

Streamed Video Reconstruction for Firefox Browser Forensics

Mahmoud El-Tayeb1*, Ahmed Taha1, Zaki Taha2

1 Faculty of Computers & Artificial Intelligence, Benha University, Benha 13518, Egypt
2 Faculty of Computer & Information Sciences, Ain Shams University, Cairo 11566, Egypt

Corresponding Author Email: mahmoudtayeb79@gmail.com

https://doi.org/10.18280/isi.260401

ABSTRACT

Received: 12 June 2021

Accepted: 9 August 2021

 In criminal investigations, the digital evidence extracted from social media may provide

exceptional support. Reviewing the history or cache of the web browser may provide a

valuable insight into the activity of the suspect. The growing popularity of Internet video

streaming creates a risk of this technology misuse. There are a few published research on

video reconstruction forensics on the Chrome browser. There is a difference in the methods

applied to reconstruct cached video on Chrome from the methods applied to Firefox or any

browser. Our primary focus in this research is to examine the forensic procedures required

to reconstruct cached video stream data using Twitter and YouTube on the Firefox browser.

Some work has been done to reconstruct a cached video on the Chrome browser, but we

need more work on the rest of the browsers, most notably the Firefox browser used in this

research. Both examination strategies and contemplations displayed are approved and

suitable for the forensic study of various streaming platforms as well as the web browser

caches.

Keywords:

digital forensics, browser cache, social

media (SM), video stream, data fragments,

YouTube, twitter, Firefox

1. INTRODUCTION

Social media content can give extraordinary support to

investigators in the criminal investigation process. It is an

infinite source of information about possible suspects, victims,

and witnesses. It offers a dynamic and new subdivision of data

sources created by individuals. This includes friend lists, text

posts, images, videos, geolocation data, demographic

information, and so forth. Online Social Network (OSN) is a

social structure that contains websites such as Facebook,

Instagram, YouTube, or Twitter [1]. In 2018, about 3.196

billion users actively shared their everyday activities on social

media sites [2]. Video streaming websites currently allow

users to share information and identify (by streaming) video

content provided by others without revealing ownership in

terms of intentionally downloading and saving video content.

Forensic analysis may be necessary to detect any potentially

streaming content. Trials involving social media evidence are

continually growing. 689 cases with social media evidence

were published in 2012 [1]. The information posted on social

media websites about a person, activities, and actions is

sometimes used as a potential tool by investigators to

backtrack a crime. In 2018 [2], the Internet Watch Foundation

highlighted the role of streams depicting child abuse not only

as a primary source of abusive material but also as a secondary

means for imagery to be harvested and subsequently

redistributed. The use of social media evidence is increasing

significantly since 2015 [2]. Fourteen thousand decisions were

discovered in 2016 in one year, only in the US. Nine thousand

five hundred were mainly dependent on social media evidence

among those verdicts [2]. It is needed to manually examine and

extract artifacts from a suspect system and carry out event

reconstruction as part of a digital investigation. The objective

of this research is to analyze and reassemble the forensic

artefacts of cached video streams from the installed Mozilla

Firefox web browser. The study attempts to answer the

following questions: When viewed, is streamed video content

kept on the device? And, if so, can online content that has been

streamed be recovered and displayed? Is it possible to find out

how much of a video has been watched? This research

employed an effective technique to forensically analyze

YouTube/Twitter video streams utilizing Mozilla Firefox

browser as a streaming video content platform. The processes

for testing as well as the outcomes are presented. This research

paper is organized as follows: Section 2 describes previous and

related work in web browser cache reconstruction. Section 3

illustrates the characteristics of the Firefox browser and its

cache structure contents; it also gives an overview of the

concept of video reconstruction. Section 4 discusses the

proposed cached video reconstruction technique using

YouTube/Twitter as a streaming video platform. Section 5

presents the implementation details and experiments we made

on both YouTube & Twitter websites. Section 6 concludes the

paper with some open questions and future work.

2. RELATED WORK

Although there are many types of research in digital

forensics, there has been a small number of published research

on the forensic analysis of video reconstruction. Graeme

Horsman [3] has provided a base for local analysis of video

streams. He highlights investigatory approaches to discover

both extremist videos and hidden communities. He presented

two case studies, one on YouTube and the other on Facebook

Live, both of which rely on single file viewing' as a method of

identifying and authenticating video material. He utilized

Google Chrome browser to view and stream video material.

Ingénierie des Systèmes d’Information
Vol. 26, No. 4, August, 2021, pp. 337-344

Journal homepage: http://iieta.org/journals/isi

337

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.260401&domain=pdf

The authors [4] investigated the possibility of reconstructing a

web page from browser cache using a post-processing

approach without distorting the evidence. It is also checked to

see whether enough information is gathered to construct a web

page. Their study aims to provide a better knowledge of online

page reconstruction based on browser cache. Various browsers

store cache data in different ways. Although browsers differ in

the amount of data types saved, normalized data contains the

same cache data fragments. They also exhibited two methods

of rebuilding websites: pre- and post-processing, however they

were unable to rebuild cache-case video stream material.

Marrington et al. [5] made an experimental methodology to

forensically examine and investigate the forensic remnants of

both installed and portable web browsers. The experiment

tested the privacy of Google Chrome Portable through forensic

analysis of the forensic artifacts left by the portable web

browser on the local hard disk, compared to the artifacts left

by a normal, installed version of Google Chrome. Their

experiment did not show how to reconstruct video stream

content on both installed and portable web browsers. Besides,

a methodology is offered for the analysis of private and

portable artifacts [6]. They showed that further data could be

reconstructed on host computers without the external storage

device being present. The majority of reconstructed artifacts

were discovered in slack/free space, FTK software directories,

and RAM. Their method could not reconstruct video stream

contents on browsers' cache.

3. METHODOLOGY

This section explores the concept of Web caching in general

and Firefox in particular. It discusses the video reconstruction

term; also, it reveals the most significant challenges facing the

reconstruction from Firefox.

3.1 Browser cache

The web browser is a program that allows users to access

web applications and web pages on the Internet. Web browser

usage grows as more online applications are migrated to the

Web in web applications. Browser caching is a mechanism for

temporarily storing files obtained from the visited websites on

a local disk. When the web page is visited again at a later time,

it will load considerably quicker. The data from the online web

page is compared to the data stored in the cache folder by the

web browser. If this web page hasn't changed, the cache or

parts will be used, and the page will be downloaded, displayed,

and most probably cached again. When the browser is closed,

the web cache is saved in a particular location on the hard disk.

Different options like the amount of cache that can be saved

and the cache deletion are available in utmost browsers.

Online and offline caching are the two types of caches known.

Offline caching differs in that the web page developer

specifies which portions of the visited web page are cached.

These elements are defined by the web developer in a manifest

[6], which is a predefined file. When using online caching, the

browser decides what should be cached and what should be

left out.

3.2 Mozilla Firefox

Mozilla Firefox is a free and open-source browser for Mac

OS X, Linux, and Windows [7]. The changes we make in

Firefox, as well as our bookmarks and passwords, are all saved

in the profile folder. A brief look into Firefox's caching folder

reveals three types of files that reassemble the cache data.

There are three cache block files, as well as separate cache data

files and a cache map file. In order to reconstruct web pages

from Firefox Cache data, the cache map file will be the

primary file (see Figure 1). The structure of this map file

includes a file header, followed by allocated space, known

known as “buckets”, which contains information about the

mapping to the cached data. The CACHE MAP file is divided

into 32 buckets and within each bucket there is room for 256

records (total of 8192 records) [4]. Each record represents a

single cached instance of data. A Hash Number, an Eviction

Rank, the Data Location, and the Metadata Location are all 32-

bit integers in a single record.

Figure 1. Mozilla Firefox file cache structure [6]

3.3 Video reconstruction

Video reconstruction is an essential part of any digital

investigation process. It is the process of putting pieces of

evidence together during the initial phases of an investigation

to improve the understanding of what events occurred. This

paper discusses if it is possible to recover the streamed video

content and determines how much of a video has been viewed.

When dealing with the Firefox browser, there are some

challenges. One of them is that no reconstruction experiments

on Twitter and YouTube have been made before on Firefox.

Experiments were only done on Chrome browser [3]. Also,

Chrome's cache file structure differs from Firefox's structure.

Besides, the forensic tools used in recovering Chrome video

are different from the tools in Firefox. The next section

discusses the technique of the proposed cached video

reconstruction.

4. THE PROPOSED TECHNIQUE

This section presents the proposed cached video

reconstruction technique. Figure 2 shows the general stages of

reconstructing cashed video files from the Firefox browser.

The proposed technique consists of three major phases:

Collecting, Analysis, and Recovery phase. Each phase is

illustrated in the following subsections.

4.1 Watching session

A short watching session was performed on the Firefox

browser on PC. After that, the browser was closed, and the

device was turned off and imaged. The grey video bar displays

338

the buffering process when a YouTube / Twitter stream is

playing, according to the initial test. After disconnecting the

Internet connection, some of the buffered portions of the

stream can be replayed. It means that this information is being

replayed from locally stored local content rather than data on

the YouTube / Twitter server (see Figure 3).

Figure 2. The proposed technique of cached video reconstruction

Figure 3. A buffered stream examples

4.2 Collecting phase

This process aims to determine the location of the Firefox

folder cache on the local disk. Cache folder contains various

file types, including audio, video, text, etc. The cached video

is temporarily stored as fragments in the default location of

Firefox on the local disk

"C:\Users\<user>\AppData\Local\Mozilla\Firefox\Profiles

\2mto9q8n.default-release\cache2\entries". Each cached

fragment contains a small part from the cached video stream.

After locating the cache folder, the analysis of folder contents

begins.

4.3 Analysis

The main objective is to analyze the attributes of each

extracted cached Uniform Resource Locator (URL) fragment

before the reassembling phase. This process consists of two

phases: extracting and URL attributes analysis.

4.3.1 Extracting

In this phase, the analyst uses a suitable tool

(MZCacheView version 1.90 [8]) to explore the browser cache

folder's contents depending on its structure. The extracted

fragments are prepared in a separate folder for the next phase.

4.3.2 URL attributes analysis

There are two types of URLs to deal with, the standard and

the cached URL. The standard URL of YouTube/Twitter are

post-fixed with a unique identifier (see Figure 4). The analyst

can use this identifier to search for the video and validate its

content. The cached URL consists of the main attributes to

reconstruct the cached video (see Figure 5). Each cache entry

has its associated cache URL and must be examined to identify

its "fragment order". During the buffering process, data is

stored on the local disk while a YouTube and Twitter stream

is accessed. There are clear differences between the cached

URL of YouTube and Twitter. Unlike Twitter YouTube cache

URL contains a number of attributes. In YouTube, the range

is one of the main attributes to reassemble video fragments. It

determines the frame order in the cached video stream. In

addition, the "dur" attribute refers to the whole length of the

video, not the amount of cached video. In Twitter cached URL,

the value of the cached video clip is always start with zero.

The cached video in the example has a resolution of 720*720

pixels Figure 7. Each cache entry maintains a Multipurpose

Internet Mail Extensions (MIME) type. All MIME types are

managed by the Internet Assigned Numbers Authority (IANA)

[9]. It is developed to support more formats in the form of

image, audio, video, or executable files. Browsers use MIME

to decide how to process a URL rather than file extension. For

example, the MIME Type of a Video Transport Stream File

(TS) format video is "video/MP2T" with "video" being the

type and "MP2T" being the subtype. A slash (/) is used to

separate type from subtype. The (TS) extension is found next

to the video filename.

Figure 4. The standard URL of YouTube & Twitter

339

Figure 5. The cached URL of YouTube and Twitter

4.4 Reassembling

A full cache analysis is required for this process. The

primary focus is to reassemble YouTube/Twitter cached

fragments to build a single concatenated video file. This

process contains two phases: concatenating and rebuilding.

4.4.1 Concatenating

Generally, Reassembling is based on concatenating all the

fragments in sequential/chronological order. YouTube typical

streams have a header frame that indicates the beginning of the

video for a duration of five seconds. Starting with the header,

data fragments must be concatenated in ascending order to

build a single file (see Figure 6). The range variable and its

associated metadata must be reassembled to determine the

order of all fragments and identify their MIME types and

related URLs that contain the range attribute. Reassembling

without the range value is based on guessing the file order.

Attempts with incomplete range or with the wrong order of

stream result in a nonviewable video.

Figure 6. A reconstructed YouTube stream file structure

Twitter stream contains a frame header identifying the video

beginning. Identified with 0-<number> range value via

".MP2T" MIME signature. Each stream portion is in Video

Transport Stream File (TS), a video media storage format [10].

Testing indicates that the header and all fragments have a

length of about three seconds. Reassembling must start in

chronological order from the header file to the second, third

fragment, etc., to build a single file. (See Figure 7).

Figure 7. A structure of the reassembled Twitter stream file

4.4.2 Rebuilding

After concatenating, the fragments must be combined to a

single concatenated file. This can be done using the MoviePy

module. It is a Python module for joining and editing video

files. After the files are merged, a single video file is built and

played using MPC media player software. Reassembling

fragments in the wrong order results in an unplayable stream.

5. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed

technique experimentally. Both YouTube/Twitter have been

tested to reconstruct videos from the Firefox cache folder. As

we aim for experiments to be easily replicated by digital

forensic analysts, we decided to use programs that are used in

many digital forensic laboratories.

5.1 Reconstructing cached video stream on YouTube

The test video stream contained a header frame that defines

the video's start. It can be detected by a range value of 0-

<147011> with WebM signature as shown in (see Table 1).

After reassembling all fragments using both range and

ordering variables, a single built file with a new cached URL

is created. This experiment offers a review of YouTube

streams' impact in the Firefox cache folder. It aims to recover

the video stream on YouTube using the proposed technique.

340

Table 1. The theoretical analysis of YouTube stream

reconstruction

File Order Range (Test video

values)

File Signature

Header 0-147011

0x1A 0xF4 0xDF 0x23

09F

0x62 0x82 0x41 0x01

0x12

0xF7 0x81 0x08 0x42

0x F7

0x41 0x04 0x02 0xF4

0x81

0x08 0x42 0x82 0x84

0x77

0x65 0x62 0x6D 0x42

Fragment

1

147012-212547 -

Fragment

2

212548-354838 -

Fragment

3

354839-404630 -

▪ Instruments

The experiment was done on several machines. Each one

was freshly imaged with an institutional standard operating

environment Windows 10 Pro 64-bit 10.0 Build 17134. The

watching session was carried out on Firefox version 74.0.1 64-

bit. The forensic acquisition was carried out with

MZCacheView.

▪ Experiment

▪ Setup & preparation

The device's hard disk was forensically wiped by

overwriting all sectors several times and re-imaged. This

ensures that no artifacts from the previous web browser

session remained. After booting, Firefox browser

version 74.0.1 64-bit was downloaded using Internet

Explorer browser and installed.

▪ Acquisition

A uniquely identifiable YouTube video URL

https://www.youtube.com/watch?v=DnWs_AFUrNk

played on Firefox as a suitable test video. The browser

was then closed, and the device was shut down, and an

image was created.

▪ Steps & Analysis

All WebM records must be exported using

MZCacheView in order to reconstruct the YouTube

video stream. The video was watched for five minutes.

Testing indicates that there were 24 chunks with a typical

naming convention for the cache file. There was only one

chunk file playable from a total of 28 WebM files (See

Figure 8). All the other 27 WebM chunks returned errors

upon playing. To view the content of the video, all

WebM entries must be concatenated in chronological

order. Each WebM fragment has its URL, examined in

order, starting with the header to identify the fragment

order. A header frame identifies the start of the video in

typical YouTube stream with WebM signature. (See

Figure 9).

Figure 8. All 24 Webm cached fragments on MZCacheView

Figure 9. The cached URL of the header chunk

341

5.2 Reconstructing cached video stream on Twitter

The second experiment aims to analyze Twitter streams'

impact in the Firefox cache and build a single viewable video.

▪ Instruments

The experiment was done on several machines, following

the same steps as the previous study.

▪ Experiment

▪ Setup & preparation

The same measures as in the first experiment have been

taken.

▪ Acquisition

A standard Twitter video URL

https://twitter.com/i/status/1248223164364193795

played on Firefox. After that, the browser was closed,

and the device was turned off and imaged.

▪ Steps & Analysis

As a precaution, to avoid contamination by existing data,

the cache folder was verified as empty. Using

MZCacheView, thirty-nine fragments with ".MP2T"

MIME type have been collected and exported (see Figure

10). The initial test indicates that all files are running,

playing about three seconds from the video stream.

Figure 10. All 39. MP2T cached video chunks on

MZCacheView

As previously, all fragments must be concatenated correctly

to reconstruct the video stream. The associated URL of each

".MP2T" cache entry is required. The header frame has a

starting value of 0-<3000>. Both the range order and the

creation date & time attributes are used to determine frames'

order (see Figure 11). All data fragments must be concatenated

in sequential order, starting with the header. Reassembling

without the range value is unsuccessful and is likely based on

guessing the fragment order. After concatenating, A single

video file is built using Shotcut software and viewed using

MPC-HC media player [11] (see Figure 12).

Figure 11. The characteristics of Twitter header fragment

Figure 12. Playing a single built video file by the MPC-HC

media player

Two case studies are presented within this paper's scope, an

examination of YouTube/Twitter video streams. The

experimental results show that the cached video from the

installed Firefox can be reconstructed. A table with a summary

of the main experimental results is shown in Table 2. The

results obtained can be used to examine other streaming

services and web browser cache characteristics. To test the

scalability, we conducted some experiments on a larger scale

with different machines' scenarios. The goal is to evaluate the

efficiency of the proposed technique and examine its

shortcomings. Over 100 experiments were performed using

the proposed technique on YouTube and Twitter. Five key

scenarios have been applied for multiple videos of varying

lengths and duration. The process of reconstructing cached

videos has begun at different times. (See Table 3).

Table 4 shows the experimental results that have been made

on YouTube/Twitter. The table's main metrics are video

duration, the reconstructed duration, rebuilding process starts,

and usage scenario. Every experiment has its playing scenario.

Adblock Plus [12] add-on has been installed and enabled to

block ads and maintain the experiment's efficiency

temporarily.

Table 2. A comparison between YouTube/Twitter cache characteristics

Comparison YouTube Twitter

The possibility to recover and view

streamed video content
Yes Yes

The capability to figure out how much

of a video has been played
Yes Yes

MIME Type WebM MP2T

The duration of the cached fragments
Only the header file plays five seconds of the streaming

video. The rest returns an error upon playing.

Each chunk plays for about three

seconds of the streaming video.

The main steps of the reassembling

process

• MIME attribute.

• The range ordering variable

• The last accessed date and time.

342

Table 3. A statistical list of cached video reconstruction experiments on YouTube/Twitter

Comparison

Total No. of Videos

YouTube Twitter

52 48

Video Duration

Video ≤ 30 Minutes 10 25

31 Minutes ≤ Video ≤ 119 Minutes 30 16

Video ≥ 120 Minutes 19 12

Video Playing Scenario

Normal watching 15 14

Skipping 8 10

Pausing and resuming 9 13

Commercial Ads enabled 13 8

Closed Captioning (CC) Enabled 7 8

Table 4. Test analysis for YouTube/Twitter stream reconstruction with the usage scenario

 # URL

V
id

e
o

D
u

r
a

ti
o

n

W
a

tc
h

in
g

D
u

r
a

ti
o

n

B
u

ff
e
r
e
d

 B
a

r

T
im

e

T
h

e
 l

e
n

g
th

 o
f

th
e

r
e
co

v
e
re

d

v
id

eo

M
IM

E
 T

y
p

e

N
o

.
o

f

F
r
a
g

m
e
n

ts

R
e
b

u
il

d
in

g

p
r
o

ce
ss

 s
ta

r
t

V
id

e
o

P
la

y
in

g

S
c
e
n

a
r
io

1 https://www.youtube.com/watch?v=ISQVx3tntqM 21:41 21:41 21:41 21:41 WebM 70

After 5

minutes

from

watching

session

Normal

watching

2 https://www.youtube.com/watch?v=mVcZsJpuxec 21:44 18:22 19:12 19:31 WebM 41

After 12

hours

from

watching

session

Skip from

2:15 to

18:00

3 https://www.youtube.com/watch?v=OUYqQcHKtZ8 52:58 42:12 44 :13 44:19 WebM 255

After 3

days

from

watching

session

Pause and

resume

4 https://www.youtube.com/watch?v=yE9TZxevU34 52 :29 52:29
-

2:295
52 :29 WebM 367

After 7

days

from

watching

session

Commercial

Ads enabled

5 https://www.youtube.com/watch?v=TLpbfOJ4bJU 42:25 06:36 07:47 42:25 WebM 29

After 5

hours

from

watching

session

Closed

Captioning

(CC)

Enabled

6 https://twitter.com/engineers_feed/status/1342801199444193280 00:07 00:07 00:07 00:07 MP2T 3

After 5

minutes

from

watching

session

Normal

watching

7 https://twitter.com/i/status/1251243294157348864 02:17 02:07 02:17 02:17 MP2T 79

After 3

days

from

watching

session

Skip from

0:15 to

01:30

8 https://twitter.com/Reuters/status/1343174792699064320 01:21 00:40 00:48 00:50 MP2T 18

After 12

hours

from

watching

session

Pause and

resume

9 https://twitter.com/CNN/status/1342917583859806208 03:58 01:10 01:21 01:46 MP2T 28

After 7

days

from

watching

session

Commercial

Ads enabled

10 https://twitter.com/i/status/1319292428575232000 02:57 02:57 02:57 02:57 MP2T 60

After 24

hours

from

watching

session

Closed

Captioning

(CC)

Enabled

343

6. RESULT AND DISCUSSION

The experiments' results have provided us with valuable

insights into improving the proposed technique. It is noted that

the rebuilding process takes time depending on the cached

video duration and the analyst performance. The following

significant observations were recorded after performing the

experiments: the entire first and fifth videos have been cached

and reconstructed after five minutes of viewing with no errors.

In the 1st experiment, 70 fragments, 49 audio fragments, and

21 video fragments with WebM type were found. In the 6th

experiment, the test video has been recovered after

reassembling three fragments with TS extension. When there

are multiple watched videos cached on the disk, it would be

identified by date and time, and range attributes. In the 2nd and

7th experiments, a skipping video playback scenario has been

implemented at various times. The entire videos have not been

cached, but only what has been watched before and after

skipping was reconstructed. The skipped portions during

online watching have not been cached. In 3 and 8, the test

videos have been paused while playing multiple times. The

aim is to consider the effect of this scenario on the order of the

fragments being cached. It has been examined that there is no

negative impact on the cached stream. All the cached video

fragments have been rebuilt and played without disruption.

Before beginning the 4th and 9th experiments, Adblock Plus

add-on has been disabled. Afterward, the online test videos

have started with ads to figure out how the cached ad video

could be recovered from the cache folder. The ads have been

verified to be located in the same cache folder with a different

URL. It was easy retrieval using the proposed technique.

Closed Captioning (CC) [13] has been enabled in 5 and 10

during watching to see whether or not the subtitle displays

after the reconstruction. It has been found that the cached

videos have been rebuilt with no subtitles. It has also been

detected that the sound plays well after reconstructing, even if

the online video is mute.

7. CONCLUSION AND FUTURE WORK

This paper is considered one of the preliminary

contributions in the video reconstruction field. As online video

streaming becomes more popular, there's a risk of abuse of this

technology. This work provides a basis for local video stream

recovery using the Firefox browser. A proposed technique is

presented for reconstructing cached videos. It implements a

unique way of extracting fragments without compromising on

accuracy and efficiency. Two experiments were made to

demonstrate the feasibility of the proposed technique. The

procedures for testing as well as the results are offered. The

proposed technique applies to a forensic analysis of various

streaming platforms. There is still a scope of improvement in

this technique. This work aims to enable forensic analysts to

ensure effective video reconstruction. It would also be a

compelling resource for law enforcement, digital forensic

experts, and the academic community of digital forensics.

After testing, it is possible to reconstruct the unwatched

content when the user loads a video and pauses it. Future work

involves expanding the framework in two possible directions.

First, extending the analysis into mobile browsers and other

applications such as Twitter, YouTube, etc. Second, testing

various streaming services require further research, such as

Nimo, TikTok, Dailymotion, etc.

REFERENCES

[1] Zhou, C.F. (2017). Handbook of Research on Creative

Problem-Solving Skill Development in Higher

Education: Advances in Higher Education and

Professional Development. Denmark: IGI Global.

https://doi.org/10.4018/978-1-5225-0643-0

[2] IWF. (2018). Trends in Online Child Sexual Exploitation:

Examining the Distribution of Captures of Live-streamed.

Annual Report, Cambridge: The Internet

WatchFoundation.https://www.basw.co.uk/system/files/

resources/Distribution%20of%20Captures%20of%20Li

ve-

streamed%20Child%20Sexual%20Abuse%20FINAL.p

df.

[3] Horsman, G. (2018). Reconstructing streamed video

content: A case study on YouTube and Facebook Live

stream content in the Chrome web browser cache. Digital

Investigation, 26: S30-S37.

https://doi.org/10.1016/j.diin.2018.04.017

[4] Schaap, E., Hoogendoorn, I. (2013). Reconstructing Web

Pages from Browser Cache. University of Amsterdam,

Amsterdam: Neverlands Forensics Institute.

[5] Marrington, A., Baggili, I., Al Ismail, T., Al Kaf, A.

(2013). Portable web browser forensics: A forensic

examination of the privacy benefits of portable web

browsers. In 2012 International Conference on Computer

Systems and Industrial Informatics (ICCSII 2012).

Piscataway, pp. 1-6.

https://doi.org/10.1109/ICCSII.2012.6454516

[6] Shashidharm, N., Ohana, D.J. (2013). Do private and

portable web browsers leave incriminating evidence? A

forensic analysis of residual artifacts from private and

portable web browsing sessions. Proceedings of the 2013

IEEE Security and Privacy Workshops. 1730

Massachusetts Ave., NW Washington, DCUnited States:

IEEE Computer Society, pp. 135-142.

https://doi.org/10.1109/SPW.2013.18

[7] Statcounter. (2021). Browser Market Share Worldwide.

May 11. https://gs.statcounter.com/browser-market-

share#monthly-202006-202105-bar, accessed on June 19,

2021.

[8] NirSoft. (2021). MZCacheView v2.02 - View the cache

files of Firefox Web browsers. June 11.

https://www.nirsoft.net/utils/mozilla_cache_viewer.htm

l, accessed on June 19, 2021.

[9] MIME Media Types. June 11.

https://www.iana.org/assignments/media-types/media-

types.xhtml, accessed on June 19, 2021.

[10] FileInfo. (2021). TS File Extension. June 11.

https://fileinfo.com/extension/ts, accessed on June 19,

2021.

[11] Codec, MPC-HC. (2021). MPC-HC media player

program version 1.7.13.112. June 11. https://mpc-hc.org/,

accessed on June 19, 2021.

[12] Adblock Plus. https://addons.mozilla.org/en-

US/firefox/addon/adblock-plus, accessed on June 16,

2021.

[13] Closed Captioning.

https://en.wikipedia.org/wiki/Subtitle, accessed on June

16, 2021.

344

