow for small 
curvature-shaped duct.  

A relative comparison has been performed for a curved 
rectangular duct with curvature δ = 0.032, and the study did 
not consider any rotation. Figure 20 presents a relative 
comparison of the numerical findings with the experimental 
measurement by Chandratilleke [23]. Both the experimental 
and numerical results show a similar secondary flow pattern. 
The numerical study shows a good match with the different 
published experimental measurement, which proves the 
accuracy of the present numerical study. Note that, till now no 
experimental data is available in literature for rotating curved 
rectangular duct flow. 

 

 
 

Figure 17. Secondary flow comparison for stationary curved 
square duct (CSD) flow. (Left: Experimental data [40] and 

right: numerical by the authors 
 

 
 

Figure 18. Secondary flow comparison for rotating curved 
duct (CD) flow at Tr = 150. (Left: Experimental [20] and 

right: numerical by the authors) 

 
 

Figure 19. Secondary flow comparison for rotating CD flow 
at Tr = -150. (Left: Experimental [20] and right: numerical 

by the authors) 
 

 
 

Figure 20. Secondary flow comparison for stationary CD of 
aspect ratio 2. (Left: Experimental [23] and right: numerical 

by the authors) 
 
 

5. CONCLUSIONS 
 
The present spectral-based approach investigates the fluid 

flow characterization and HT through a rotating CD with small 
curvature. The rotational parameter effects on fluid flow and 
HT are investigated for constant pressure gradient and 
constant Gr. The numerical findings are validated with the 
available experimental data. The following conclusions are 
drawn from the present numerical study: 
• An asymmetric two-branches of solutions are observed 

during the positive rotation of the duct. The solution 
branch consists of two- to four-vortex solutions. 

• For unsteady solutions with positive rotation, flow 
regimes are obtained for different types of physically 
realizable solutions which shows that the unsteady flow 
is a steady solution for 0 < 𝑇𝑇𝑇𝑇 ≤ 490, periodic solution 
for 495 ≤ 𝑇𝑇𝑇𝑇 ≤ 530 , multi-periodic for 540 ≤ 𝑇𝑇𝑇𝑇 ≤
590  and finally chaotic for 600 ≤ 𝑇𝑇𝑇𝑇 ≤ 1500 . For 
negative rotation case, time-dependent solutions show 
that the transient flow is steady-state for −480 ≤ 𝑇𝑇𝑇𝑇 <
0 , periodic oscillating flow for −580 ≤ 𝑇𝑇𝑇𝑇 ≤ −490, 
multi-periodic for −660 ≤ 𝑇𝑇𝑇𝑇 ≤ −590  and irregular 
chaotic oscillation for −1000 ≤ 𝑇𝑇𝑇𝑇 ≤ −675. 

• Convective HT increases with the increase of the 
rotation. The highly complex secondary flow filed is 
developed with higher Tr, and the corresponding Dean 
vortices at the outer side of the wall influences the 
overall HT.  

 
The present study comprehensively performs the fluid flow 

transition and HT through a rotating CD with small curvature. 
The findings of the present study will increase the 
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understanding of the fluid flow and HT through a small-
curvature duct. This study, along with more case studies, will 
improve the understanding of the field.  
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