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Many videos uploaded to online video platforms contain adult content that violates these 

platforms' policies and should be removed immediately. To recognize obscene videos, we 

developed a model that can process video frames in real-time while also adapting to time 

budget or hardware processing capacity. Thus, a deep convolutional neural network with 

multiple outputs was used. A decision-maker module was then designed to decide which 

neural network outputs to process and which label to assign to each frame. Using the 

reinforcement learning method, the decision-maker module is trained based on the results 

of previous frames as well as the results of neural network outputs while keeping the time 

budget in mind. Experiments showed that sacrificing a small amount of accuracy can 

increase speed by up to 4.7 times over the base model. We conclude that using a content 

correlation between consecutive frames not only reduces processing time by eliminating 

unnecessary frame processing but also improves the accuracy of the frame classification. It 

was also discovered that while using more of the previous frames, increases processing 

speed, the error in classifying the frame increases when the scene is changed. 
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1. INTRODUCTION

Broadcasting and watching online videos have expanded 

dramatically as people's access to high-speed and stable 

internet has increased. Some users broadcast nude or porn 

content in online broadcasting services to attract viewers in 

violation of the rules of the service. In addition, some scenes 

in the released movies and tv series may contain adult content. 

Therefore, it is very useful to detect and filter adult scenes 

from movies and tv series being played on home devices. Due 

to a large number of these videos, many experts have 

attempted to detect adult scenes automatically with high 

accuracy and speed [1, 2]. 

In order to design efficient models for recognizing adult 

scenes in a video, two major issues must be addressed: real-

time processing and model adaptability. The acceptable delay 

to the user in live video playback is a few seconds at most. 

Therefore, the processing of these videos should be quick and 

in real-time. An adaptive model means being able to adapt to 

the given requirements. Our proposed model, in particular, is 

intended to perform best under various time constraints. For 

example, when the processing server is overwhelmed by a 

large number of broadcasting users, the time allotted for each 

video is reduced, and our model can adapt to this need and 

process videos with a slight reduction in accuracy without 

significant delay. 

Detecting porn frames in videos on various online platforms 

presents numerous challenges. As the camera moves, the 

frames blur, and their contents are not easily recognizable. 

Also, videos produced by amateur users do not have proper 

lighting, and sometimes they intentionally try to hide the 

pornographic portions of the video between normal parts of 

the video. Furthermore, each video contains a large number of 

frames, which quickly and accurately process all frames is 

very time-consuming. In contrast, there are two features in the 

video that can be used to accelerate the processing of frames. 

There is a semantic relationship between consecutive video 

frames, and identifying each frame can aid in identifying 

subsequent frames. Furthermore, not all frames in a video are 

equally difficult, and some frames can be processed quickly 

using light and fast Convolutional neural networks (CNN). 

Three steps are involved in analyzing adult content in a 

video: 

Extracting and selecting frames: To increase speed, 

Moustafa [3] extracts the video keyframes and only processes 

them. Wehrmann et al. [4] use the Long Short-Term Memory 

(LSTM) network to process all frames sequentially. In our 

method, we intelligently and adaptively select some frames for 

processing based on the time budget and label the remaining 

frames using the previous frames.  

Frame classification: In some methods, hand-crafted 

features were used to classify pornographic or violent frames 

[5-8]. CNN are used in the majority of methods today [1, 3, 9, 

10]. We also used a CNN with several outputs from the middle 

layers to classify video frames due to the high accuracy of deep 

networks.  

Decision: Some methods detect porn video frames and, if 

there are more than a certain number of porn frames, classify 

the entire video as porn [3, 10]. Mallmann et al. [11] process 

video frames in real-time, and blur the pornographic parts of 

each frame. Our method's goal is also to find and filter 

pornographic frames among normal video frames. 

To design the final model, we used a CNN that has four 

outputs from middle layers. Then we designed a decision-

maker module that determines the frame processing path for 

each video frame by viewing the current and previous frames. 

The decision-making module is trained using the 

reinforcement learning algorithm to choose the best CNN 
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output for processing based on the given time budget. We 

describe our contributions below: 

The smart selection of frames: Methods that only process 

keyframes may make mistakes in keyframe extraction. 

Furthermore, an error in the classification of each keyframe 

causes all surrounding frames to be labeled incorrectly. Our 

model considers all frames and only fully processes a 

sufficient number of frames if necessary, deciding on the label 

of the remaining frames with less processing. 

Using past frames information to process the current frame 

more accurately: There is a huge semantic correlation between 

consecutive video frames. When the previous frames were 

processed in our model, the model can process the current 

frame faster and with lighter parts of the CNN, taking into 

account the information from the previous frames. 

Adaptable to time budget or hardware processing capability: 

When the budget is limited, the model employs lighter parts of 

the CNN and processes each frame faster by sacrificing a small 

amount of accuracy. The model can also adapt to slower 

processing hardware and produce the appropriate accuracy for 

real-time processing. For example, our algorithm can process 

programs that are being played on TVs with limited processing 

power. 

The rest of this paper is structured as follows. Section 2 

discusses some of the work in the field of adult image and 

video classification, as well as work to accelerate video 

processing and CNN networks. Section 3 describes the 

model's overall structure before delving into the specifics of 

each of its modules. Section 4 introduces the dataset used, 

followed by an examination of the implementation details and 

results obtained. Section 5 concludes the work and establishes 

guidelines for future works. 
 

 

2. RELATED WORK 
 

2.1 Porn image and video recognition 

 

The early methods of recognizing adult images used hand-

crafted features, such as color, skin, face, and texture [12-14]. 

Some articles used the same methods to classify adult videos 

[5, 6]. In addition to low accuracy in image recognition, these 

methods also consumed a lot of processing time. Hartatik et al. 

[15] presented methods that use low-level features like scale-

invariant feature transform (SIFT) and speeded up robust 

features (SURF). These methods are a little more accurate than 

previous methods in addition to the possibility of classifying 

non-color images. 

Many algorithms today use deep learning methods to 

classify images due to their high accuracy. Mahadeokar and 

Pesavento [16] provided an online tool to identify Not-Safe-

For-Work (NSFW) images called Yahoo Detector. They fine-

tuned the RezNet50 [17] network, previously trained on the 

ImageNet [18] dataset. Yuan and Zhang [10] used the same 

network structure to identify porn scenes on live broadcast 

platforms. These articles show that the CNN methods are far 

more accurate than previous methods. 

In addition to the single frame features, certain articles used 

other features to enhance the accuracy of porn video 

classification. Perez et al. [9] use both static and motion 

features for CNN-based classification of videos. Wang et al. 

[1] use spatial, audio, motion, and temporal feature in live 

video by a multi-modal deep network. They also used the text 

of user comments next to the streaming videos. Adding these 

new features greatly increases the accuracy of video 

classification, but the classification time increases accordingly. 

 

2.2 Speed-up video recognition 

 

CNN processing time is high on conventional CPUs, and as 

network depth is increased to improve network accuracy, this 

processing time increases. Videos also have a high number of 

frames per second, which takes a long time to process. 

Many articles, rather than processing all of the frames of a 

video, extract several keyframes from it and classify the entire 

video based on the keyframes label [3, 19]. With this solution, 

the processing speed will increase, but if the goal is to 

accurately find the porn frames in a video, the overall detection 

accuracy will be very low.  

Devani et al. [7] distribute video frame chunks between 

multiple GPUs to enable real-time processing of the online 

video and filter porn video. In this manner, frames are 

processed in parallel. The parallel processing method 

increases the processing capacity and can be applied to most 

frame processing methods such as our proposed model.  

Shen et al. [20] combined the costly but complete Oracle 

model with a less costly and fast compact model. They built a 

cascade classifier so that if its input belongs to one of the 

frequent classes in the video frame distribution, it returns 

quickly with the compact model's classification result; 

otherwise, it invokes the Oracle model. One of the drawbacks 

of this method is that if the frame is not classified by the 

compact model, it must be processed by the Oracle model from 

the beginning. 

 

2.3 Speed-up CNN classifier 

 

To improve the speed of static CNN, networks with lighter 

structures have been proposed. These networks, in addition to 

being faster, can also be implemented on low-processing 

power hardware [21-24]. 

Input-dependent methods have also been proposed to 

increase the processing speed of images in deep convolutional 

networks. For different input images, Bengio et al. [25] 

remove unnecessary nodes from the layers, it is like drop-out 

nodes in CNN but in an input-dependent way. Lin et al. try to 

eliminate some CNN layers to reduce computation. Using the 

reinforcement learning method, they pruned the CNN layer by 

layer [26, 27]. The agent evaluates each convolutional kernel's 

importance and performs channel-wise pruning based on 

different samples. Berestizshevsky and Even [28] built a 

cascading structure using several outputs from the CNN 

middle layers, and at each output, the processing of each 

sample is terminated if its accuracy exceeds a threshold value. 

Bolukbasi et al. [29] used a CNN with multiple outputs from 

the middle layers. The module then decides whether to 

continue or stop image processing based on each output result. 

This way, images that are correctly classified in the first layers 

will not go to the next layers. In the Mazinani et al. [30] 

method, a selector module selects one of the CNN outputs for 

processing based on the time budget given for each image, and 

after viewing the result, determines a new output for 

processing if necessary. 
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3. METHODOLOGY 

 

3.1 Model overview 

 

We present an adaptive method for real-time classifying 

video frames. We show video frames processing time for our 

model as follow: 

 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑡′) =
∑ 𝐹𝑛

𝑁
𝑛=1 (𝑡′). 𝑇(𝑥𝑛|𝑡′, 𝑥𝑛−1) + 𝑇𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛−𝑚𝑎𝑘𝑒𝑟(𝑡′)  

(1) 

 

𝐹𝑛(𝑡′) = {
1 𝑛 − 𝑡ℎ 𝑓𝑟𝑎𝑚𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑,
0 𝑛 − 𝑡ℎ 𝑓𝑟𝑎𝑚𝑒 𝑛𝑜𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑

 (2) 

 

where, 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑡′) is the total processing time for 

all frames given time budget 𝑡′ , 𝑁  is the number of video 

frames, 𝐹𝑛(𝑡′) is the coefficient that determines whether the 

frame number 𝑛  needs to be processed or not. If the time 

budget is limited, the decision-maker estimates the label of 

some frames using the previous frame, and sets the 𝐹𝑛(𝑡′) 

coefficient for the frame 𝑛 to 0. 𝑇(𝑥𝑛|𝑡′, 𝑥𝑛−1) is the classifier 

processing time for input frame 𝑥𝑛 given previous frame 𝑥𝑛−1, 

and time budget 𝑡′, and 𝑇𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛−𝑚𝑎𝑘𝑒𝑟(𝑡′) is processing time 

of our decision-maker module given time budget 𝑡′ . The 

decision-maker at runtime is defined as a series of rules that 

are very fast and its processing time can be ignored. 

Another way to reduce processing time is to use the method 

proposed by X. In this method, the CNN classifier uses only 

part of its layers to process simpler frames, thus reduce overall 

processing time. In addition to the difficulty and ease of the 

frame, our decision-maker also considers the previous frames’ 

labels, so the need to process the CNN layers will be even less. 

The general processing time of each frame 𝑇(𝑥𝑛|𝑡′, 𝑥𝑛−1) in 

our model is shown below. 

 

𝑇(𝑥𝑛|𝑡′, 𝑥𝑛−1) = ∑ 𝑃𝑙

𝐿

𝑙=1

(𝑥𝑛|𝑡′, 𝑥𝑛−1). 𝑇𝑙  (3) 

 

𝑃𝑙(𝑥𝑛|𝑡′, 𝑥𝑛−1) = {
1 𝑙 − 𝑡ℎ 𝑙𝑎𝑦𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑,
0 𝑙 − 𝑡ℎ 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑

 (4) 

 

where, 𝐿 is the number of CNN layers, 𝑇𝑙  is the processing 

time of the 𝑙 − 𝑡ℎ layer, and 𝑃𝑙(𝑥𝑛|𝑡′, 𝑥𝑛−1) is the coefficient 

that determines whether the 𝑙 − 𝑡ℎ layer needs to be processed 

or not. If we want to use the maximum CNN capability, this 

coefficient is equal to 1 for all layers, and therefore all layers 

are processed, but in simpler frames, this coefficient can be 0 

for many layers. 

The final model consists of three main modules, which are 

shown in Figure 1. The first module is the time budget 

estimator, which specifies the time budget required for real-

time processing based on hardware limitations and subsequent 

unprocessed frames. We describe its detail in Section 3.2. The 

next module is the CNN classifier. This classifier gets input 

frames and specifies its label, but unlike other CNNs, it has 

four different outputs, each with different accuracy and 

processing times. The specifications of our CNN classifier are 

described in Section 3.3. The principal module of our model is 

the decision-maker. This module specifies the final video 

frame label, based on observing the previous frames label, the 

CNN different outputs, and time budget. Our decision-maker 

is a reinforcement learning agent; We describe its algorithm in 

Section 3.4. 

3.2 Time budget estimator 

 

The time budget estimator module determines the 𝑡′ value 

in Eq. (1) so that the entire video can be processed in real-time. 

𝑡′ is the average time given for processing each frame, and we 

specify this value as follows: 

 
𝑡′ = 𝑀𝑖𝑛(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 𝑏𝑢𝑑𝑔𝑒𝑡, 𝐹𝑟𝑎𝑚𝑒 𝑏𝑢𝑓𝑓𝑒𝑟 𝑏𝑢𝑑𝑔𝑒𝑡)) (5) 

 

𝐹𝑟𝑎𝑚𝑒 𝑏𝑢𝑓𝑓𝑒𝑟 𝑏𝑢𝑑𝑔𝑒𝑡 = 
𝐹𝑟𝑎𝑚𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒 𝑑𝑒𝑙𝑎𝑦 − 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑓𝑟𝑎𝑚𝑒𝑠

𝑣𝑖𝑑𝑒𝑜 𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒
 

(6) 

 

Here, the External time budget is a budget that is determined 

from outside the model. This value is determined based on the 

processing power of the hardware or the computational load 

sent to the server. For example, in an online streaming server, 

when the number of online users increases, the time budget for 

each video decreases so that there is no delay in processing the 

entire video. The Frame buffer budget is a time budget that 

assures us that video frames are processed with very low 

latency and in real-time. We set the total budget 𝑡′  to the 

minimum of these two parameters so that we do not exceed 

any of these time constraints. 

 

 
 

Figure 1. The overview structure of our real-time and 

adaptive model for porn frames detection in video 

 

As shown in Figure 1, video streaming frames are first 

placed in a buffer and then sent to the CNN classifier for 

processing. The size of this buffer is determined based on the 

acceptable amount of frame delay in online video streaming. 

Frame tolerable delay is an acceptable number of frame delays 

in Eq. (6), and Remaining frames is the number of remaining 

frames in the buffer. The Frame buffer budget is obtained by 

dividing the remaining buffer capacity by the 

𝑣𝑖𝑑𝑒𝑜 𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒. If the video frames are simple and fast to 

process, the buffer space will be emptier, and therefore more 

time budget will be available for processing the remaining 

frames. 

 

3.3 CNN classifier 

 

For the CNN classifier module, we used the network 

provided by Mazinani et al. [30]. The main structure of this 

network consists of the VGG-F network [31], then three 
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outputs are added to its middle layers. We show the structure 

of the layers of this network in Figure 2. 

Shallower outputs, such as Output 1 and Output 2, use fewer  

convolutional layers, so they are faster but less accurate. 

Instead, deeper outputs such as output 3 and output 4 are 

slower and more accurate. 

 

 
 

Figure 2. CNN classifier structure presented by Mazinani et 

al. [30] 

 

This network has four outputs, with the specifications for 

each layer written next to it. In the middle layer specifications, 

the first two numbers are the size of the filter, and the next 

number is the number of input channels. 

 

3.4 Decision-maker 

 

The decision-maker is the core of our model. It learns to 

controls the CNN classifier and to choose the best frame label. 

The decision-maker receives the time budget from the "time 

budget estimator" module. Considering the time budget, it 

performs three main tasks: 

The decision-maker takes the result of the previous frames 

and decides whether the current frame needs to be processed. 

For example, if the time budget is very low and the classifier 

has chosen the previous frame label with high confidence, the 

decision-maker can estimate the current frame label without 

processing. 

The decision-maker determines whether or not to process 

the frame further based on the outcome of the previous frames 

and the processed outputs from the CNN. For example, if the 

frame is processed with lighter parts of the CNN (early layers) 

and the label obtained in processing the current frame is the 

same as the previous frames label, the decision-maker can 

specify the result and terminate the processing. 

Finally, the decision-maker selects the final frame label 

based on the previous frames label and the various network 

outputs. It should be noted that the CNN outputs and the output 

of the previous frames may differ. In this case, the decision-

maker selects the most appropriate label based on prior 

experience. 

The designed decision-maker is a reinforcement learning 

agent, and we train it using the Q-learning algorithm. Figure 3 

shows a simplified form of our reinforcement learning 

structure. The action 𝑎0 refers to selecting the previous frame 

(Z). If this frame is labeled R1, the agent will enter the state Z 

= R1, otherwise it will enter the state Z = R2. In the next step, 

the agent can select one of the CNN outputs for processing 

(action 𝑎1  and 𝑎2) or specify the image label (action 𝑎3  and 

𝑎4). 

 

 
 

Figure 3. The simplified form of our reinforcement learning 

structure  

 

The red circles represent actions, and the rectangles 

represent various states. In this simple model, it is assumed 

that the network has only two outputs. Also, only some states 

are shown as examples. 

The concepts of action, state, and reward function will be 

explained in detail for a complete description of the decision-

maker algorithm. 

 

3.4.1 Action 

Our agent can make different choices for processing or 

labeling frames. We have defined each of these choices as an 

action in our reinforcement learning model. Actions are 

divided into three categories: selecting previous frames, 

selecting CNN outputs, and selecting final labels. We show 

our actions as follows: 

 

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑓𝑟𝑎𝑚𝑒𝑠 = {𝑎0, . . . , 𝑎𝑁𝑍−1} 

𝐶𝑁𝑁 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 = {𝑎𝑁𝑍 , . . . , 𝑎𝑁𝑍+𝑁𝑂−1} 

𝑙𝑎𝑏𝑒𝑙𝑠 = {𝑎𝑁𝑍+𝑁𝑂 , . . . , 𝑎𝑁𝑍+𝑁𝑂+𝑁𝐶−1} 

(7) 

 

where, NZ is the number of previous frames that the agent can 

consider, NO is the number of CNN output, and NC is the 

number of labels (classes). In our model the agent checks up 

to 3 previous frames (NZ=3), our CNN classifier has 4 outputs 

(NO=3), and the classes are divided into two labels, normal 

and porn (NC=2). So, the total number of actions is equal to 

NZ+NO+NC=9. 

 

3.4.2 State 

Based on the outcome of each action, we reach one of the 

states. For example, if the agent examines the previous frame, 

one of two different labels is selected. Therefore, each of these 

labels can be considered as a state. Also, for more accuracy, 

we consider the degree of confidence of the classifier to its 
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output. For this purpose, a score is calculated for each label, 

and then, these scores are divided into four parts (Based on 

various trials and errors, the best number of parts is four). 

These parts are porn label with high confidence (𝑅1), porn 

label with low confidence ( 𝑅2 ), normal label with low 

confidence (𝑅3), and normal label with high confidence (𝑅4). 

In Section 3.5, we will explain how to calculate label scores in 

detail. We specify the middle states based on the actions as 

follows: 

 
𝑠𝑡𝑎𝑡𝑒 = {𝑆𝑎0

, 𝑆𝑎1
, . . . , 𝑆𝑎𝑁𝑍+𝑁𝑂−1

, 𝑆𝐿𝑎𝑏𝑒𝑙} (8) 

 
𝑆𝑎𝑛

= {𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑈𝑁𝐾𝑁𝑂𝑊𝑁} (9) 

 
𝑆𝐿𝑎𝑏𝑒𝑙 = {𝑝𝑜𝑟𝑛, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑈𝑁𝐾𝑁𝑂𝑊𝑁} (10) 

 

where, 𝑆𝑎𝑛
 specifies the states created by the 𝑎𝑛  action. By 

performing the actions, these states are determined with 

𝑅1, 𝑅2, 𝑅3, or 𝑅4, otherwise, the states are determined with 

𝑈𝑁𝐾𝑁𝑂𝑊𝑁. 𝑆𝐿𝑎𝑏𝑒𝑙  specifies the states created by selecting 

the label 𝑝𝑜𝑟𝑛 or 𝑛𝑜𝑟𝑚𝑎𝑙, and if the label is not selected this 

parameter is 𝑈𝑁𝐾𝑁𝑂𝑊𝑁.  

Based on agent actions, we defined states. Agent actions 

include selecting one of the previous frames or CNN outputs, 

as well as selecting the frame label. Therefore, we show each 

state by Eq. (8). Each action, according to Eq. (9), generates a 

new state based on the output result. For example, when the 

agent selects the second output, the CNN result may be in the 

confidence range of R1, R2, etc., each of which creates a 

separate state. As a result, multiplying the number of different 

parts for each action yields the total number of states. 

Furthermore, as shown in Eq. (10) the new state is created 

based on the label selection, so all states must be multiplied by 

the number of labels plus 𝑈𝑁𝐾𝑁𝑂𝑊𝑁 label. The total number 

of states of our reinforcement learning model is: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 = (𝑁𝑝𝑎𝑟𝑡𝑠 + 1)(𝑁𝑍+𝑁𝑂). (𝑁𝐿𝑎𝑏𝑒𝑙 + 1)

= (4 + 1)(3+4). (2 + 1) = 234375
 (11) 

 

where, 𝑁𝑝𝑎𝑟𝑡𝑠  is the number of score parts, 𝑁𝑍  is the 

maximum number of previous frames that the agent can 

consider (𝑁𝑍 = 3), 𝑁𝑂 is the number of CNN output (𝑁𝑂 =
4), 𝑁𝐿𝑎𝑏𝑒𝑙  is the number of labels (𝑁𝐶 = 2). Because the 

number of states is 234375, which is not a large number, 

training the reinforcement learning model can be 

accomplished using standard Q-learning methods. 

 

3.4.3 Reward 

The agent moves from one state to another by performing 

an action 𝑎𝑛. The agent receives a reward for the execution of 

this action and aims to maximize its overall reward. For this 

purpose, in the Q-learning algorithm, a value is defined for 

each pair of states and actions, which are stored in the q-table. 

In any state, by choosing the highest value, the highest reward 

can be achieved in the future steps. To train our model and 

update the values in the q-table, we use the following formula 

provided by Watkins and Dayan [32]: 

 
𝑄𝑛𝑒𝑤 (𝑠𝑡 , 𝑎𝑡) ← 𝑄𝑜𝑙𝑑(𝑠𝑡, 𝑎𝑡) +

𝛼. (𝑅𝑒𝑤𝑎𝑟𝑑𝑡 + 𝛾. 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄𝑜𝑙𝑑(𝑠𝑡, 𝑎𝑡))
 (12) 

 

Here, 𝑄(𝑠𝑡 , 𝑎𝑡) is the value in the q-table for pair of state 𝑠𝑡 

and action 𝑎𝑡 , coefficient 𝛼  and 𝛾  are learning rate and 

discount factor respectively, 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) is the estimate 

of optimal future value from state 𝑠𝑡+1, and 𝑅𝑒𝑤𝑎𝑟𝑑𝑡 is the 

reward achieved by taking action 𝑎𝑡 in state 𝑠𝑡. We used the 

idea used [30, 33] to consider the accuracy and the processing 

time of the algorithm at the same time. Therefore, we define 

our reward function as follows: 

 
𝑅𝑒𝑤𝑎𝑟𝑑𝑡 = 𝑙𝑎𝑏𝑒𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠𝑡 − 𝜆. 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒𝑡 (13) 

 

We show the processing time of executing each action 𝑎𝑡 

from state 𝑠𝑡 with the 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒𝑡. Since the past frame has 

already been processed, executing 𝑎0 does not cost time. Also, 

choosing a frame label does not cost much time. In these two 

cases, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒𝑡 = 0. But when one of the CNN outputs 

is chosen for processing, convolution layers need to be 

processed, which includes the main processing time of the 

frame. Deeper CNN outputs contain more layers and therefore 

more processing time. In each state, if actions 𝑎6  or 𝑎7  are 

chosen, the final frame label is selected by the agent. If this 

selection is correct, we set the 𝑙𝑎𝑏𝑒𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠𝑡  value to a 

positive constant number and otherwise to a negative constant 

number. The 𝜆 coefficient determines the trade-off between 

processing time and processing accuracy. As the 𝜆 coefficient 

increases, the importance of processing time increases, the 

model is trained to be faster but its accuracy is slightly reduced. 

 

3.5 Scoring method 

 

In addition to what label the classifier assigns to each frame, 

the classifier's degree of confidence in the declared label is 

also important. At each CNN output, there is a layer called 

SoftMax that assigns a probability to each label. 

Berestizshevsky and Even [28] suggest that this probability 

can be considered as the network's confidence in its output. 

Since the direct use of this probability number greatly 

increases the number of states, it is necessary to quantize these 

values. Different values (such as: 60%, 70%, 80% and 90%) 

were tested for the confidence interval division threshold on 

the test data and the best threshold value was selected between 

these values. So, for each label, we assign the probability of 

greater than 70% as high confidence and less as low 

confidence.  

The agent selects CNN outputs then by observing the 

SoftMax layer, it obtains the confidence value in addition to 

the label. But the agent faces two major problems in examining 

the past frames.  

Since the previous frames label was chosen by the decision-

maker module, it does not have a score or a confidence value. 

If we use only the assigned label, the probability of 

propagating an error will be very high. We know that the label 

of a frame is most likely the same as the label of the previous 

frames. The agent also considers this information according to 

the observation of training data. If the time budget is low, the 

agent will use the selected label from the previous frame. If the 

agent selects the wrong label for the previous frame, it will 

also make a mistake in selecting the current frame label. The 

same goes for error propagation for subsequent frames. 

To solve the stated problems, the agent checks the previous 

frames and considers the label, only if it is obtained by 

calculating the outputs of the CNN. This reduces the 

possibility of error propagation. 

Also, to obtain the value of confidence, the agent considers 

the confidence of the deepest CNN output as the confidence of 

the previous frames. The accuracy of lighter layers is lower 

than deeper layers, and the confidence expressed by them is 
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also less accurate. Therefore, we define a scoring function to 

consider the accuracy of each CNN output. The accuracy of 

each CNN output is its accuracy on the validation dataset. The  

scoring function is described below: 

 
𝑆𝑐𝑜𝑟𝑒 = ((𝑠𝑎𝑚𝑝𝑙𝑒𝑖 − 0.5) ∗ (𝑜𝑢𝑡𝐴𝑐𝑐𝑜 + 1 − 𝑚𝑎𝑥𝐴𝑐𝑐))

+ 0.5 
(14) 

 

where, 𝑠𝑎𝑚𝑝𝑙𝑒𝑖 is the value of softmax output for sample 𝑖, 
𝑜𝑢𝑡𝐴𝑐𝑐𝑜  is the accuracy for output 𝑐  of the CNN, and 

𝑚𝑎𝑥𝐴𝑐𝑐 is the accuracy of the deepest layer of the CNN. The 

deepest layer has the maximum accuracy and by this equation, 

we don’t penalize it. According to this equation, the less 

accurate a network output is, the more it will be penalized and 

the lower the score for that output. If the output value of the 

SoftMax layer is higher than 0.5, the label is porn otherwise 

the label is normal. Therefore, before applying the penalty, we 

normalize the output value of the SoftMax layer between -0.5 

and +5. The results of the scoring method will be shown in 

Section 4.3. 

 

 

4. RESULTS AND ANALYSIS 

 

4.1 Dataset 

 

We used the Noktedan [34] dataset to train our CNN. This 

dataset consists of 18,000 challenging images from around the 

web and social networks. Photos for the dataset were chosen 

to contain both simple and hard-to-classify images. We 

expanded this dataset to 30,800 images by adding frames from 

various movies and TV series. Which is divided into two sets: 

training set including 22,200 images and test set including 

8,600 images.  

To train and test the decision-maker model, we need a set of 

consecutive frames. So, we collected videos from movies and 

TV series. These videos were chosen from movies intended 

for mature, adult audiences, and some of them contain sexual 

content. The video dataset contains a total of 182,200 frames, 

85,800 of which were extracted from the training set videos 

and 96,400 from the test set videos. 

 

 
 

Figure 4. Examples of frames in image and video dataset. 

Rows (a) and (c) show the normal class, and rows (b) and (d) 

show the porn class 

 

Figure 4 shows examples of frames in the dataset. In row (a) 

where normal frames are shown, some frames are very easily 

recognized. For example, an image with no humans and is 

clear is placed in the normal class with minimal processing. 

Some frames, however, are more difficult to recognize, such 

as those in which the camera is moving and the image is 

blurred. Some of the images in row (b) are simple, while others 

aren't. For example, it is more difficult to recognize those in 

crowded areas where only a small portion of the image 

contains a nude image, or in a dark frame where pornographic 

parts are not visible. Columns in rows (c) and (d) show frames 

from a video that first the frame is in the normal class and after 

a few frames by moving the actor or changing clothes or 

moving the camera, the frame is changed and placed in the 

porn class. The dataset can be downloaded from here 

(https://doi.org/10.6084/m9.figshare.14495367.v1). 

 

4.2 CNN classifier training 

 

The image dataset was used to train the CNN classifier. We 

used the weights of a previously trained network (trained with 

the Noktedan [34] dataset) to fine-tune this network with our 

new data. We resized all of the images to 224x224 and used 

the data augmentation technique to improve CNN training. 

Table 1 displays the test results of different network outputs 

on test data from the image dataset.  

 

Table 1. The accuracy and the processing time of the CNN 

outputs on test data on the image dataset 

 

Output name Accuracy (%) Time (ms) 

Output 1 72.8 4.65 

Output 2 78.2 12.03 

Output 3 83.0 17.27 

Output 4 86.8 33.36 

 

4.3 Results 

 

We use the video dataset to train the decision-maker. As 

mentioned in Section 3.5, to train the reinforcement learning 

model by the q-learning method, the CNN outputs must be 

quantized into four intervals. Output numbers are divided into 

the following intervals: 

 

𝑝𝑜𝑟𝑛 𝑙𝑎𝑏𝑒𝑙 = {𝑅1 = [0,0.3], 𝑅2 = (0.3,0.5]} 

𝑛𝑜𝑟𝑚𝑎𝑙 𝑙𝑎𝑏𝑒𝑙 = {𝑅3 = (0.5,0.7], 𝑅4 = (0.7,1]} 
(15) 

 

We used two different approaches to make use of the 

information of the previous frames. In the first method, which 

we call the simple model, we use the data of the previous frame 

only if it was generated by the latest CNN output. The last 

output is the most accurate, but early outputs may not produce 

accurate results. In the second method, we used the previous 

frames scoring method to use all the CNN outputs. We use Eq. 

(14) to calculate the score. During the test, the score of each 

frame is calculated for use in the next frame. 

For proper decision-maker training in the score-based 

model, we increase the training data to include all possible 

states. For a case where the previous frame was not processed 

by CNN, we consider the previous frame score 𝑈𝑁𝐾𝑁𝑂𝑊𝑁. 

For example, in a model that considers only one past frame, 

Since the previous frame can be processed by any of the CNN 

outputs, for each frame we consider four different cases for the 

previous frame. We process each of the CNN outputs for one 

frame and assign its score to the next frame. This will result in 

a fivefold increase in the training set (the training set will be 

equal to 429,000 samples). 

Figure 5 depicts the superiority of our score-based method 

over other methods. The points in this chart represent the 

accuracy of each model based on the time budget allotted. The 

286



 

blue line is the base model, which specifies the accuracy of 

each CNN output based on processing time. 

 

 
 

Figure 5. Accuracy versus time budget for different models 

on video dataset (test set) 

 

We change the value of the 𝜆 parameter in Eq. (13) to obtain 

the accuracy of other models based on different time budgets. 

By reducing this parameter, the importance of processing time 

becomes less important than the accuracy of the results, 

causing the model to be trained to spend more time and 

achieve greater accuracy. As a result, different points will be 

obtained based on different time budgets. 

The maximum processing time per frame is 35 milliseconds, 

so the frame buffer in a video that runs at 30 frames per second 

will never be filled. Therefore, only the 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 𝑏𝑢𝑑𝑔𝑒𝑡 determines the time budget by Eq. (5). 

The brown line represents the Shen et al. [20] method. In 

this method, a simple and fast CNN classifier is used first, and 

if the result accuracy is not satisfactory, a complete and costly 

model called Oracle is used. For a better comparison, instead 

of the simple model, we used our first CNN output, which is 

the fastest output, and instead Oracle model, we used our last 

CNN output, which is the most accurate output.  

The purple line shows the Berestizshevsky and Even [28] 

model. This model is a cascade model in which each frame is 

processed by the next output of the CNN if the output accuracy 

is less than the threshold value.  

The orange line shows the Mazinani et al. [30] model. This 

model does not consider previous frame information, and the 

increase in speed is because simple images are processed with 

fewer layers of the CNN. In most of the given time budgets, 

this model outperformed the base model. 

The red line shows our simple model. This model only 

considers previous frame information if the previous frame 

was processed by the deepest CNN output. When the time 

budget is low, the deepest output is usually not processed, so 

the accuracy of this model is comparable to that of the 

Mazinani et al. [30] model in this case. But with the increase 

of time budget and increasing use of the deepest CNN output, 

the use of the previous frame is increased and the accuracy of 

the simple model is much higher than the previous models so 

that by spending 18.6 milliseconds, its accuracy is equal to the 

deepest CNN output (with a time of 35 milliseconds). 

Our score-based model is drawn by the green line. This 

model employs the scoring function to make use of any data 

from the previous frame. So even at much lower budgets than 

other models, it can produce accurate results. When the budget 

is very limited, and the previous frame information is reliable, 

the model does not process the current frame and instead uses 

the previous frame to specify the current frame label. As a 

result, in time budgets where previous models could not even 

produce any results (time budget less than 4.65 milliseconds), 

this method can produce an accurate result (up to 2X speed-

up). The use of the past two and three frames is indicated by 

gray and yellow lines, respectively. It is clear that with the 

increase in the use of past frames, the processing speed has 

increased. 

We calculated the area under the curve for the various 

models in Figure 5 and show it in Table 2 to thoroughly 

compare the models and show which model is generally 

superior to the others. 

 

Table 2. The area under the curve for all models in accuracy 

versus time budget chart 

 

Model 
Area under the 

curve 

Speed-

up 

Base network 327.7 1 

Shen et al. [20]  317.1 1.04 

Berestizshevsky and Even 

[28] 
391 1.28 

Mazinani et al. [30] 386.5 1.5 

Our simple model 413 1.8 

Our score-based model  

(1 past frame) 
629.2 2.75 

Our score-based model  

(2 past frame) 
714.3 3.61 

Our score-based model  

(3 past frame) 
742.7 4.7 

 

The score-based model clearly outperforms other models in 

the area under the curve. In the last column of the table, we 

also displayed the speed-up relative to the deepest CNN output 

for various models. The highest accuracy of each model is 

used for this comparison; the difference in accuracy is less 

than 1 percent and negligible. According to this table, the final 

score-based model (3 past frames) increased the speed by 4.7 

times while maintaining the final accuracy. However, this 

increase in speed has drawbacks, which will be discussed in 

the following section. 

 

4.4 Accuracy after changing the scene content 

 

As shown in the previous section, the classification 

accuracy improves as more past frames are used, but the 

selected label becomes more dependent on the label of the 

previous frames. As a result, when the content of the scene 

changes, identifying the next frames becomes more difficult. 

We introduce a new criterion to detect this error in our 

presented models. We report the accuracy of the first two 

frames after changing the frame label in Figure 6. The green 

line represents the frame processing time for different models 

with an accuracy of nearly 86%. The blue columns represent 

total accuracy, while the yellow columns represent accuracy 

on the two frames after changing the scene content.  

Both accuracies are close to 86% in the base model, at 33.36 

milliseconds. As the use of previous frames increases, the 

accuracy on the first frames after a changed scene decreases. 

As a result, the accuracy of models that use the past two or 

three frames is less than 50%. So, when the label is changed, 
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these models will almost certainly select the incorrect label for 

the frames. If this error is significant in an application, the best 

model is to use a single previous frame. 

 

 
 

Figure 6. Accuracy on the first two frames after changing the 

label 

 

4.5 Analysis of results 

 

The results obtained in the previous section showed that due 

to the high semantic correlation between consecutive frames, 

the use of previous frame information increased the accuracy 

and speed of classification. For a more detailed analysis of the 

score-based model (1 past frame), we show the amount of one 

past frame usage and CNN outputs usage in Figure 7. This 

value is expressed as a probability and indicates the proportion 

of each output or past frame used. 

The purple line indicates the use of the previous frame. 

Since the previous frame is already processed, there is no cost 

in using it to process the current frame, so the decision-maker 

module uses the previous frame's information for all given 

time budgets. Only when the given time is maximum, the 

probability of using the previous frame is close to zero. When 

the time budget is not limited, the decision-maker uses the 

maximum output power of CNN. It is also possible that the 

content of the frame has changed from the previous frame. 

Therefore, the decision-maker in the training process has 

concluded that using the past frame does not help to increase 

accuracy in this case. 

 

 
 

Figure 7. Probability of using the previous frame and each 

CNN output versus the given time budget for the score-based 

method 

The deepest and most accurate output of CNN (output 4) is 

marked in yellow. As the time budget has increased, so has the 

use of this output to improve accuracy, to the point where the 

probability of use is equal to one and this output is used to 

process all frames.  

As shown in the figure, faster CNN outputs (output 1 and 

output 2) are used in very limited time budgets. As the given 

time increases, the use of slower but more accurate outputs 

(output 3 and output 4) becomes more. Convolution layers are 

common between the last outputs and the previous outputs. So, 

the last outputs have the information of the previous outputs 

as well. Therefore, if the decision-maker uses deeper outputs, 

it reduces the possibility of using the previous outputs. 

 

 

5. CONCLUSION 

 

This paper aimed to present a model that can process video 

frames in real-time and detect pornographic frames while also 

being adaptive, that is, adaptable to hardware or time 

constraints. For this purpose, a decision-maker with a 

reinforcement learning structure was designed that by 

simultaneously considering the accuracy and processing time, 

could meet both of these goals well. To extract the appropriate 

label for each frame of video, the decision-maker considers 

both the previous frame and the appropriate CNN outputs for 

processing in order to perform the best classification in the 

given time budget. Based on the results, it was found that 

intelligent use of the past frame can greatly increase the speed 

and accuracy of frame recognition. 

In the future, we plan to design a decision-maker that can 

reprocess past frames or even check future frames. If there is 

enough time, the decision-maker can reprocess the previously 

unprocessed frame, and increase classification accuracy. 
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