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 The classification of ovarian cancer types is a very challenging process for physicians’ eyes. 

To solve this problem, this article proposes a new deep learner, which classifies ovarian 

cancer types from Computerized Tomography (CT) images. Firstly, a Deep Convolutional 

Neural Network (DCNN) model depending on AlexNet is proposed to categorize ovarian 

cancer from CT images. But its efficiency is not satisfactorily high. So, DCNN is built 

based on the fusion of AlexNet, VGG, and GoogLeNet. The fusion is carried out at the 

SoftMax layer by fusing the SoftMax values of each network structure using a weighted 

sum to obtain the overall classification outcome. But overfitting problems can occur due to 

an inadequate number of training images. Thus, a Deep Semi-Supervised Generative 

Learning with DCNN model (DSSGL-DCNN) is proposed by using a Generative 

Adversarial Network (GAN) which augments the training samples to solve the overfitting 

problem. Once the augmented dataset is obtained, the fused DCNN model is learned to 

classify ovarian cancer types. Further, the classified outcomes can be used as a useful 

guideline for physicians in medical diagnosis. Finally, the experimental results show that 

the DSSGL-DCNN achieves higher efficiency compared to the other DCNN architectures. 
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1. INTRODUCTION 

 

Among various kinds of cancer, ovarian cancer is the most 

widespread gynecologic malignancy. It accounts for 2.3% of 

all tumor mortality [1]. It has the maximum death rate among 

all the gynecologic malignancies because most of the tumors 

are not diagnosed at an earlier stage. Effective chemotherapy 

applied to diagnose metastasized tumors is also crucial for 

enhancing the survival rate of ovarian cancer patients after 

surgery to remove major ovarian tumors. But a cancer 

diagnosis is a very complicated process that is vulnerable to 

human and training variation. Initially, a biopsy of abnormal 

cells is performed. After that, morphological and genetic 

analyses are executed. Such analyses are carried out on 

unstable scenarios to eliminate errors; however, false alarms 

still exist [2]. The most reliable approach to decrease tumor 

mortality is to recognize it sooner. With the advancement of 

medical imaging, bioengineering studies have explored the use 

of different imaging modalities and deep learning models to 

assist the early detection provided by physicians [3]. 

Fusion of images captured from various imaging modalities 

and encouraging modern developments in imaging techniques 

which improve the accuracy of ovarian cancer classification in 

the area of Artificial Intelligence (AI) for computer vision 

purposes, where AI is combined with the imaging modalities 

to create Computer-Aided Diagnosis (CAD) systems [4]. 

Recently, deep learning models using CT images have allowed 

the diagnosis to be highly efficient and also eliminate death 

rates and diagnostic delay. The key benefit of deep learning is 

the extraction of relevant knowledge from a vast quantity of 

data and its probabilities. Also, CT images have many 

advantages, such as broad availability, better reproducibility, 

highly cost-effective, and quick image scanning time. So, CT 

images are used in recent medicinal practice for ovarian cancer 

classification and diagnosis. Over the past few years, CNN has 

been widely developed to classify and diagnose different types 

of cancers, such as brain, liver, skin, etc., from CT images [5]. 

But there is no effective classifier to categorize and diagnose 

ovarian cancer from CT images. 

Therefore, this article initially proposes a DCNN model 

depending on AlexNet for categorizing ovarian cancer from 

CT images automatically. It encompasses 5 convolutional 

layers, 3 max-pooling layers and 2 reconnect layers. This 

model is learned from a given CT image dataset to categorize 

the variety of ovarian cancers. But its efficiency is not satisfied 

sufficiently. So, DCNN is built based on the fusion of three 

different structures, such as AlexNet, VGG, and GoogLeNet. 

Here, the results obtained from the last softmax layers of each 

network structure are fused by the weighted sum to obtain the 

ultimate classification outcome. Conversely, an overfitting 

problem can occur due to an inadequate number of training 

images. As a result, a DSSGL-DCNN model is proposed by 

using a GAN to solve the overfitting and data imbalance 

problems. The GAN is applied as an image augmentation 

method which increases the training samples for classification. 

Once the data augmentation is completed, the training image 

samples are fed to the DCNN based on fused architecture to 

train the model. After that, this trained model is used for 

categorizing the test samples into different categories of 

ovarian cancer. Thus, this DSSGL-DCNN based on fused 

architecture can enhance the accuracy of classifying ovarian 

cancer types from CT images. 

Section 2 studies various deep learning models for 

classifying a variety of cancers. Section 3 explains the 
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methodology of the DSSGL-DCNN model for ovarian cancer 

classification and Section 4 shows its efficiency. Section 5 

summarizes the article and suggests future enhancements. 

 

 

2. LITERATURE SURVEY 
 

Liao et al. [6] designed a new multi-task deep learning 

algorithm for classifying multiple cancers concurrently and 

enhancing the classifier efficiency of every cancer via 

leveraging the knowledge through shared layers. In this 

algorithm, the data across various processes was shared via 

configuring a shared hidden layer. It was constructed by 

considering 2 hidden layers and a softmax output layer. Also, 

the ReLU and sigmoid activation functions were selected in 

the hidden layers and the output layer, accordingly. It achieved 

a mean accuracy of 98.5%. However, it needs to classify more 

samples and enhance the classifier’s efficiency. 

Burlina et al. [7] designed a DCNN model to predict the 

acute Lyme syndrome from erythema migrans images under 

varied circumstances. In this model, a cross-sectional image 

database was taken into consideration to learn the DCNN and 

categorize erythema migrans vs. tinea corporis, herpes zoster, 

and ordinary non-pathogenic skin. It had an accuracy of 

86.53%, an AUC of 0.951 and a kappa of 0.7143. But its 

efficiency may be affected by classifying irrelevant images. 

Hosny et al. [8] suggested an automated skin lesion 

categorization using transfer learning and pre-trained Deep 

Neural Network (DNN). Here, transfer learning was employed 

on the AlexNet in various modes: i) changing the architecture 

weights, ii) modifying the classification layer with a softmax, 

and iii) expanding the dataset through constant and random 

steps. The softmax was used for the classification of 

melanoma, seborrheic keratosis, and nevus. It achieved a mean 

accuracy of 95.91% for the ISIC dataset. On the other hand, it 

has less efficiency for larger quantities of images. 

Li et al. [9] proposed pulmonary nodule recognition from 

thoracic MR images. In this technique, a faster Residual-CNN 

was designed by using the optimized parameters, a spatial 3-

channel input structure, and transfer learning for finding the 

lung nodule regions. After that, a False Positive (FP) 

minimization method was proposed based on the anatomical 

features for minimizing the FPs and preserving the true 

nodules. It achieved a sensitivity of 85.2% with 3.47 false 

positives per image. But a few small and low contrast nodules 

were not identified. Also, a few artifacts and juxta heart tissues 

were wrongly identified as nodules. 

Ozdemir et al. [10] proposed a novel end-to-end 

probabilistic diagnostic system using 3D DCNN for lung 

cancer detection and diagnosis. This system has two major 

modules, namely a CADe module and a CADx module. The 

CADe module was used for detecting and segmenting 

suspicious lung nodules, whereas the CADx module was 

applied for performing both nodule-level analysis and patient-

level malignancy classification by analyzing the suspicious 

lesions from CADe. It attained a maximum AUC of 0.885, 

which indicates that the model and data uncertainties provide 

a valuable measure to identify patients. However, the 

efficiency was limited when the large nodule annotations were 

not enough. 

Joyseeree et al. [11] suggested a new technique for 

classifying the different tags of infected and healthy 

pulmonary tissues from CT according to the concatenation of 

Riesz and deep features. Initially, discriminative parametric 

pulmonary tissue texture signs were trained from Riesz 

interpretations via a 1-vs.-1 method. The signs were created 

for different categories of tissues. Then, features from deep 

CNNs were computed by fine-tuning the inception V3 

framework via augmented images. Finally, these trained 

interpretations were merged into a mutual softmax for 

classifying the lung tissues. It realized a mean accuracy of 

74.4%, which was not highly effective. 

Ge et al. [12] developed a novel pneumonia prediction 

framework for patients with acute ischaemic stroke using a 

different machine and deep learning algorithm. Initially, a 

dataset was collected which included a set of stroke patients 

with and without pneumonia. Then, the time-sensitive features 

were extracted and fed to the linear regression, SVM, Extreme 

Gradient Boosting (XGBoost), Multi-Layer Perceptron (MLP), 

and Recurrent Neural Network (RNN) for classifying 

pneumonia within different time windows. It achieved an 

AUC of 0.928 and 0.905 for pneumonia prediction within 7 

days and 14 days, respectively. But it needs to categorize other 

types of diseases or cancers. 

Dong et al. [13] recommended the Hybridized Fully CNN 

(HFCNN) to segment and predict liver cancer from CT images. 

During training, the CT images were collected and improved 

through data augmentation. Then, the features were extracted 

via training different layers of CNNs. During classification, a 

texture classifier was applied to differentiate usual and unusual 

hepatic lesions. Also, the abstract operations were used to 

separate Hepatocellular Carcinoma (HCC), liver cysts, and 

hemangiomas abnormal hepatic lesions for predicting liver 

cancer. It has a mean dice coefficient of 0.92 and has very 

precise liver volume measurements of 97.22%. But it 

considers only a limited amount of data to validate its 

efficiency.  

Wu et al. [14] developed a DCNN fused with SVM to 

segment brain cancer images with the aid of three different 

processes. First, a DCNN was trained to learn the mapping 

from image space to cancer sign space. Then, the DCNN 

outcomes were given as input to the integrated SVM classifier 

with the testing images. Further, a DCNN and an integrated 

SVM were merged in sequence for training a deep classifier. 

It achieved a sensitivity of 92.4%, which was higher than the 

separate SVM and CNN. But its computation and processing 

time were high. Dutta et al. [15] designed an efficient CNN 

model for forecasting coronary artery syndrome. First, the 

Least Absolute Shrinkage and Selection Operator (LASSO)-

based attribute weight estimation with majority voting was 

used to select the essential attributes. Then, these essential 

features were homogenized via a fully connected layer for 

forecasting coronary artery syndrome. Its balanced accuracy 

was 79.5%, but it has a high computational cost while 

increasing the number of neurons in each layer. 

Yaar et al. [16] suggested a new DNN framework for 

forecasting chemo-sensitivity in ovarian cancer patients. It 

depends on Multiple Instance Learning (MIL) and an 

alternated Learning using Privileged Information (LUPI). 

LUPI was used to facilitate the data exchange of very useful 

privileged attributes which were obtainable only at the training 

phase. Also, this model was learned from the Hematoxylin and 

Eosin (H&E) stained multi-gigapixel Whole-Slide Images 

(WSIs) of ovarian cancer tissue patches and their related 

genomic expression data and the privileged attribute space. An 

improved generalization was achieved via cross-domain data 

exchange with a new mixture of MIL and LUPI. It has an 

average AUC-ROC of 0.8. But it considers a small dataset for 
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evaluating the efficiency. 

 

 

3. PROPOSED METHODOLOGY 
 

In this section, the ovarian cancer classification from CT 

images using DCNN-AlexNet, DCNN-Fusion, and DSSGL-

DCNN models is explained briefly. The key concept of this 

work is to use the ensemble deep learning classifier and 

classify ovarian tumor categories automatically. Due to the 

inadequate number of training samples, the learning of DCNN 

structures is not highly effective. So, by augmenting the 

training samples using DSSGL, the learning efficiency for 

DCNN structures is also increased, which results in high 

classification accuracy. 

 

3.1 DCNN-AlexNet for ovarian cancer classification 

 

DCNN is built based on AlexNet for automatically 

categorizing ovarian cancer CT images. The block diagram of 

the DCNN-AlexNet model for classifying ovarian cancer 

categories is depicted in Figure 1. 

This structure comprises 5 convolutional, 3 max-pooling 

and 2 complete reconnect layers. Every layer is followed by 

the Rectified Linear Unit (ReLU) as the activation factor. Also, 

3 max-pooling layers with a dimension of 3*3 pixels and stride 

2 are applied to minimize the image dimension, which is the 

input of the next convolutional layer. Two fully connected 

layers comprising a huge number of neurons are applied at the 

end of DCNN. Since a fully connected layer engages most of 

the parameters, it is prone to overfitting. To solve the 

overfitting problem, a dropout strategy is employed and the 

dropout rate is 50%. The output is the likelihood determined 

by the SoftMax function for seven ovarian cancer categories, 

such as ovarian epithelial cancer, germ cell tumors, sex cord-

stromal tumors, serous carcinoma, mucinous carcinoma, 

endometrioid carcinoma, and clear cell carcinoma. 

Initially, the input image of dimension 227*227*3 is fed to 

the initial convolutional layer with 96 filters of 11*11 

dimensions and consisting of similar padding and a stride of 4. 

The outcome of the initial layer is passed to the max-pooling 

layer (3*3) with a stride of 2 to reduce the feature map size, 

followed by the consecutive convolutional layers with 256, 

(5*5) filters and equal padding, i.e., the outcome height and 

width are retained as the prior layer, so the outcome from this 

layer is 27*27*256. The other convolutional function with 284, 

(3*3) filters consisting of equal padding is applied twice, 

providing the outcome of 13*13*384, followed by the other 

convolutional layer with 256, (3*3) filters and equal padding 

resulting in 6*6*256. Moreover, the flattening out is applied 

and 2 FC layers with 4096 neurons are further linked to the 7 

unit SoftMax layer to categorize into 7 classes. This SoftMax 

layer gives the probabilities for every class to which an input 

image might belong. 

 

 
 

Figure 1. AlexNet-based DCNN for ovarian cancer classification 

 

3.2 DCNN-fused architecture for ovarian cancer 

classification 

 

This new DCNN architecture is constructed by fusing 

three different structures: AlexNet, GoogLeNet, and VGG-19. 

The block diagram of DCNN based on fusion architecture for 

ovarian cancer classification is portrayed in Figure 2. 

Initially, DCNN based on AlexNet structure is built in 

which 227*227 image is considered as the input. It is 

combined with 96 different kernels, every dimension 11*11 in 

the initial layer, and uses a greater stride of 4 pixels, which 

facilitates quick computation. The resulted 96 attribute maps 

of dimension 55*55 are initially conveyed via a ReLU and 

subsampled to 27*27 with a 3*3 max-pooling function. Finally, 

it is normalized through local input areas. Such processes are 

continued in layers 2, 3, 4, and 5. The final 3 layers are fully 

connected, considering every neuron in the prior layers as 

inputs and linking them to each neuron. 

The FC6 and FC7 layers consist of 4096 neurons and a 

dropout likelihood of 0.5 is applied to avoid overfitting. The 

number of neurons in FC8 is identical to the number of labels. 

Finally, a softmax layer denotes the label ratings. This network 

is trained by a Stochastic Gradient Descent (SGD) with 

momentum. The batch size is assigned to 50 and the 

momentum is set to 0.9. Also, the multiplicative weight decay 

is allocated to 5×10-4 per epoch. The learning fraction begins 

at 0.001 and drops by a factor of 10 over the learning process, 

whereas the testing faults prevent the ongoing learning 

fraction. 

Additionally, the DCNN based on the GoogLeNet 

structure is constructed, which has 22 layers. First, the input 

image dimension is 224*224 and then forwarded through 2 

convolutional layers. The resulted attribute maps are applied 

to the sequence of inception units. The max-pooling is 

executed rather than FC at the top layer. The inception unit 

(i.e., I3, I4, and I5) is a mixture of many convolutional layers, 
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and a parallel pooling with their output filters is integrated into 

the unified output vector for creating the input for the 

subsequent phase. In such layers, the kernel dimension is 

limited to 1*1, 3*3, and 5*5. This structure results in a 

significantly compact set of learning variables compared to the 

AlexNet. This network is trained by the SGD with a batch size 

of 8, momentum of 0.9, and weight decay of 2×10-4. The 

learning fraction begins at 0.001 and is reduced by a factor of 

10. 

 

 
 

Figure 2. Fusion architecture-based DCNN for ovarian cancer classification 

 

 

 

Figure 3. Architecture of GAN-based data augmentation 
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Similarly, DCNN based on the VGG-19 involves 5 

convolutional and 3 FC layers. The input is a 224×224 image, 

and conv1 utilizes 7*7 kernels with stride 2. In conv3, conv4, 

and conv5, many kernels are employed compared to the 

AlexNet. The formation of FC layers is similar to AlexNet: the 

primary 2 layers consist of 4096 neurons each, whereas the 

third executes the ovarian cancer classification and consists of 

7 outputs. Every hidden layer has a ReLU activation function 

and the softmax is the concluding layer. This network is 

trained by SGD with a batch size of 10 for optimizing the 

variables and a learning fraction of 10-4 combined with a 

momentum factor of 0.9. The learning is normalized via 

weight decay and the L2-penalty multiplier is assigned to 5 × 

10-4. 

Moreover, the classification accuracy is further enhanced 

by fusing the structures of AlexNet, GoogLeNet, and VGG. 

This concatenation is achieved at the last softmax layers and 

the outcomes obtained from each structure are fused by the 

weighted sum method for generating the resultant class. Here, 

the weights are assigned as 0.3, 0.4, and 0.3 for AlexNet, 

GoogLeNet, and VGG, respectively. 

 

3.3 Deep semi-supervised generative learning with DCNN 

model for ovarian cancer classification 

 

Although DCNN is based on the fusion of AlexNet, 

GoogLeNet, and VGG architectures, it considers a limited 

number of training samples, which still causes overfitting and 

training errors. Hence, the GAN is proposed with the DCNN 

model for augmenting the training samples and classifying the 

ovarian cancer categories. The GAN is applied in creating a 

synthetic image sample to augment the actual training sample 

while learning the DCNN model. GANs are built depending 

on adversarial nets for augmenting the image samples in an 

adversarial manner. The structure of GAN consists of 2 major 

networks: a generator 𝐺 and a discriminator D. Here, G is used 

to map an image from a rectangular distribution to an image 

distribution, and D is learned to differentiate between actual 

and created images. In GANs, both G and D are trained 

simultaneously depending on the game premise. Figure 3 

portrays the standard GAN structure for data augmentation. 

In every iteration, G converts a noise vector Z quantized 

from a normal distribution (𝑃𝐺)  into a forged image 

(𝑋𝑓𝑜𝑟𝑔𝑒𝑑 = 𝐺(𝑍))  by a sequence of deconvolution and 

activation layers. Also, D categorizes incoming images as 

genuine or forged. Typically, D results the likelihood 

distribution over the sources (𝑆), 𝑃(𝑆|𝑋), 𝑆 ∈ {𝑟𝑒𝑎𝑙, 𝑓𝑜𝑟𝑔𝑒𝑑}, 

via a sequence of convolutional and activation layers, increase 

the log-likelihood of the exact source (𝐿𝑆): 

 

𝐿𝑆 = 𝔼[log 𝑃(𝑆 = 𝑟𝑒𝑎𝑙|𝑋𝑟𝑒𝑎𝑙)]

+ 𝔼[𝑙𝑜𝑔 𝑃(𝑆 = 𝑓𝑜𝑟𝑔𝑒𝑑|𝑋𝑓𝑜𝑟𝑔𝑒𝑑)] 
(1) 

 

where, 𝑋𝑟𝑒𝑎𝑙  is the real image, and 𝑋𝑓𝑜𝑟𝑔𝑒𝑑 is the forged image 

created by G. Then, G and D are learned in parallel by a 

minimax game with value function 𝑉(𝐷, 𝐺) as: 

 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑋~𝑃𝑑𝑎𝑡𝑎
[log 𝐷(𝑋)]

+ 𝔼𝑍~𝑛𝑜𝑖𝑠𝑒 [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑍)))] 
(2) 

In Eq. (2), 𝔼 is the expectation operator, 𝐷(𝑋) is the chance 

of 𝑋  belonging to the actual data and 𝐺(𝑍) , 𝑋𝑓𝑜𝑟𝑔𝑒𝑑  is the 

sample created by G from a random noise input 𝑍, 𝑋𝑟𝑒𝑎𝑙  is the 

actual image sample from the dataset, and 𝑃𝑑𝑎𝑡𝑎  is the 

probability that 𝑋 came from the data rather than 𝑃𝐺  (𝑃𝑑𝑎𝑡𝑎 =
𝑃𝐺).  

The cross-entropy loss is used to compute the discriminator 

loss (𝐿𝐷) and the generator loss (𝐿𝐺) as follows: 

 

𝐿𝐷 = − log 𝐷(𝑋𝑟𝑒𝑎𝑙) − log (1 − 𝐷(𝑋𝑓𝑜𝑟𝑔𝑒𝑑)) (3) 

 

𝐿𝐺 = − log 𝐷(𝑋𝑓𝑜𝑟𝑔𝑒𝑑) (4) 

 

Normally, the discriminator is learned to distinguish 

whether the images generated by 𝐺 are genuine or forged. In 

parallel, G is learned to generate images which are highly 

complex to be recognized by D as genuine or forged. 

If the most favorable is attained, then G produces an image 

similar to the genuine image which can’t be distinguished by 

D. Through back-propagation, G trains the created image 

samples to highly resemble the training samples so that D can 

no longer differentiate them from the original samples. Based 

on the training of GAN, many training samples are generated 

for classification purposes, which solve the overfitting 

problem. Thus, the augmented training dataset is utilized to 

learn the fused DCNN model and classify it into 7 categories 

of ovarian cancer effectively. Thus, the DSSGL-DCNN based 

on the fused structure can be developed to classify ovarian 

cancer types by solving the overfitting problem. 

Figure 4 shows the overall schematic representation of the 

proposed classification of ovarian cancer types. 

 

 

4. EXPERIMENTAL RESULTS 

 

In this section, different proposed DCNN models such as 

DCNN-AlexNet, DCNN-Fusion, and DSSGL-DCNN are 

implemented in MATLAB 2017b. This experiment is 

analyzed by gathering The Cancer Genome Atlas-Ovarian 

(TCGA-OV) dataset from cancer imaging that comprises the 

CT images in DICOM format. In this analysis, a total of 497 

images are considered for class labels such as ovarian 

epithelial cancer, germ cell tumors, sex cord-stromal tumors, 

serous carcinoma, mucinous carcinoma, endometrioid 

carcinoma, and clear cell carcinoma. Among these, a total of 

350 images are taken for training in which each class has 50 

images. Similarly, a total of 147 images are taken for testing 

in which each class has 21 images. Also, the efficiency of these 

classifier models is compared with DNN [9], CADx [11], MLP 

[13], CNN [16], and MIL [17] in terms of precision, recall, f-

measure, and accuracy. 

 

4.1 Precision 

 

It is the ratio of exactly classified categories of ovarian 

cancers at True Positive (TP) and False Positive (FP) rates. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 
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Figure 4. Overall schematic representation of proposed ovarian cancer classification model 

 

 
 

Figure 5. Comparison of precision  

 

Figure 5 displays the results of precision achieved for 

DCNN-AlexNet, DCNN-Fusion, and DSSGL-DCNN models 

to classify the ovarian cancer types. From this analysis, it 

observes that the DSSGL-DCNN model based on fused 

architecture attains a higher precision than the DCNN-

AlexNet and DCNN-Fusion models i.e., the precision of the 

DSSGL-DCNN (fusion) model is 33.29% increased than the 

MLP, 29.75% increased than the DNN, 22.51% increased than 

the CADx, 16.96% increased than the CNN, 15.28% increased 

than the MIL, 9.8% increased than the DCNN-AlexNet, and 

4.85% increased than the DCNN-Fusion models. 

 

4.2 Recall 

 

It is the ratio of exactly classified categories of ovarian 

cancers at TP and False Negative (FN) rates. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

Figure 6 portrays the recall outcomes attained for DCNN-

AlexNet, DCNN-Fusion, and DSSGL-DCNN models to 

categorize the ovarian cancers. This analysis indicates that the 
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DSSGL-DCNN model depending on fused structure obtains a 

better recall than the DCNN-AlexNet and DCNN-Fusion 

models i.e., the recall of the DSSGL-DCNN (fusion) model is 

33.7% higher than the MLP, 29.4% higher than the DNN, 22.3% 

higher than the CADx, 17.28% higher than the CNN, 15.58% 

higher than the MIL, 8.34% higher than the DCNN-AlexNet, 

and 3.43% higher than the DCNN-Fusion models. 

 

 
 

Figure 6. Comparison of recall 

 

4.3 F-measure 

 

It is computed as the harmonic average of precision and 

recall. 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

 

 
 

Figure 7. Comparison of f-measure 

 

Figure 7 shows the f-measure values for DCNN-AlexNet, 

DCNN-Fusion, and DSSGL-DCNN models for ovarian cancer 

classification. This analysis addresses that the DSSGL-DCNN 

based on combined networks provides a higher f-measure than 

the DCNN-AlexNet and DCNN-Fusion models i.e., the f-

measure of DSSGL-DCNN (fusion) model is 33.9% greater 

than the MLP, 29.56% greater than the DNN, 22.51% greater 

than the CADx, 17.59% greater than the CNN, 14.82% greater 

than the MIL, 9.06% greater than the DCNN-AlexNet, and 

4.14% greater than the DCNN-Fusion models. 

 

4.4 Accuracy 

 

It is the fraction of accurate classification of ovarian cancer 

categories over the total number of attempts executed. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (8) 

 

TP is a result where DCNN classifiers categories the 

ovarian cancers as themselves e.g., clear cell carcinoma is 

classified as clear cell carcinoma. TN is a result where DCNN 

classifiers categories the non-ovarian cancers as non-ovarian 

cancers. FP is a result where DCNN classifiers inexactly 

categories ovarian cancers as non-ovarian cancers. FN is a 

result where DCNN classifiers inexactly categories the non-

ovarian cancers as ovarian cancers. 

 

 
 

Figure 8. Comparison of accuracy 

 

Figure 8 demonstrates the accuracy values obtained by 

DCNN-AlexNet, DCNN-Fusion, and DSSGL-DCNN models 

for classifying the ovarian cancer types. By using this analysis, 

it is noticed that the DSSGL-DCNN model based on fused 

network structure achieves higher accuracy compared to the 

DCNN-AlexNet and DCNN-Fusion models i.e., the accuracy 

of the DSSGL-DCNN (fusion) model is 34.5% higher than the 

MLP, 29.6% higher than the DNN, 22.2% higher than the 

CADx, 17.6% greater than the CNN, 14.75% higher than the 

MIL, 9.33% higher than the DCNN-AlexNet, and 4.04% 

higher than the DCNN-Fusion models. 

Additionally, the computational cost of DSSGL-DCNN 

(fusion) is measured as 𝑂 (
1

𝑁4) + 𝑂(𝐿𝐵)  where 𝑁  is the 

number of CT samples is the dataset, 𝐿 is number of layers 

used in DCNN, and 𝐵 is the batch size. 

Thus, it is realized that the DSSGL-DCNN (fusion structure) 

has superior efficiency than the all other models. This is 

because of extending the number of training samples by using 

the DSSGL and classifying the CT samples using the fused 

structure-based DCNN. Therefore, the classification 

performance is increased significantly if learning more CT 

scans. 

 

 

5. CONCLUSIONS 

 

In this article, a DCNN model is initially designed based on 

AlexNet structure to categorize the ovarian cancer types from 

CT images. This DCNN is trained by the training dataset for 

classifying the types of ovarian cancers. However, its accuracy 

is not high. Therefore, DCNN is constructed depending on the 

fused structures of AlexNet, VGG, and GoogLeNet. The 

fusion is carried out at the last softmax layers of every 

structure and their softmax values are merged through a 
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weighted sum for acquiring the final classification result. 

But it learns only a limited amount of image samples which 

leads to an overfitting problem. To solve this problem, a 

DSSGL-DCNN model is developed in which the GAN is used 

to augment the training image samples. By using this 

augmented dataset, the DCNN based on fused architectures is 

trained and tested for categorizing the types of ovarian cancers. 

To conclude, the findings proved that the DSSGL-DCNN 

seems to have an accuracy of 87.84% compared to the DCNN 

based on AlexNet and fused structures for the different types 

of ovarian cancer classification. 
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