
Classification of Rigid and Non-Rigid Objects Using CNN

Aparna Gullapelly*, Barnali Gupta Banik

Research Scholar, Department of CSE, Koneru Lakshmaiah Education Foundation, Hyderabad, Telangana 500075, India

Corresponding Author Email: aparnag932012@gmail.com

https://doi.org/10.18280/ria.350409 ABSTRACT

Received: 26 July 2021

Accepted: 12 August 2021

Classifying moving objects in video surveillance can be difficult, and it is challenging to

classify hard and soft objects with high Accuracy. Here rigid and non-rigid objects are

limited to vehicles and people. CNN is used for the binary classification of rigid and non-

rigid objects. A deep-learning system using convolutional neural networks was trained

using python and categorized according to their appearance. The classification is

supplemented by the use of a data set, which contains two classes of images that are both

rigid and not rigid that differ by illuminations.

Keywords:

KNN, Haarcascade, CNN, classification,

rigid, non-rigid

1. INTRODUCTION

Detection and classification of rigid and non-rigid objects

with high Accuracy in video surveillance may be a challenging

task after taking things like background, brightness, color, or

environmental condition into consideration as the behavior of

each rigid and non-rigid body are quite the opposite, it

becomes tricky to train and let our CNN model know the

difference between those objects. However, hopefully, CNN

always acts as a game-changer in these classification tasks.

One object is classified according to 4 features - color, shape

and size, movement, and texture [1]. The detected object is

categorized as human or non-human. It will be based on

insights matching tactics. Insights are just layouts of

descriptors with some characteristics. Previous dimension

models for objects under different classes are kept separate to

identify the segmented object. The shape is retrieved from the

segmented object and compared with predefined model

datasets under the various object classes.

In this article, we talked about the detection and

classification of rigid and non-rigid object using CNN, and we

formed a model and tested 200 images among 2000 images

from a dataset. The Output of system is rectangular delimiter

boxes, and it shows the category (class) information of an

object if it is rigid or not rigid. We first had this complex

problem of solving the classification scenario between rigid

and non-rigid bodies. But the solutions we found for these

problems are not accurate and are not efficient as well, and

some of those are haarcascade and KNN classifiers and which

stands as the reason for the conduct of this study and

experiment using CNN which eventually leads to this article.

The present document is structured as follows. Section 1 of

the work has a detailed introduction of our proposed system

and explains the key concepts involved in our proposed system

like CNN, rigid, non-rigid. Moreover, we were then followed

by Section 2, which discusses some work that has already been

done by some other people which has similarities to our

proposed work with some identified disadvantages. Moreover,

in Section 3, the discussion is all about our proposed solution

for rigid and non-rigid objects classification. This part has a

detailed walk through of our proposed algorithms with each

execution step. Section 4 will have a detailed discussion

regarding our CNN algorithms obtained results and

performance and results at the train part, test part, and its

overall Accuracy. Section-5 compares our proposed system

accuracy with the related algorithms like KNN and

Haarcascade, which eventually highlights our proposed

system work. Section 6, the last section, speaks about the

advantages, results, and improvements of the proposed work

and points out the gaps of the previous related works we have

tried to eliminate. The results that CNN showed are

considerably efficient and much accurate than other

algorithms with an accuracy of 92% at an epoch rate of 100

and we can confidently say that it can increase with increased

dataset and enlarged epoch size.

2. RELATED WORK

Existing classification methods haven’t progressed into

their advanced form due to many issues such as low resolution,

low quality, occlusions, and bad weather environment and

illumination conditions. Before stepping into the proposed

approach, let’s compare the proposed approach with two more

algorithms, some specialized proposed systems for object

classification, and what imitations of these made us opt for this

proposed system. We mention only a few of the most relevant

articles in this area because our method focuses on classifying

objects from an image [2]. The classification process is split

into stages K. In each stage k; only one function is evaluated.

The value of this feature contributes to confidentiality and

alignment [3].

Engel proposed an off line approach to the detection and

segmentation of non-rigid objects in video based on the

analysis of 3-D medium offset [4]. In this work [5], a new

method of detecting no rigid form is implemented by directly

learning the relative distance in the shape space. No

assumptions regarding the distribution of form or appearance

are required in this. CNN has many benefits over traditional

methods that can be summed up as follows. Detected and

Revue d'Intelligence Artificielle
Vol. 35, No. 4, August, 2021, pp. 341-347

Journal homepage: http://iieta.org/journals/ria

341

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.350409&domain=pdf

classified objects that range from multiple instances. In terms

of speed, CNN is approximately twice as fast. The efficiency

of the system is measured in terms of the accurate detection

that it is performing. More profound architecture offers an

enhanced expressive ability than traditional shallow methods.

The base architecture of the CNN is illustrated in the Figure 1.

It contains the different layers used in the design of an

NFC.CNN layers include Convolution, ReLU Layer, Max-

pooling, Flattening, and fully connected layer. It is known that

CNN is the most representative model of deep learning;

Feature maps refer to the layers within CNN. Each layer is a

3D matrix, with pixel intensity being the color channel (e.g.,

RGB). The feature maps of the input layer are 3D Matrix. Each

neuron is connected with two or more adjacent neurons from

the previous layer, so the Feature Map of any hidden layer is a

multi-channel image.

KNN classifier: KNN has been used in measurable

assessment and example acknowledgment from now inside the

1970s as a non-parametric strategy.

Disadvantages:

 doesn’t function admirably with enormous dataset.

 doesn’t function admirably with high measurements.

 Need include scaling.

 Delicate to uproarious information, missing qualities,

and Anomalies.

Table 1. KNN performance

Performance

with different

metrics

Actual

data

Actual data

After

Imputation

After

imputation

and scaling

Accuracy 71.71 71.32 71.84

Error 28.29 28.68 28.16

Due to all the drawbacks and lazy performance of KNN-

algorithms, it eventually stands out from our chosen list of

classification algorithms and eventually due to its drawbacks.

Its performance has fallen by limiting itself to a minimal

accuracy, as shown in Table 1.

Haarcascade Classifier: It is an AI-based methodology

where course work is prepared from many positive and

negative pictures. It is then used to recognize objects in other

images. Detecting a face from an image utilizing Haarcascade

classifiers requires the resulting steps to be followed [6].

Haarcascade is one of those algorithms which can observe

even the most minor point on an image and makes it helpful

for the classification process. It detects and classifies real-time

objects like vehicles and pedestrians using Haarcascade with

background subtraction technique, but it failed to count the

detected objects is tedious due to flickering [7].

Drawbacks

 The problem with this implementation was that it had

been unable to detect side faces.

 Fails in detecting smaller objects.

 It will not work on low-quality images.

 It might not offer you the simplest Accuracy.

The Table 2 below shows the Accuracy of the haarcascade

and its error rate on a mean when chosen for object

classification. The Accuracy seems good when compared with

the Accuracy and performance of KNN-algorithms but is still

not the most effective one. As a whole, let us bring the

downsides of the existing algorithms together.

 In KNN, the Output depends on the nearest neighbor,

who eventually is not a good choice.

 It is more sensitive to distance metrics.

 Computation time and complexity are more with

KNN.

 CNN's Accuracy depends on data quality on a

majority basis.

 In KNN, if the K value is chosen in correctly, then

that leads to either underfitting or overfitting of data.

 Haarcascades are more likely to be following a false-

positive detection trend. Haarcascades are less accurate and

fail in detecting objects with low image quality.

Table 2. Accuracy of the HaarCascade classifier

Performace with

different metrics

Detection

rate, %

False

alarm

rate, %

SW

Execution

Time, s

40 -Stage 87.6 13.5 18.1

22-Stage 75.2 15.9 24.7

3. PROPOSED SYSTEM

As per the downsides of the existing systems that we have

discussed in the above section, our proposed system must

resolve those drawbacks and add an advantage to our proposed

implementation methodology. The statements below are

advantages that our proposed system deals with.

 Automatic feature detection without any human

interference

 High Accuracy even for the low quality of images

 The pooling process is an extra advantage that helps

in dimensionality reduction.

 The dropout process helps in avoiding overfitting

Augmentation methodology helps in an increased quantity of

image sets, which help train the model with every possibility

of instance.

CNN's are well suitable for large unstructured data because

of their computation power. This proposed method has all the

above methods being implemented in the CNN architecture of

our proposed model solution. CNN has numerous benefits

against customary strategies that can be summed up as follows.

More profound engineering gives an expanded expressive

ability than customary shallow methods. The essential design

of the CNN appears in Figure 1. It contains the different layers

that are utilized in the plan of a CNN. Convolution,

ReLULayer, MaxPooling, Flattening, fully connected layers

are the layers of CNN. CNN is the most delegate model of

profound learning. Each layer of CNN is known as a

component map. The element guide of the info layer is a 3D

matrix. The grid pixel forces are distinctive shading channels

(for example, RGB). The Feature guide of any hidden layer is

a multi-channel picture, its 'pixel' can be seen as a particular

feature. Features are separated from the prepared edges, and

these removed highlights are applied for classification [8].

Each neuron is associated with a bit of part of adjoining

neurons from the past layer; CNN is a broadly utilized neural

organization design for PC vision-related assignments. CNN

separates the highlights of pictures naturally; for example,

significant highlights are recognized by the organization itself.

Convolutional Layer: The initial layer takes input image

and performs different convolutional calculations between the

input and the filter.

Pooling Layer: It is always important to make your model

light weighted and make sure it does its work in a faster, efficient

way, and there comes the pooling in hand for a user. It reduces

the dimensionality of the feature map and thus helps in

342

reducing the parameters that are required in computing

calculations for the network and Max pooling is such an

example that does the process by selecting large elements in

the selected section of the filter area as shown in Eq. (1).

Output = ((input-kernel_size+2*padding) / (stride))

+1
(1)

Fully Connected Layer: In most Neural networks, this

FCN is used as an output layer because it gives all the inputs

to each activation unit of the next layer (most probably an

output layer).

Dropout Layer: Sometimes, it is equally important to cut

down something that is not useful in the process, and Drop out

Layer does the same in a Neural Network by deactivating

some neurons at a particular level of architecture by setting up

the value of those in active neurons to 0. Moreover, one of the

major reasons is to avoid over fitting the neural network for

that purpose we will use Eq. (2).

yi = ∑ (𝒘𝒊𝒋, 𝒙𝒋)𝒋 (2)

Activation Functions: An activation function is something

that defines the Output for the particular node. It defines the

values as Output as 0 or 1 and sometimes -1 to 1 based on the

functionality that is shown in Eq. (3).

(3)

The Sequential type model is the most commonly used

model type in python programming. A CNN model is built

simply in Keras. It allows us to create a layer-by-layer model.

The “add ()” function is used to add feature layers to the model.

Figure 1. Basic architecture of CNN

3.1 CNN

As shown in the above Figure 1, A Convolutional Neural

Network, like wise alluded to as CNN or ConvNet, is one

among the classes of Neural Network designs that includes a

specific standard of working and engineering to oblige

advanced pictures.

The human mind measures immense amounts of

information directly from the moment we see an image is in a

similar way a CNN does its data stockpiling and handling;

every neuron during a CNN measures information just in its

responsive field. The layers are organized in such the most

straightforward manner, so they identify less difficult

examples first (lines, bends, and so on) and more mind-

boggling designs (faces, objects, and so forth) further along.

By utilizing a CNN, one can empower the site to PCs.

Figure 2. An example image is representing pixel value

conversion

The above Figure 2 shows how a CNN design attempts to

remember the data and interaction data of each pixel of the

picture that is the RGB estimation of that picture at that

particular pixel level. The convolution layer is the center

structure square of the CNN. It conveys most of the

organization's computational load. This layer plays out a speck

item between two lattices, where one network is that the

arrangement of learnable boundaries, in any case, is alluded to

as a bit, and the other grid is that the limited bit of the

responsive field. The portion is spatially more modest than an

image however is more top to bottom. This suggests that if the

picture comprises three (RGB) channels, the part tallness and

width will be spatially little, yet the profundity stretches out up

to all or any three channels. If we have a contribution of size

W x W x D and Dout number of pieces with a spatial size of F

with step S and measure of cushioning P, at that point, the

resulting recipe might dictate the size of yield volume as

shown in Eq. (4).

Wout = (W-F+2P)/+1 (4)

Table 3 shows the architecture of implemented solution.

Table 3. Architecture of the implemented solution

Layer(type) Output Shape Param#

Conv2d (Conv2D)
(None, 148,

148, 32)
896

activation (Activation)
(None, 148,

148, 32)
0

max_pooling2d(MaxPooling2D)
(None, 74, 74,

32)
0

Conv2d _1(Conv2D)
(None, 72, 72,

32)
9248

activation_1(Activation)
(None, 72, 72,

32)
0

max_pooling2d-1(MaxPooling2D)
(None, 36, 36,

32)
0

Conv2d _2 (Conv2D)
(None, 34, 34,

64)
18496

activation_2(Activation)
(None, 34, 34,

64)
0

max_pooling2d- 2

(MaxPooling2D)

(None, 17, 17,

64)
0

Flatten (Flatten) (None, 18496) 0

Dense (Dense) (None, 64) 1183808

activation_3 (Activation) (None, 64) 0

dropout (dropout) (None, 64) 0

activation_4 (Activation) (None, 64) 0

Total params: 47, 137

Trainable params:47, 137

Non-Trainable params:0

Parameter Calculation in CNN:

343

(n *m*l+1)*k (5)

The above Eq. (5) is used to calculate the total number of

parameters in CNN, where n* and m is the dimensions of the

filter is the size of the input feature map, and k is the Output

feature map. The above diagram indicates the complete

architecture of CNN that has been employed in the proposed

system, with different kinds of layers being included in

between.

3.2 Process flow of implementation

The necessary libraries are imported first, and afterward,

preparing information is given as input utilizing Google drive.

Google Colab is an online reenactment device for python, and

the Tensorflow algorithm was used. The algorithm gathers the

data and gains from it in an exceptionally directed manner. The

algorithm is alluded to as an administered classification

algorithm. Then the data streams from different CNN layers

and different activities are performed on the information. The

learning rate and callbacks are defined. The number of epochs

and cluster size are moreover characterized. Epochs are

executed through which calculation is learned through the

preparation data. Training exactness and preparing misfortune

are continually monitored. If the preparation precision is

beneath the limit, the callback work is conjured, and epochs are

stopped. After accomplishing better precision, the Confusion

lattice is plotted utilizing preparing and testing data. Various

execution boundaries are to be characterized and noticed

utilizing the array framework.

The below Figure 3 indicates the method we followed for

implementation.

Step-1: Import all the desired libraries.

Step-2: Store the input data in the drive and mount it within

the notebook file for training purposes.

Step-3: Data-preprocessing.

Step-4: Build the CNN model.

Step-5: Set a learning rate and epoch size.

Step-6: Run the model (compile).

To urge Accuracy, the dataset which is of 1000 images of

which 500 belongs to rigid and the other 500 belongs to non-

rigid and for better model input, it’s better we should

preprocess the entire dataset according to our model input

capacity. The accompanying activities are to be administered

inside the preprocessing phase. Resizing, Grayscale

conversion, Noise evacuation and morphological operation

(Dilation and Erosion) and improving precision are essential

to have a huge dataset. We have been going for a picture

expansion measure that improves the amount of our dataset for

excellent preparation progress. The learning rate is one among

the preeminent significant hyper boundaries to tune for

preparing profound neural networks. The preparation should

begin from a similarly tremendous learning rate because, in the

first place, irregular loads are off from ideal, so the learning

rate can diminish during the preparation to permit all the more

fine-grained weight updates. If the learning rate is low, at that

point, the preparation is more reliable. If the learning rate is

high, then the preparation probably will not meet or might be

separate. If the Accuracy is good enough, then plot the

confusion matrix and save the model, else then change

learning parameters and run the model again till you achieve

the most effective or desired Accuracy. A neural network will

be trained with all its training data once in an epoch. It uses

everything at once, whether it is a forward pass or a reverse

pass. Epochs are created of 1 or more batches.

Figure 3. Flow chart of the object detection

A Callback could be a bunch of capacities to be applied at

given phases of the preparation methodology. Use callback to

ask a perspective on inside states and insights of the model

during training. The most incessant order assessment metric

that should be is 'Exactness (Accuracy). If the training model

achieved better Accuracy, it would select a confusion matrix;

otherwise, it rechecks and defines the callback and learning

rate. The disarray network helps estimate Recall (likewise

called Sensitivity), Precision, Specificity, Accuracy, and,

above all, the AUC-ROC Curve.

3.3 Data analysis

Figure 4. Graphical representation of data sample

Let’s analyze and understand the actual data distribution of

our dataset as per the data mentioned in Table 4.

344

Dataset Specification:

 Number of classes: 2[Rigid, Non-Rigid]

 All out number of input images: 2000

 Preparing picture: 1800

 Testing picture: 200

 Rigid images: 1000(900+100)

 Non-Rigid: 1000(900+100)

Class Distribution of Dataset:

Table 4. Distribution of dataset

Class distribution Class 0 Class 1

Type of Object Non-Rigid Rigid

No.of Object type 1000(900+100) 1000(900+100)

The above Figure 4 of a baby is an example of how images

are dimensionally included and to show up their quality.

4. RESULTS AND PERFORMANCE

Execution of the classification frameworks is generally

assessed utilizing the information in the disarray network. A

disarray grid for four results is given below. How the four

arrangement measurements are determined (TP, FP, FN, TN)

and our anticipated worth contrasted with the actual worth in

a disarray grid are introduced in the accompanying disarray

framework table. The following equations are used to calculate

4 key classification metrics as shown in Table 5.

And when it comes to Accuracy, Accuracy= (TP+TN)/N is

the parameter of measurement that we take into consideration

to measure the actual Accuracy of a deep learning model. Now,

let us see what we have achieved in our proposed system of

implementation.

Table 5. Classification metrics

Accuracy

Acc=(TP+TN/(TP+TN+FP+FN)
Recall Rec=TP/(TP+FN)

Precision Pre=TP/(TP+FP)
F1-score

F1=2/(1/Rec)+(1/Pre)

Input and Output using CNN architecture

The below Figure 5 and Figure 6 indicate the input passed

to the CNN architecture and output that we have got from it.

Figure 5. Input Passed to our CNN model

Figure 6. Output given by our CNN model

a. The training accuracy b. The training loss

c. The validation accuracy d. The validation loss

Figure 7. Accuracy and loss of training and validation

345

Figure 8. Accuracy of the both sets training and validation

Figure 9. Accuracy improvement with change in epoch value

The training accuracy is shown in Figure 7a. Training loss

is shown in Figure 7b, where the accuracy has been gradually

increasing, and loss has been falling down the minimal state,

which is very much considerable the validation accuracy

which is shown in Figure 7c and validation loss is shown 7d.

Here, the array contains the sequence of True positive (89),

True Negative (92), False Positive (8), False-Negative (9).

The above Figure 8 shows the Accuracy for both the

training set and validation set that we have got after 100

epochs of each with 57 as batch size. The performance metrics

of our CNN model is shown in Table 6.

Table 6. Performance metrics of CNN model

 Precision Recall f1-score Support

Non-rigid (Class 0) 0.92 0.89 0.9 100

Rigid (Class 1) 0.89 0.92 0.91 100

Accuracy 0.91 200

Macro avg 0.91 0.91 0.9 200

Weighted avg 0.91 0.91 0.9 200

Table 7. Performance matrix of proposed CNN model

 Precision Recall f1-score Support

Non-rigid (Class 0) 0.91 0.91 0.91 100

Rigid (Class 1) 0.91 0.91 0.91 100

Accuracy 0.91 200

Macro avg 0.91 0.91 0.91 200

Weighted avg 0.91 0.91 0.91 200

Compared with the above results section, we have just

trained our model with 150 epochs that is shown in Figure 9,

but we have given the epoch parameter as 150, which

eventually has brought us this improved accuracy as shown in

Table 7.

Also, through the comparison with the results above, we can

observe the prediction accuracy in the above confusion matrix

and see what made us achieve that improved performance.

The above piece of code indicating the confusion matrix

results we have obtained for our validation set containing 100

images for both Non-rigid and Rigid individually.

Compared with the above results section, we have just

trained our model with 150 epochs, but we have given the

epoch parameter as 150, which eventually has brought us this

improved accuracy as shown in Figure 9.

Table 8 shows the Confusion metrics after 150 epochs.

Table 8. Confusion Matrix on validation set after 150 epochs

Predicted Non-Rigid Rigid Total

Non-Rigid 91 9 100

Rigid 9 91 100

346

5. COMPARATIVE STUDY

As we have discussed the other two algorithms. Let us

compare and see why our algorithm is much better and

considerable as shown in Table 9.

Table 9. Performance evaluation of three classifiers

Classifier Accuracy

CNN 0.91

Haarcascade 0. 87

KNN 0.671

Our CNN performance stands out from the other 2

algorithms, and we can even improve our model's Accuracy to

97 or 98 by including an extra-large dataset or increasing

learning rate and epoch size or both at a time.

6. CONCLUSION

This identification is valuable for assessing the direction of

the moving vehicles and different Objects. Further work will

be centered on improving the recognition and classification

performance. Once the classification is accomplished, further

work can be carried out the individual distinguishing proof of

unbending (Rigid) and non-rigid articles like whether an

inflexible item is a car, bus, or bike. Moreover, the bending

(non-Rigid) item individual identification whether an

individual is male or female. We want to make a dataset and

retrain the organization with this dataset. And at the same time

there are short span of drawbacks that this particular algorithm

can exhibit and they are like as the dataset quantity is quite less,

we can make efforts to gather some extra dataset quantity

which might increase the accuracy and insight gathering

capacity of the model and at the same time exhibition can be

additionally improved by utilizing a much more extensive

model like GoogleNet or transfer learning can also be applied

for further efficiency and accuracy.

REFERENCES

[1] Ashwini, B., Yuvaraju, B. (2017). Application of

machine learning approach in detection and classification

of cars of an image. International Journal of Signal and

Imaging Systems Engineering, 10(1/2): 8.

https://doi.org/10.1504/ijsise.2017.10005425

[2] Bharath, R.R., Dhivya, G. (2014). Moving object

detection, classification and its parametric evaluation.

International Conference on Information

Communication and Embedded Systems (ICICES2014),

pp. 1-6. https://doi.org/10.1109/icices.2014.7033891

[3] Biswas, P., Prabhakar, G., Rajesh, J., Pandit, K., Halder,

A. (2017). Improving eye gaze controlled car dashboard

using simulated annealing. Proceedings of the 31st

International BCS Human Computer Interaction

Conference (HCI).

https://doi.org/10.14236/ewic/hci2017.39

[4] Engel, J. (2005). "Equipped for Murder": The Paxton

boys and "the spirit of killing all Indians" in Pennsylvania,

1763-1764. Rhetoric & Public Affairs, 8(3): 355-381.

https://doi.org/10.1353/rap.2005.0053

[5] Gautam, A., Singh, S. (2019). Trends in video object

tracking in surveillance: A survey. 2019 Third

International conference on I-SMAC (IoT in Social,

Mobile, Analytics and Cloud) (I-SMAC), pp. 729-733.

https://doi.org/10.1109/I-SMAC47947.2019.9032529

[6] Jang, H., Yang, H.J., Jeong, D.S., Lee, H. (2015). Object

classification using CNN for video traffic detection

system. 2015 21st Korea-Japan Joint Workshop on

Frontiers of Computer Vision (FCV), pp. 1-4.

https://doi.org/10.1109/fcv.2015.7103755

[7] Minarno, A.E., Setiawan Sumadi, F.D., Wibowo, H.,

Munarko, Y. (2020). Classification of batik patterns

using k-nearest neighbor and support vector machine.

Bulletin of Electrical Engineering and Informatics, 9(3):

1260-1267. https://doi.org/10.11591/eei.v9i3.1971

[8] Nannia, L., Ghidoni, S., Brahnam, S. (2020). Ensemble

of convolutional neural networks for bioimage

classification. Applied Computing and Informatics,

17(1): 19-35. https://doi.org/10.1016/j.aci.2018.06.002

347

https://doi.org/10.1109/icices.2014.7033891
https://doi.org/10.14236/ewic/hci2017.39
https://doi.org/10.1353/rap.2005.0053
https://doi.org/10.1109/I-SMAC47947.2019.9032529
https://doi.org/10.1109/fcv.2015.7103755
https://doi.org/10.11591/eei.v9i3.1971
https://doi.org/10.1016/j.aci.2018.06.002

