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Classifying moving objects in video surveillance can be difficult, and it is challenging to 

classify hard and soft objects with high Accuracy. Here rigid and non-rigid objects are 

limited to vehicles and people. CNN is used for the binary classification of rigid and non-

rigid objects. A deep-learning system using convolutional neural networks was trained 

using python and categorized according to their appearance. The classification is 

supplemented by the use of a data set, which contains two classes of images that are both 

rigid and not rigid that differ by illuminations.  
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1. INTRODUCTION

Detection and classification of rigid and non-rigid objects 

with high Accuracy in video surveillance may be a challenging 

task after taking things like background, brightness, color, or 

environmental condition into consideration as the behavior of 

each rigid and non-rigid body are quite the opposite, it 

becomes tricky to train and let our CNN model know the 

difference between those objects. However, hopefully, CNN 

always acts as a game-changer in these classification tasks. 

One object is classified according to 4 features - color, shape 

and size, movement, and texture [1]. The detected object is 

categorized as human or non-human. It will be based on 

insights matching tactics. Insights are just layouts of 

descriptors with some characteristics. Previous dimension 

models for objects under different classes are kept separate to 

identify the segmented object. The shape is retrieved from the 

segmented object and compared with predefined model 

datasets under the various object classes. 

In this article, we talked about the detection and 

classification of rigid and non-rigid object using CNN, and we 

formed a model and tested 200 images among 2000 images 

from a dataset. The Output of system is rectangular delimiter 

boxes, and it shows the category (class) information of an 

object if it is rigid or not rigid. We first had this complex 

problem of solving the classification scenario between rigid 

and non-rigid bodies. But the solutions we found for these 

problems are not accurate and are not efficient as well, and 

some of those are haarcascade and KNN classifiers and which 

stands as the reason for the conduct of this study and 

experiment using CNN which eventually leads to this article. 

The present document is structured as follows. Section 1 of 

the work has a detailed introduction of our proposed system 

and explains the key concepts involved in our proposed system 

like CNN, rigid, non-rigid. Moreover, we were then followed 

by Section 2, which discusses some work that has already been 

done by some other people which has similarities to our 

proposed work with some identified disadvantages. Moreover, 

in Section 3, the discussion is all about our proposed solution 

for rigid and non-rigid objects classification. This part has a 

detailed walk through of our proposed algorithms with each 

execution step. Section 4 will have a detailed discussion 

regarding our CNN algorithms obtained results and 

performance and results at the train part, test part, and its 

overall Accuracy. Section-5 compares our proposed system 

accuracy with the related algorithms like KNN and 

Haarcascade, which eventually highlights our proposed 

system work. Section 6, the last section, speaks about the 

advantages, results, and improvements of the proposed work 

and points out the gaps of the previous related works we have 

tried to eliminate. The results that CNN showed are 

considerably efficient and much accurate than other 

algorithms with an accuracy of 92% at an epoch rate of 100 

and we can confidently say that it can increase with increased 

dataset and enlarged epoch size. 

2. RELATED WORK

Existing classification methods haven’t progressed into 

their advanced form due to many issues such as low resolution, 

low quality, occlusions, and bad weather environment and 

illumination conditions. Before stepping into the proposed 

approach, let’s compare the proposed approach with two more 

algorithms, some specialized proposed systems for object 

classification, and what imitations of these made us opt for this 

proposed system. We mention only a few of the most relevant 

articles in this area because our method focuses on classifying 

objects from an image [2]. The classification process is split 

into stages K. In each stage k; only one function is evaluated. 

The value of this feature contributes to confidentiality and 

alignment [3]. 

Engel proposed an off line approach to the detection and 

segmentation of non-rigid objects in video based on the 

analysis of 3-D medium offset [4]. In this work [5], a new 

method of detecting no rigid form is implemented by directly 

learning the relative distance in the shape space. No 

assumptions regarding the distribution of form or appearance 

are required in this. CNN has many benefits over traditional 

methods that can be summed up as follows. Detected and 
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classified objects that range from multiple instances. In terms 

of speed, CNN is approximately twice as fast. The efficiency 

of the system is measured in terms of the accurate detection 

that it is performing. More profound architecture offers an 

enhanced expressive ability than traditional shallow methods. 

The base architecture of the CNN is illustrated in the Figure 1. 

It contains the different layers used in the design of an 

NFC.CNN layers include Convolution, ReLU Layer, Max-

pooling, Flattening, and fully connected layer. It is known that 

CNN is the most representative model of deep learning; 

Feature maps refer to the layers within CNN. Each layer is a 

3D matrix, with pixel intensity being the color channel (e.g., 

RGB). The feature maps of the input layer are 3D Matrix. Each 

neuron is connected with two or more adjacent neurons from 

the previous layer, so the Feature Map of any hidden layer is a 

multi-channel image.  

KNN classifier: KNN has been used in measurable 

assessment and example acknowledgment from now inside the 

1970s as a non-parametric strategy. 

Disadvantages: 

 doesn’t function admirably with enormous dataset. 

 doesn’t function admirably with high measurements. 

 Need include scaling. 

 Delicate to uproarious information, missing qualities, 

and Anomalies. 

 

Table 1. KNN performance 

 
Performance 

with different 

metrics 

Actual 

data 

Actual data 

After 

Imputation 

After 

imputation 

and scaling 

Accuracy 71.71 71.32 71.84 

Error 28.29 28.68 28.16 

 

Due to all the drawbacks and lazy performance of KNN-

algorithms, it eventually stands out from our chosen list of 

classification algorithms and eventually due to its drawbacks. 

Its performance has fallen by limiting itself to a minimal 

accuracy, as shown in Table 1. 

Haarcascade Classifier: It is an AI-based methodology 

where course work is prepared from many positive and 

negative pictures. It is then used to recognize objects in other 

images. Detecting a face from an image utilizing Haarcascade 

classifiers requires the resulting steps to be followed [6]. 

Haarcascade is one of those algorithms which can observe 

even the most minor point on an image and makes it helpful 

for the classification process. It detects and classifies real-time 

objects like vehicles and pedestrians using Haarcascade with 

background subtraction technique, but it failed to count the 

detected objects is tedious due to flickering [7]. 

Drawbacks 

 The problem with this implementation was that it had 

been unable to detect side faces. 

 Fails in detecting smaller objects. 

 It will not work on low-quality images. 

 It might not offer you the simplest Accuracy.  

The Table 2 below shows the Accuracy of the haarcascade 

and its error rate on a mean when chosen for object 

classification. The Accuracy seems good when compared with 

the Accuracy and performance of KNN-algorithms but is still 

not the most effective one. As a whole, let us bring the 

downsides of the existing algorithms together. 

 In KNN, the Output depends on the nearest neighbor, 

who eventually is not a good choice. 

 It is more sensitive to distance metrics. 

 Computation time and complexity are more with 

KNN. 

 CNN's Accuracy depends on data quality on a 

majority basis. 

 In KNN, if the K value is chosen in correctly, then 

that leads to either underfitting or overfitting of data. 

 Haarcascades are more likely to be following a false-

positive detection trend. Haarcascades are less accurate and 

fail in detecting objects with low image quality. 

 

Table 2. Accuracy of the HaarCascade classifier 

 

Performace with 

different metrics 

Detection 

rate, % 

False 

alarm 

rate, % 

SW 

Execution 

Time, s 

40 -Stage 87.6 13.5 18.1 

22-Stage 75.2 15.9 24.7 

  

 

3. PROPOSED SYSTEM 
 

As per the downsides of the existing systems that we have 

discussed in the above section, our proposed system must 

resolve those drawbacks and add an advantage to our proposed 

implementation methodology. The statements below are 

advantages that our proposed system deals with. 

 Automatic feature detection without any human 

interference 

 High Accuracy even for the low quality of images  

 The pooling process is an extra advantage that helps 

in dimensionality reduction.  

 The dropout process helps in avoiding overfitting 

Augmentation methodology helps in an increased quantity of 

image sets, which help train the model with every possibility 

of instance. 

CNN's are well suitable for large unstructured data because 

of their computation power. This proposed method has all the 

above methods being implemented in the CNN architecture of 

our proposed model solution. CNN has numerous benefits 

against customary strategies that can be summed up as follows. 

More profound engineering gives an expanded expressive 

ability than customary shallow methods. The essential design 

of the CNN appears in Figure 1. It contains the different layers 

that are utilized in the plan of a CNN. Convolution, 

ReLULayer, MaxPooling, Flattening, fully connected layers 

are the layers of CNN. CNN is the most delegate model of 

profound learning. Each layer of CNN is known as a 

component map. The element guide of the info layer is a 3D 

matrix. The grid pixel forces are distinctive shading channels 

(for example, RGB). The Feature guide of any hidden layer is 

a multi-channel picture, its 'pixel' can be seen as a particular 

feature. Features are separated from the prepared edges, and 

these removed highlights are applied for classification [8]. 

Each neuron is associated with a bit of part of adjoining 

neurons from the past layer; CNN is a broadly utilized neural 

organization design for PC vision-related assignments. CNN 

separates the highlights of pictures naturally; for example, 

significant highlights are recognized by the organization itself. 

Convolutional Layer: The initial layer takes input image 

and performs different convolutional calculations between the 

input and the filter. 

Pooling Layer: It is always important to make your model 

light weighted and make sure it does its work in a faster, efficient 

way, and there comes the pooling in hand for a user. It reduces 

the dimensionality of the feature map and thus helps in 
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reducing the parameters that are required in computing 

calculations for the network and Max pooling is such an 

example that does the process by selecting large elements in 

the selected section of the filter area as shown in Eq. (1). 

 

Output = ((input-kernel_size+2*padding) / (stride)) 

+1 
(1) 

 

Fully Connected Layer: In most Neural networks, this 

FCN is used as an output layer because it gives all the inputs 

to each activation unit of the next layer (most probably an 

output layer). 

Dropout Layer: Sometimes, it is equally important to cut 

down something that is not useful in the process, and Drop out 

Layer does the same in a Neural Network by deactivating 

some neurons at a particular level of architecture by setting up 

the value of those in active neurons to 0. Moreover, one of the 

major reasons is to avoid over fitting the neural network for 

that purpose we will use Eq. (2). 

 

yi = ∑ (𝒘𝒊𝒋, 𝒙𝒋)𝒋  (2) 

 

Activation Functions: An activation function is something 

that defines the Output for the particular node. It defines the 

values as Output as 0 or 1 and sometimes -1 to 1 based on the 

functionality that is shown in Eq. (3). 

 

 
(3) 

 

The Sequential type model is the most commonly used 

model type in python programming. A CNN model is built 

simply in Keras. It allows us to create a layer-by-layer model. 

The “add ()” function is used to add feature layers to the model. 

 

 
 

Figure 1. Basic architecture of CNN 

 

3.1 CNN 

 

As shown in the above Figure 1, A Convolutional Neural 

Network, like wise alluded to as CNN or ConvNet, is one 

among the classes of Neural Network designs that includes a 

specific standard of working and engineering to oblige 

advanced pictures. 

The human mind measures immense amounts of 

information directly from the moment we see an image is in a 

similar way a CNN does its data stockpiling and handling; 

every neuron during a CNN measures information just in its 

responsive field. The layers are organized in such the most 

straightforward manner, so they identify less difficult 

examples first (lines, bends, and so on) and more mind-

boggling designs (faces, objects, and so forth) further along. 

By utilizing a CNN, one can empower the site to PCs. 

 
 

Figure 2. An example image is representing pixel value 

conversion 

 

The above Figure 2 shows how a CNN design attempts to 

remember the data and interaction data of each pixel of the 

picture that is the RGB estimation of that picture at that 

particular pixel level. The convolution layer is the center 

structure square of the CNN. It conveys most of the 

organization's computational load. This layer plays out a speck 

item between two lattices, where one network is that the 

arrangement of learnable boundaries, in any case, is alluded to 

as a bit, and the other grid is that the limited bit of the 

responsive field. The portion is spatially more modest than an 

image however is more top to bottom. This suggests that if the 

picture comprises three (RGB) channels, the part tallness and 

width will be spatially little, yet the profundity stretches out up 

to all or any three channels. If we have a contribution of size 

W x W x D and Dout number of pieces with a spatial size of F 

with step S and measure of cushioning P, at that point, the 

resulting recipe might dictate the size of yield volume as 

shown in Eq. (4). 

 

Wout = (W-F+2P)/+1 (4) 

 

Table 3 shows the architecture of implemented solution. 

 

Table 3. Architecture of the implemented solution 

 
Layer(type) Output Shape Param# 

Conv2d (Conv2D) 
(None, 148, 

148, 32) 
896 

activation (Activation) 
(None, 148, 

148, 32) 
0 

max_pooling2d(MaxPooling2D) 
(None, 74, 74, 

32) 
0 

Conv2d _1(Conv2D) 
(None, 72, 72, 

32) 
9248 

activation_1(Activation) 
(None, 72, 72, 

32) 
0 

max_pooling2d-1(MaxPooling2D) 
(None, 36, 36, 

32) 
0 

Conv2d _2 (Conv2D) 
(None, 34, 34, 

64) 
18496 

activation_2(Activation) 
(None, 34, 34, 

64) 
0 

max_pooling2d- 2 

(MaxPooling2D) 

(None, 17, 17, 

64) 
0 

Flatten (Flatten) (None, 18496) 0 

Dense (Dense) (None, 64) 1183808 

activation_3 (Activation) (None, 64) 0 

dropout (dropout) (None, 64) 0 

activation_4 (Activation) (None, 64) 0 

Total params: 47, 137 

Trainable params:47, 137 

Non-Trainable params:0 

 

Parameter Calculation in CNN: 
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(n *m*l+1)*k (5) 

 

The above Eq. (5) is used to calculate the total number of 

parameters in CNN, where n* and m is the dimensions of the 

filter is the size of the input feature map, and k is the Output 

feature map. The above diagram indicates the complete 

architecture of CNN that has been employed in the proposed 

system, with different kinds of layers being included in 

between. 

 

3.2 Process flow of implementation 

 

The necessary libraries are imported first, and afterward, 

preparing information is given as input utilizing Google drive. 

Google Colab is an online reenactment device for python, and 

the Tensorflow algorithm was used. The algorithm gathers the 

data and gains from it in an exceptionally directed manner. The 

algorithm is alluded to as an administered classification 

algorithm. Then the data streams from different CNN layers 

and different activities are performed on the information. The 

learning rate and callbacks are defined. The number of epochs 

and cluster size are moreover characterized. Epochs are 

executed through which calculation is learned through the 

preparation data. Training exactness and preparing misfortune 

are continually monitored. If the preparation precision is 

beneath the limit, the callback work is conjured, and epochs are 

stopped. After accomplishing better precision, the Confusion 

lattice is plotted utilizing preparing and testing data. Various 

execution boundaries are to be characterized and noticed 

utilizing the array framework. 

The below Figure 3 indicates the method we followed for 

implementation.  

 

Step-1: Import all the desired libraries. 

Step-2: Store the input data in the drive and mount it within 

the notebook file for training purposes. 

Step-3: Data-preprocessing. 

Step-4: Build the CNN model. 

Step-5: Set a learning rate and epoch size. 

Step-6: Run the model (compile). 

To urge Accuracy, the dataset which is of 1000 images of 

which 500 belongs to rigid and the other 500 belongs to non-

rigid and for better model input, it’s better we should 

preprocess the entire dataset according to our model input 

capacity. The accompanying activities are to be administered 

inside the preprocessing phase. Resizing, Grayscale 

conversion, Noise evacuation and morphological operation 

(Dilation and Erosion) and improving precision are essential 

to have a huge dataset. We have been going for a picture 

expansion measure that improves the amount of our dataset for 

excellent preparation progress. The learning rate is one among 

the preeminent significant hyper boundaries to tune for 

preparing profound neural networks. The preparation should 

begin from a similarly tremendous learning rate because, in the 

first place, irregular loads are off from ideal, so the learning 

rate can diminish during the preparation to permit all the more 

fine-grained weight updates. If the learning rate is low, at that 

point, the preparation is more reliable. If the learning rate is 

high, then the preparation probably will not meet or might be 

separate. If the Accuracy is good enough, then plot the 

confusion matrix and save the model, else then change 

learning parameters and run the model again till you achieve 

the most effective or desired Accuracy. A neural network will 

be trained with all its training data once in an epoch. It uses 

everything at once, whether it is a forward pass or a reverse 

pass. Epochs are created of 1 or more batches. 

 

 
 

Figure 3. Flow chart of the object detection 

 

A Callback could be a bunch of capacities to be applied at 

given phases of the preparation methodology. Use callback to 

ask a perspective on inside states and insights of the model 

during training. The most incessant order assessment metric 

that should be is 'Exactness (Accuracy). If the training model 

achieved better Accuracy, it would select a confusion matrix; 

otherwise, it rechecks and defines the callback and learning 

rate. The disarray network helps estimate Recall (likewise 

called Sensitivity), Precision, Specificity, Accuracy, and, 

above all, the AUC-ROC Curve. 

 

3.3 Data analysis 

 

 
 

Figure 4. Graphical representation of data sample 

 

Let’s analyze and understand the actual data distribution of 

our dataset as per the data mentioned in Table 4. 
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Dataset Specification: 

 Number of classes: 2[Rigid, Non-Rigid] 

 All out number of input images: 2000 

 Preparing picture: 1800 

 Testing picture: 200 

 Rigid images: 1000(900+100) 

 Non-Rigid: 1000(900+100) 

 

Class Distribution of Dataset: 

 

Table 4. Distribution of dataset 

 
Class distribution Class 0 Class 1 

Type of Object Non-Rigid Rigid 

No.of Object type 1000(900+100) 1000(900+100) 

 

The above Figure 4 of a baby is an example of how images 

are dimensionally included and to show up their quality. 

 

 

4. RESULTS AND PERFORMANCE 

 

Execution of the classification frameworks is generally 

assessed utilizing the information in the disarray network. A 

disarray grid for four results is given below. How the four 

arrangement measurements are determined (TP, FP, FN, TN) 

and our anticipated worth contrasted with the actual worth in 

a disarray grid are introduced in the accompanying disarray 

framework table. The following equations are used to calculate 

4 key classification metrics as shown in Table 5. 

And when it comes to Accuracy, Accuracy= (TP+TN)/N is 

the parameter of measurement that we take into consideration 

to measure the actual Accuracy of a deep learning model. Now, 

let us see what we have achieved in our proposed system of 

implementation. 

 

Table 5. Classification metrics 
 

Accuracy 

Acc=(TP+TN/(TP+TN+FP+FN) 
Recall Rec=TP/(TP+FN) 

Precision Pre=TP/(TP+FP) 
F1-score 

F1=2/(1/Rec)+(1/Pre) 

 

Input and Output using CNN architecture 

 

The below Figure 5 and Figure 6 indicate the input passed 

to the CNN architecture and output that we have got from it. 

 

 
 

Figure 5. Input Passed to our CNN model 

 

 
 

Figure 6. Output given by our CNN model 
 

  
a. The training accuracy b. The training loss 

  
c. The validation accuracy d. The validation loss 

 

Figure 7. Accuracy and loss of training and validation  
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Figure 8. Accuracy of the both sets training and validation 

 

 
 

Figure 9. Accuracy improvement with change in epoch value 

 

The training accuracy is shown in Figure 7a. Training loss 

is shown in Figure 7b, where the accuracy has been gradually 

increasing, and loss has been falling down the minimal state, 

which is very much considerable the validation accuracy 

which is shown in Figure 7c and validation loss is shown 7d. 

Here, the array contains the sequence of True positive (89), 

True Negative (92), False Positive (8), False-Negative (9). 

The above Figure 8 shows the Accuracy for both the 

training set and validation set that we have got after 100 

epochs of each with 57 as batch size. The performance metrics 

of our CNN model is shown in Table 6. 

 

Table 6. Performance metrics of CNN model 

 
 Precision Recall f1-score Support 

Non-rigid (Class 0) 0.92 0.89 0.9 100 

Rigid (Class 1) 0.89 0.92 0.91 100 

Accuracy   0.91 200 

Macro avg 0.91 0.91 0.9 200 

Weighted avg 0.91 0.91 0.9 200 

 

Table 7. Performance matrix of proposed CNN model 

 
 Precision Recall f1-score Support 

Non-rigid (Class 0) 0.91 0.91 0.91 100 

Rigid (Class 1) 0.91 0.91 0.91 100 

Accuracy   0.91 200 

Macro avg 0.91 0.91 0.91 200 

Weighted avg 0.91 0.91 0.91 200 

Compared with the above results section, we have just 

trained our model with 150 epochs that is shown in Figure 9, 

but we have given the epoch parameter as 150, which 

eventually has brought us this improved accuracy as shown in 

Table 7. 

Also, through the comparison with the results above, we can 

observe the prediction accuracy in the above confusion matrix 

and see what made us achieve that improved performance. 

 

 
 

The above piece of code indicating the confusion matrix 

results we have obtained for our validation set containing 100 

images for both Non-rigid and Rigid individually. 

Compared with the above results section, we have just 

trained our model with 150 epochs, but we have given the 

epoch parameter as 150, which eventually has brought us this 

improved accuracy as shown in Figure 9. 

Table 8 shows the Confusion metrics after 150 epochs. 

 

Table 8. Confusion Matrix on validation set after 150 epochs 

 
Predicted Non-Rigid Rigid Total 

Non-Rigid 91 9 100 

Rigid 9 91 100 
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5. COMPARATIVE STUDY 

 

As we have discussed the other two algorithms. Let us 

compare and see why our algorithm is much better and 

considerable as shown in Table 9. 

 

Table 9. Performance evaluation of three classifiers 

 
Classifier Accuracy 

CNN 0.91 

Haarcascade 0. 87 

KNN 0.671 

 

Our CNN performance stands out from the other 2 

algorithms, and we can even improve our model's Accuracy to 

97 or 98 by including an extra-large dataset or increasing 

learning rate and epoch size or both at a time. 

 

 

6. CONCLUSION 

 

This identification is valuable for assessing the direction of 

the moving vehicles and different Objects. Further work will 

be centered on improving the recognition and classification 

performance. Once the classification is accomplished, further 

work can be carried out the individual distinguishing proof of 

unbending (Rigid) and non-rigid articles like whether an 

inflexible item is a car, bus, or bike. Moreover, the bending 

(non-Rigid) item individual identification whether an 

individual is male or female. We want to make a dataset and 

retrain the organization with this dataset. And at the same time 

there are short span of drawbacks that this particular algorithm 

can exhibit and they are like as the dataset quantity is quite less, 

we can make efforts to gather some extra dataset quantity 

which might increase the accuracy and insight gathering 

capacity of the model and at the same time exhibition can be 

additionally improved by utilizing a much more extensive 

model like GoogleNet or transfer learning can also be applied 

for further efficiency and accuracy. 
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