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 Compared to the existing more elaborate eigenvalues-eigenfunction analytical solution 
where the solution of a thermally developing forced convection problem converges very 
slowly at the beginning of thermal entrant region, Leveque-type similarity transformation 
method provides a more convenient way to look into the insights of the problem. Assuming 
that the wall heat flux and viscous dissipation only has an effect within the thin thermal 
boundary layer at the beginning of the thermal entrance region, this study intends to solve 
the governing thermal energy equation for a thermally developing flow in a parallel plate 
channel, subjected to uniform heat flux, by means of Leveque-type similarity 
transformation. The resulting ordinary differential equation, is subsequently solved by a 
fourth order Runge Kutta method. A comparison of the Nusselt number along the axial 
direction, at the beginning of the thermally developing region with the literature, reveals 
less than 10% discrepancy for Brinkman number less than one, which is a commonly 
acceptable range for practical applications. Although its accuracy depletes downstream the 
channel, similarity transformation provides sufficiently accurate temperature distribution, 
and captures the heat transfer insights for a thermally developing viscous dissipative forced 
convection. 
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1. INTRODUCTION 
 

Laminar forced convective heat transfer commonly 
encountered in heating and cooling related appliances such as 
heat exchanger and heat sink, usually has significant thermal 
entrance effects in view of its relatively larger entrance length 
as compared to heat transfer in turbulent flow. On the other 
hand, the growth in applications of microscale devices in areas 
like biological instrumentation, electronics cooling and so on 
has highlighted the significance of viscous dissipation on 
moderate to high-speed flows in microchannels. 

A number of studies and research has been focused on 
laminar forced convection heat transfer at entrance region. 
One of the pioneering work solved the forced convection of 
laminar flow in a circular tube under the isoflux conditions 
analytically by using a set of eigenvalues and eigenfunctions 
[1]. The study was extended to look into a similar problem for 
parallel plate geometry but applied to ducts with unequal wall 
temperatures [2, 3]. General methods, namely separation of 
variables and the Leveque-type similarity transformation were 
used to derive analytical solutions for the temperature 
distributions of a thermally developing flow within parallel 
plates, subjected to constant heat flux conditions [4]. The 
analytical solution obtained in the form of infinite series, in 
terms of eigenfunctions and eigenvalues, however converges 
very slowly and hence an accurate solution requires an 
exceptionally large number of eigenvalues at the beginning of 
the thermal entrance region. Apparently, the refined Leveque-
type of similarity solution provides a more convenient way to 
determine the temperature field and Nusselt number, without 

losing marked accuracy at the beginning of thermal entrance 
region [5]. In another study, a numerical method is applied to 
investigate forced convection for a mist flow in a concentric 
annuli in the thermal entrance region, revealing the effect of a 
few pertinent parameters in liquid loading parameter, the heat 
sink parameter, the wall superheat parameter, and the radius 
ratio on heat transfer characteristic in mist flow [6]. 
Miniaturization of heat sinks intensify research in thermally 
developing laminar forced convection in recent decades. In a 
related study on Graetz problem, which specifies constant but 
unequal wall temperatures, it was solved numerically using 
Mathematica [7]. Heat transfer of laminar flow in the thermal 
entrance region within rectangular microchannels were 
investigated in various aspect ratios and solved using 
computational fluid dynamics (CFD) [8, 9]. The study 
remarked a rapid decrease in Nusselt number as the flow 
approaches fully developed region. The afore-mentioned 
studies however did not consider the effect of heat generation 
on the temperature field in forced convective heat transfer. The 
emergence of microscale ducts led to more studies on viscous 
dissipation effects in thermally developing flows, either by 
separation of variables or numerical method. An investigation 
on forced convective heat transfer of Poiseuille flow in parallel 
plates, considering the viscous dissipation effect for the 
thermally developing case was solved numerically [10], while 
a thermally developing temperature profile in circular ducts 
and parallel plates was studied numerically, by taking into 
account of the viscous dissipation where the ducts were 
subjected to uniform wall temperature [11]. Forced convective 
thermally developing flow in a circular duct with the viscous 
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dissipation effects under uniform wall temperature boundary 
condition method was later on tackled, by employing 
separation of variables [12]. Another study reported an 
analytical solution obtained by Laplace transform method [13] 
for different thermal boundary condition namely axially-
varying wall heat flux condition. SAR (Successive 
Accelerated Replacement) was implemented to provide the 
numerical solutions for laminar forced convection heat 
transfer, of a thermally developing flow within asymmetrically 
heated parallel plates [14]. Their work was furthered by taking 
into account of the effects of viscous dissipation [15]. In 
another reported study, heat transfer in a thermally developing 
microscale tube was investigated analytically in the slip flow 
region, taking into account of the effects of axial conduction, 
viscous dissipation and rarefaction [16]. The local temperature 
field was obtained in terms of Peclet number, Knudsen number, 
Brinkman number and a parameter affecting the temperature 
jump. Nusselt number was found to decrease with increasing 
Knudsen number due to the effect of temperature jump. The 
effect of viscous dissipation on a laminar flow, in the thermal 
entrance region of a rectangular channel with rounded corners, 
subject to uniform wall temperature was investigated [17]. 
New correlations were developed in the study to predict the 
Poiseuille number and Nusselt number. The aforementioned 
studies on forced convection of thermally developing flow in 
the presence of viscous dissipation are usually analysed, either 
analytically with the use of a huge number of eigenvalues or 
through numerical methods to solve the governing partial 
differential equations at the entrance region. This study will 
look into an alternative way to determine the heat transfer 
coefficient of a laminar viscous dissipative flow at the 
beginning of the thermal entrance region, via Leveque-type 
similarity transformation, which is less studied in such aspects.  

This work contains three subsequent parts, namely Part 2. 
Problem Formulation, Part 3. Results and Discussion, and 
lastly Part 4 on Conclusions. 

 
 

2. PROBLEM FORMULATION 
 
Consider an infinitely long parallel plate channel with 

height 2H, where a constant heat flux 𝑞𝑞𝑤𝑤" is applied to the 
channel wall as shown in Figure 1. A hydrodynamically fully 
developed flow and a uniform inlet fluid temperature 𝑇𝑇𝑜𝑜 , is 
assumed. x axis is defined along the bottom plate in the flow 
direction while y axis originates from the leading edge of 
bottom plate in the transverse direction. Due to symmetry, 
only half of the channel is considered in the subsequent 
analysis.  

 

 
 

Figure 1. Schematic diagram of the problem 

Taking into account of viscous dissipation, the governing 
thermal energy equation assuming a hydrodynamically fully 
developed flow can be expressed as [10]: 
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where, the Poiseuille flow is described as:  
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The corresponding thermal boundary conditions are: 

 
B.C. 1: x=0, 𝑇𝑇 = 𝑇𝑇𝑜𝑜, (3a) 

 
B.C. 2: y=0, −𝑘𝑘 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑞𝑞′′, (3b) 

 
B.C. 3: y=H, 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0. (3c) 

 
By defining  
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and assuming that the thermal boundary layer is much thinner 
than the characteristic height of the parallel plate channel, the 
velocity field is simplified as, 
 

𝑢𝑢
𝑢𝑢𝑚𝑚

≈ 3Y 

 
Eq. (1) may be recast as, 

 

3𝑌𝑌
∂θ
∂X

=
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑌𝑌2

+ 9𝐵𝐵𝐵𝐵, (4) 

 
along with the thermal boundary conditions specified as, 
 

𝑋𝑋 = 0,𝜃𝜃 = 0 (5a) 
 

𝑌𝑌 = 0,
𝜕𝜕𝜃𝜃
𝜕𝜕𝑌𝑌

= −1 (5b) 

 

𝑌𝑌 → ∞,
𝜕𝜕𝜃𝜃
𝜕𝜕𝑌𝑌

= 0 (5c) 
 

Following the assumption made on the velocity, the 
resulting viscous dissipation term in Eq. (4) is a constant and 
according to the method outlined [18], with the understanding 
that the heat generation term diminishes with increasing Y, 
viscous dissipation effect is only restricted within a thin 
thermal boundary layer.  

A new parameter [18], 
 

𝜑𝜑 =
𝑑𝑑𝜃𝜃
𝑑𝑑𝑌𝑌

 
 
is defined to represent the dimensionless heat flux. Eq. (4) may 
be transformed to  
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alongside the boundary conditions stated as 
 

𝑋𝑋 = 0,𝜃𝜃 = 0 (7a) 
 

𝑌𝑌 = 0,𝜑𝜑 = −1 (7b) 
 

𝑌𝑌 → ∞,𝜑𝜑 = 0 (7c) 
 

In order to solve Eq. (6) by means of similarity 
transformation, applied to the beginning of thermally 
developing region where the heat flux and viscous dissipation 
only have an effect on a thin boundary layer, construed as 
much smaller than half the height of the parallel plate channel 
H, a similarity variable, 𝜂𝜂 is next introduced as 
 

𝜂𝜂 =
𝑌𝑌

𝑠𝑠(𝑋𝑋)
 

 
Eq. (6) may hence be transformed to 
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By letting 𝑠𝑠(𝑋𝑋) = (3𝑋𝑋)

1
3, and similarity variable, 𝜂𝜂 = 𝑌𝑌

(3𝑋𝑋)
1
3
, 

Eq. (7) may be simplified to an O.D.E. in the form,  
 

𝜕𝜕2𝜑𝜑
𝜕𝜕𝜂𝜂2

+
∂φ
∂η

�−
1
𝜂𝜂

+ 3𝜂𝜂2� =
𝐾𝐾
𝜂𝜂

 (9) 

 
In Eq. (9), X is assumed as a parameter embedded in 𝐾𝐾 =

9𝐵𝐵𝐵𝐵(3𝑋𝑋)1/3, which incorporates the viscous dissipation effect. 
Eq. (8) is subjected to two boundary conditions designated as  
 

𝜂𝜂 = 0,𝜑𝜑 = −1 (10a) 
 

𝜂𝜂 → ∞,𝜑𝜑 = 0 (10b) 
 

Similarity method outlined in Ref. [18] has been extended 
to viscous dissipative flow in this study and successfully 
converts the governing thermal energy equation to an O.D.E. 
with the assumption that the wall heat flux and viscous 
dissipation only has an effect on the heat transfer within the 
thin thermal boundary layer at the beginning of the thermal 
entrance region. 

Eq. (9) is solved numerically by employing Runge Kutta 
fourth order algorithm, where at the isoflux and adiabatic 
boundaries, 𝜂𝜂 are taken as 1 x 10-5 and 1.5 respectively. Eq. (9) 
is first transformed into first order O.D.E. before applying the 
Runge Kutta fourth order algorithm. The numerical data 
obtained is then recast as a 6th order polynomial function while 
𝜃𝜃 at Y is obtained by integrating 𝜑𝜑 numerically 
 

𝜃𝜃 (𝑌𝑌) = (3𝑋𝑋)1/3 � φ 𝑑𝑑𝜂𝜂
𝜂𝜂

∞
 (11) 

 
The Nusselt number at a specified X is obtained by further 

computing the bulk mean temperature from 𝜃𝜃 relative to 𝜃𝜃𝑤𝑤. 
 

𝑁𝑁𝑢𝑢 =
2

𝜃𝜃𝐵𝐵 − 𝜃𝜃𝑤𝑤
 (12) 

 
 

3. RESULTS AND DISCUSSION 
 

3.1 Verification of results 
 

In order to verify the accuracy of the results using the 
present methodology, Nu computed in this study is compared 
to the literature whereby the Nu in the reported study [19] was 
solved by using an infinite series in terms of eigenvalues and 
eigenfunctions. For comparison purpose, the Nu in the afore-
mentioned study [19] is recast and reduced to the limiting case 
for clear fluid. The Nu presented in Table 1, as a function of 
dimensionless axial distance, X, and with Brinkman number, 
Br as the parameter shows an excellent agreement between the 
present work and the literature at the beginning of the thermal 
entrance region, and up to X=0.08. From Table 1, the 
discrepancy from the literature is -2.06% for Br =0.1 and -8. 
74%, for Br=1 respectively. The accuracy depletes moving 
downstream and with increasing Brinkman number, as shown 
in Table 1. The fully developed distance based on X defined in 
this study is estimated to be about X =0.8 in the literature. 
Therefore, applying similarity transformation to the governing 
thermal energy equation, followed by deploying a fourth order 
Runge Kutta numerical method to solve the resulting O.D.E., 
is able to estimate the temperature field and Nu for a viscous 
dissipative flow with an error of less than 10% for Br spanning 
between 0 and 1, an acceptable range in the practical 
application, and up to 1/10 of the thermally developing region, 
at X=0.08. In view of its simplicity and insights to the problem, 
similarity transformation is a viable solution to this slowly 
converging problem at the beginning of the thermally 
developing region. 

 
Table 1. Nu comparison with the literature 

 
X Br Nu (present study) Nu [19] 

0.00016 0.1 33.70 33.56  
0.0008 0.1 19.42 19.28 
0.0016 0.1 15.30 15.20  
0.008 0.1 8.81 8.77 
0.016 0.1 6.98 6.98  
0.08 

0.8(F.D.)  
0.1 
0.1 

4.28 4.37  
3.553 

0.00016 1 26.80 26.70  
0.0008 1 13.60 13.68  
0.0016 
0.008 

1 
1 

10.00 
4.77 

10.16  
5.04  

0.016 
0.08 

0.8(F.D.) 

1 
1 
1 

3.46 
1.88 

3.75  
2.06  
1.59 

 
3.2 Discussion 

 
The dimensionless heat flux variation with Y is depicted in 

Figure 2, with and without viscous dissipation respectively, 
showing self-similar pattern moving downstream the channel. 
Notably, heat generation in the form of viscous dissipation 
causes an increase in heat flux in the proximity of the wall and 
distorts the self-similar features as X goes up. Figure 3(a) 
depicts that the thermal boundary layer where the heat flux 
penetrates thickens slightly due to viscous dissipation, not so 
significantly as compared to Figure 3(b) where Br is raised to 
1. The parallel curves in the vicinity of the wall indicates the 
wall heat flux diffusion effect with increasing Br, the curves 
display a larger gradient moving away from the wall before 
diminishing towards the centerline, highlighting the presence 
of higher viscous dissipation. As the thermal boundary 

1391



 

thickness grows with increasing Br, but constrained by the 
assumption that H should be much larger than this thickness, 
we expect the accuracy of the results to drop.  
 

 
 

Figure 2. Dimensionless heat flux variation in the transverse 
direction at different X for Br =0 and Br =0.1 

 

 
(a) Br =0.1 and Br =0 up to X=0.016 

 
(b) Br =1, Br=0.1 and Br =0 up to X=0.0016 

 
Figure 3. Dimensionless temperature field along the 

transverse direction at different X 
 

 
 

Figure 4. Dimensionless temperature distributions  
(Relative to wall temperature) along Y at X=0.0008 

Figure 4 shows appreciable change in temperature relative 
to the wall temperature as Br increases to 1, and reveals the 
increase in boundary layer thickness. It is worth mentioning 
that at X=0.0008, the effect of viscous dissipation is restricted 
to thin region next to the wall. From the boundary layer 
thickness, it can be inferred that the thermal entrance length 
for a thermally developing flow with more intense heat 
generation would be smaller, considering that thermally fully 
developed profile in an internal flow is achieved when the 
thermal boundary layer occupies half the height of the channel. 

Figure 5 depicts Nu variation with X, the agreement is 
excellent for Br =0.1. For Br=1, the Nu in this study still 
concurs reasonably well with the Nu in the literature up to 
X=0.08, the underestimation in Nu with increasing X is mainly 
due to linear velocity pattern assumed, which becomes 
erroneous as the thermal boundary layer penetrates further 
above the wall. The viscous dissipation, in turn would affect 
the accuracy of the results adversely as the thermal boundary 
layer thickens, as a result of the less accurate velocity profile 
within the not so thin boundary layer. The diminishing viscous 
dissipation generation moving away from the wall is not 
sufficiently represented within the thicker boundary layer, 
hence causing an overestimation in the heat generation and 
temperature field which renders a smaller Nu. This effect is 
particularly obvious towards X=0.1 in Figure 5. Nonetheless, 
the results in this study are acceptable up to X= 0.08, as 
verified in Section 3.1. The underestimation in Nu is due in 
part to the uniform viscous dissipation assumed in the 
boundary layer. 

 

 
 

Figure 5. Nu variation along X 
 
 

4. CONCLUSIONS 
 
Leveque-type similarity transformation successfully 

converts the thermal energy equation for a viscous dissipative 
thermally developing force convection, subjected to constant 
heat flux, from a P.D.E. to an O.D.E., by defining the heat flux 
as self-similar function and a similarity variable assuming a 
much thinner thermal boundary layer compared to the 
characteristic height of the parallel plate channel, as well as X 
as a parameter in the transformed equation for Brinkman 
number spanning between 0 and 1. The resulting O.D.E. is 
then solved by Runge Kutta fourth order method. Results 
compared to the literature solved in terms of a series of 
eigenvalues and eigenfunctions at the very beginning of the 
thermal entrance region shows good agreement. Constrained 
by the assumptions that requires a thin thermal boundary layer, 
the solution produces larger discrepancy, moving downstream 
the channel and increasing Br. For Br spanning between 0 and 
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1, this method is able to yield Nusselt numbers with errors less 
than 10% for Br =1, up to 1/10 of the fully developed length, 
which is the region that sees the most change in the Nu. 
Conclusively, Leveque-type similarity transformation on the 
governing thermal equation that bears a heat generation term 
for a thermally developing flow is able to produce results 
within reasonable accuracy at the very beginning of the 
thermally developing region, constraint by the thickness of the 
thermal boundary layer. In future, the coupled effects of the 
hydrodynamics development may be looked into. 
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NOMENCLATURE 
 
Br Brinkman number, defined in Eq. (4) 
cp specific heat capacity, J/kg ∙ K 
H half of the height of microchannel (m) 
k thermal conductivity, W/m ∙ K 
Nu Nusselt number, defined in Eq. (12) 
Pe Peclet number 
q" heat flux, W/m2 
T fluid temperature, K 
u axial velocity,m/s 
x axial distance, m 
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X dimensionless axial distance, defined in Eq. 
(5a) 

y vertical distance from the lower wall (m) 
Y dimensionless vertical distance, defined in 

Eq. (4) 
 
Greek symbols 
 
α thermal diffusivity, m2 s⁄  
𝜂𝜂 similarity dimensionless parameter, defined 

in Eq. (8) 

𝜃𝜃 dimensionless temperature, defined in Eq. 
(4) 

𝜇𝜇 viscosity, Pa ∙ s 
𝜌𝜌 density, kg/m3 
𝜑𝜑 dimensionless heat flux, defined in Eq. (6) 
 
Subscripts 
 
𝑏𝑏 bulk mean 
o initial 
𝑤𝑤 wall 
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