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 The present paper introduces a Convolutional Neural Network (CNN) for the assessment 

of image quality without a reference image, which comes under the category of Blind 

Image Quality Assessment models. Edge distortions in the image are characterized as 

input feature vectors. This approach is in justification of the fact that subjective 

assessment focusses on image features that emanate from the edges and the boundaries 

present in the image. The earlier methods were found to use complex transformations on 

the image to extract the features before training or as a part of the training. The present 

work uses Prewitt kernel approach to extract the horizontal and vertical edge maps of the 

training images. These maps are then input to a simple CNN for extracting higher level 

features using non-linear transformations. The resultant features are mapped to image 

quality score by regression. The network uses Spatial Pyramid Pooling (SPP) layer to 

accommodate input images of varying sizes. The present proposed model was tested on 

popular datasets used in the domain of Image Quality Assessment (IQA). The 

experimental results have shown that the model competes with the earlier proposed 

models with simplicity of feature extraction and involvement of minimal complexity.  
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1. INTRODUCTION 

 

It is a well-known fact that a picture is worth thousand 

words. Communicating and sharing of images is an integral 

part of present-day life especially in the backdrop of social 

networking. It is equally true that image capturing, processing 

and transmission using low bandwidths is often vulnerable to 

various distortions. The judgement of image quality performs 

a crucial role within the design of several image processing 

applications. Human judgement of image quality is subject to 

several limitations because of which automatic image quality 

estimation has been an important research area in image 

processing and computer vision [1]. Automatic image quality 

assessment of distorted images is classified as Full Reference 

Image Quality Assessment (FR-IQA), Reduced-Reference 

Image Quality Assessment (RR-IQA) and No-Reference 

Image Quality Assessment (NR-IQA) or Blind Image Quality 

Assessment (BIQA) depending on the evidence obtainable 

regarding the original image. The evolution of CNN led to a 

new methodology for Blind Image Quality Assessment. A 

CNN is trained with a dataset of distorted images and their 

corresponding quality scores and is used to evaluate the image 

quality in BIQA. The quality scores are normally the 

Difference Mean Opinion Scores (DMOS) obtained from the 

categorical judgement (like good, poor, bad) of the distorted 

images by humans. 

FR-IQA models need the original image to assess the image 

quality [2-4]. RR-IQA models have access to partial 

information of the original image for judging the quality of its 

distorted version [5-8]. BIQA models assume no information 

regarding the original image to estimate the quality of its 

distorted version. These models can be broadly classified as: 

conventional models, which are based on natural scene 

statistics, machine learning models, which are based on image 

and/or hand-crafted features of the image to train the model 

and CNN based Deep Learning models, which extract the 

representational features of the image using the earlier layers 

of the network and map them to the quality scores with fully 

connected layers during training.  

Mittal et al. [9] developed a blind image special quality 

assessment model called (BRISQUE), which quantifies costs 

of spontaneity within the image supported locally normalized 

luminance coefficients as image quality. The model claims 

implementation enhancements over the state-of-the-art models. 

Moorthy and Bovik [10] introduced a BIQA model as a two-

stage framework that clusters wavelet coefficients in Inter and 

Intra subbands of various scale and orientation by modelling 

them using Gaussian scale mixtures (GSM) model. Lixiong 

Liu et al. [11] proposed a curvelet based model that extracts 

features from the strength distribution of together scale and 

orientation within the curvelet field and therefore the directs 

of the maxima of the log histograms of the curvelet coefficient 

values. The extracted energy features from curvelet domain 

are highly appropriate to real image quality among multiple 

non-natural categories. Support vector machine (SVM) is 

employed for linear classification of image quality with human 

subjective opinions. Saad et al. [12] developed a NR-IQA 

model that extracts features from the real scene statistics 

model of the picture discrete cosine transform measurements. 

The resulting elements are used in a plain Bayesian inference 

method to predict image quality scores. Liu et al. [13] 

developed oriented gradients image quality assessment model, 

which maps the extracted relative gradient magnitude features 

of the image to the image quality by using Ada boosting back 
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propagation neural network. The estimated accuracy of the 

experiment is superior to the performance of the state-of-the-

art models. Ye et al. [14] designed a NR-IQA structure that 

uses raw image pieces separated from a set of un-labelled 

images to realize a vocabulary of image features in an 

unsupervised manner. The authors deployed a sensitive task 

enciphering with max pooling to acquire features that 

represent the image for quality estimation. 

Liu et al. [15] proposed a NR-IQA approach that learns 

ranking of images by using synthetically generated datasets 

and a Siamese Network. The trained Siamese Network shares 

the knowledge with a traditional CNN and the CNN is trained 

to fine tune the transferred weights with a batch of images 

obtained from all sets of images in the group. During the 

testing phase, the distorted image is randomly sampled for 

thirty sub images and the image quality is computed as the 

median of the quality scores of the sub images. Kang et al. [16] 

developed a CNN by extracting features from locally 

normalized pixel intensities of image patches with different 

window sizes. The learned features are regressed to the image 

quality score by using two fully connected layers and an output 

node. For a given image, the anticipated patch scores are be a 

mean of to seek out the image level quality score. Bosse et al. 

[17] introduced an end-to-end image quality assessment CNN 

with ten convolutional layers followed by five pooling layers 

intended for feature extraction and finally introduce two fully 

connected layers for regression. The method incorporates joint 

optimization of weighted average patch accumulation for 

pooling local patch qualities to global image quality. Bianco 

et al. [18] used Caffe network architecture that has a feature 

extractor on top of which a SVR machine with a linear kernel 

was used to map the extracted features to the subjective quality 

scores. Li et al. [19] proposed an image quality assessment 

method based on ResNet [20] architecture claiming that the 

ReLu activation allows nonlinear changes for isolating high-

level image features resulting in consistent measurement of 

image quality better than linear filters.  

Most of the methods in the literature used low level and 

complex transformations to extract image features for training 

a CNN. This observation inspired the authors to design a 

method, which extracts higher-level features of an image to 

quantify the image quality, as the subjects are able to extract 

only higher-level representative features to judge the quality 

of an image. The proposed method extracts horizontal and 

vertical edge maps of the images in the training dataset and 

uses them for training a CNN to assess the image quality. 

The present article is organized as follows. In Section 2, we 

describe the proposed approach. In Section 3, we describe the 

training, testing process, experimental results and conclude the 

paper in Section 4. 

 

 

2. PROPOSED APPROACH 

 

Let X be the distorted image and y be the DMOS of the 

distorted image present in the dataset. The value of y is 

normally in the range 0 to 100. A value of zero indicates that 

the image is not subjected to any distortion, which means that 

X is an original image. On the other hand, a value of 100 

indicates that the image is completely distorted. However, 

conventions (0 to 1, 0 to 9) and their interpretation may differ 

from one dataset to another dataset. In BIQA, a CNN is trained 

with pairs of (X, y) available in the dataset. The initial 

convolutional layers extract the representational features of the 

image and the subsequent fully connected layers map these 

features to the image quality score y. Such a trained network 

can be employed to review the quality of an unseen distorted 

image X'. A CNN can effectively learn the representational 

features of an image when it is fed with a larger number of 

samples. A notable problem in the domain of the image quality 

estimation is that the datasets are small in size and contains 

less than two thousand images on an average. Present work 

effectively solves this problem by obtaining the horizontal 

edge maps and the vertical edge maps in each image using 

Prewitt [21] edge detector and are fed to the network. The 

transformed input helps the convolutional layers to quickly 

extract the higher-level image features though the dataset 

which is smaller in size. Further, the input is augmented by 

dividing the feature maps into patches. The number of patches 

into which a feature map is to be divided is a critical design 

decision. Large number of patches will result in the loss of 

feature relationships and results in semantically unconnected 

patches. If the number is too small, then the purpose of the 

augmentation may not be served. In general, humans focus on 

four quadrants of an image during perception. Hence, in the 

present work, augmentation is done by dividing each feature 

map of image X into four patches and ascertaining the image 

score y to each of the patches of the feature map. 

 

2.1 Input to the network 

 

The Input dataset to the network is created from the original 

public dataset with the following steps: Each gray scale 

version of the image X is transformed to horizontal edge map 

X^h and vertical edge map X^v using Prewitt kernel.  

Prewitt is a gradient-based kernel to detect the direction and 

degree of an image. It adds the gradient estimate of image 

intensity function for image power detection. At the pixels of 

an image, the Prewitt kernel computes either the normal to a 

vector or the alike gradient vector. It uses two 3 x 3 kernels 

which are convoluted to calculate estimates of the derivatives, 

one for flat changes, and the one for perpendicular. The 

kernels are: 

 

𝑮𝒙 = [
−𝟏 𝟎 𝟏
−𝟏 𝟎 𝟏
−𝟏 𝟎 𝟏

] and 𝑮𝒚 = [
−𝟏 −𝟏 −𝟏
𝟎 𝟎 𝟎
𝟏 𝟏 𝟏

] 

 

Each feature map is divided into four equal sized patches 

resembling the four quadrants of a plane. Thus, each image X 

of size (w,h) results in eight feature maps of size (w⁄(4,h⁄4)). 

The DMOS y of the image X is paired with each of these 

patches as the label. So, the size of the training dataset is 

multiplied by eight times. Figure 1 illustrate the creation of the 

input dataset. 

 

2.2 Network architecture of CNN 

 

Let 𝑤 ∗ ℎ be the width and height of the image input to the 

network. The proposed CNN comprises of the following 

convolutional layers and fully connected layers as shown in 

the Figure 2. 

 

1) A Convolutional Layer with (3, 3) filter size and 

Rectified Linear unit (ReLu) activation function with 16 filters. 

The output of this layer is an image of size 𝑤 ∗ ℎ ∗ 16. 

2) Average pooling layer with a window size of (3, 3). 

The output of this layer is an image of size 
𝑤

2
∗  

ℎ

2
∗16. 
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3) Another Convolutional Layer with (3, 3) filter size 

and Rectified Linear unit (ReLu) activation function with 16 

filters. The output of this layer is an image of size 
𝑤

2
∗  

ℎ

2
∗16. 

4) Average pooling layer with a window size of (3, 3). 

The output of this layer is an image of size 
𝑤

4
∗  

ℎ

4
∗16. 

5) A Spatial Pyramid Pooling Layer with (8, 8) blocks. 

The output is a vector of size 1024. 

6) Fully Connected regression layer with single unit, 

and sigmoid activation function. 

The proposed model is prototyped using TensorFlow 2.0 

Python library. The network is trained for 50 epochs using 

Mean Squared Error (MSE) [22] as the loss function, and 

Adam [23] as the optimizer. MSE computes the mean of 

squared difference between the actual DMOS score (𝑦𝑖) and 

predicted DOMS score (𝑦�̂�) of each image in a batch of images 

of the dataset. 

MSE = 
1

𝑁
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=0  (1) 

 

Adam Optimizer receives the strengths of the RMSProp and 

AdaGrad and builds upon them to give a more improved 

gradient descent. The proportion of gradient descent is 

measured in such a way that there is smallest fluctuation when 

it reaches the global minimum while taking large enough steps 

so as to pass the local minima encountered. 

TensorFlow [24] is a free and open-source software library 

for machine learning, based on dataflow architecture. The 

experiments are conducted in Colaboratory, or “Colab” for 

short, which is an open platform for research, offered by 

google. The GPU offered by the Colab facilitates to speed-up 

the training and testing process on the larger datasets with 

more accuracy. 

 

 

 
 

Figure 1. Dataset preparation 

 

 
 

Figure 2. Network architecture 
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3. EXPERIMENTS 

 

The proposed method is applied on the following datasets. 

 

3.1 Datasets 
 

1) Laboratory for Image & Video Engineering Image 

Quality Assessment (LIVE IQA) [25] database: LIVE IQA 

consists of 29 reference images, and five types of distortions 

are applied with 7-8 degradation quantities. The distortion 

types include White Gaussian - WN, Gaussian Blur - GBLUR, 

JPEG compression - JPEG, and FastFading - FF. The total 

number of images in the dataset are 982 among which 799 are 

distortion images. For every image in LIVE IQA, a DMOS 

falling in the range [0, 100) is provided and a lower DMOS 

indicates higher quality. The original (a) and five levels of 

white noise distorted versions (b-f) of “coinsinfountain” image 

of the LIVE IQA dataset are shown in Figure 8. 

2) Computational and Subjective Image Quality (CSIQ) 

[26] database: It consists of 30 reference images, 866 distorted 

images corrupted by Additive White Gaussian Noise (AWGN), 

JP2K compression (JPEG2000), Blurring (BLUR), JPEG 

compression (JPEG), global contrast decrements (GCD) and 

additive pink Gaussian noise (APGN), with 4-5 levels for all 

distortion types. For every image in CSIQ, a DMOS score is 

provided between [0, 1], where a lower DMOS indicates 

higher quality. The present work considered only those 

distortions, which are common in both the datasets mentioned 

for fair comparison of results. The original (a) and five levels 

of JPEG distorted versions (b-f) of “sunsetcolor” image of the 

CSIQ dataset are shown in Figure 9. 

 
3.2 Training and testing 

 

Table 1. Number of train and test images in the independent validation framework 

 

 
WN JP2K GBLUR JPEG FF All 

TR TE TR TE TR TE TR TE TR TE TR TE 

LIVE 140 34 182 45 140 34 187 46 140 34 786 196 

CSIQ 144 36 144 36 144 36 144 36 - - 504 126 

 

Table 2. Number of train and test images in the cross-validation framework 

 

 
WN JP2K GBLUR JPEG All 

LIVE CSIQ LIVE CSIQ LIVE CSIQ LIVE CSIQ LIVE CSIQ 

TR/TE 174 180 227 180 174 180 233 180 808 630 

Two different experimental frameworks were designed to 

evaluate the execution of the proposed model. In the first 

framework which is named as the independent validation 

framework, experiments were conducted considering all the 

distortions once and each individual distortion separately to 

obtain the performance metrics for each of the datasets 

mentioned in the above section. In each of the experiments, the 

proposed model was trained with 80% of the images under 

consideration in the dataset and was tested with the remaining 

20% of the images. In the second experimental setup which is 

named as the cross validation framework, the proposed model 

was trained with all the images of one dataset and by testing 

with all the images in the other dataset for all the distortions 

once and for each of the individual distortions. Table 1 shows 

the details of number of images in the training phase (TR) and 

test phase (TE) for each of the datasets in the first framework 

of experiments. Table 2 shows the details for the second 

framework of experiments. 

3.3 Results and discussion 

 

The sub figures in Figure 3 show the plots of loss function 

during training phase for all the experiments conducted in the 

independent validation framework for the LIVE IQA dataset 

(a) and the CSIQ dataset (b). Sub figures (c) and (d) show 

similar plots for the experiments conducted in the cross-

validation framework. The monotonic decrease of loss 

function in Eq. (1) during the training phase for different 

distortions and all distortions testify the generic capability of 

the IQA of the proposed model. The efficiency and 

computational economy of the model is further substantiated 

by the fact that 50 epochs only were used for training the 

model in both the experimental setups. The plots also show 

that the learning capability of the model is independent of the 

datasets and the distortions considered. 

 

 

  
(a). Trained and tested with LIVEIQA (b). Trained and tested with CSIQ 
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(c). Trained with LIVE IQA and tested with CSIQ (d). Trained with CSIQ and tested with LIVE IQA 

 

Figure 3. Independent and Cross validation loss (MSE) function plots in the training phase for all distortions and individual 

distortions present in LIVE IQA and CSIQ datasets 

 

The scatter plots of predicted and actual DMOS scores 

during the testing phase in the independent validation 

framework of all distortions and individual distortions are 

shown in Figure 4 and Figure 5 for the LIVE IQA and CSIQ 

dataset respectively. The plots indicate clearly that the 

prediction capability of the model correlates very well with 

subjective assessment of image quality of distorted images. It 

can also be observed that the model is equally effective with 

all the distortions considered. This truth is further strengthened 

with the scatter plots of the predicted and actual DMOS scores 

in cross validation framework of all distortions and the 

individual distortions present in both the datasets mentioned, 

as shown in Figure 6 and Figure 7 respectively. 

The performance of the model was compared to the other 

state-of-the-art models [9-14, 16] by computing SROCC and 

PLCC values between the predicted and actual image quality 

scores in the testing phase for all kinds of experiments 

conducted in the independent and cross validation frameworks 

using LIVE IQA and CSIQ datasets. The models considered 

for comparison include FR-IQA and NR-IQA models. 

The Figure 8 shows the original (a) and five levels of white 

noise distorted versions (b-f) of “coinsinfountain” image of 

LIVE IQA dataset with actual and predicted DMOS scores at 

the top and bottom of each image, respectively. Figure 9 shows 

similar results for JPEG compressed “sunsetcolor” image of 

CSIQ dataset. Analogous results were obtained in the 

independent and cross validation of all distortions and 

individual distortions for both the datasets considered. 

 

   
(a) White noise (b) Jp2k compression (c) Gaussian blur 

   
(d) Jpeg compression (e) Fast fading (f) All distortions 

 

Figure 4. Scatter plots of predicted and actual DMOS scores for independent validation of all distortions and individual 

distortions of LIVE IQA (a-f) 

 

319



 

   
(a) White noise (b) Jp2k compression (c) Blurring 

  
(d) Jpeg compression (e) All distortions 

 

Figure 5. Scatter plots of predicted and actual DMOS scores for independent validation of all distortions and individual 

distortions of CSIQ (a-e) 

 

   
(a) White noise (b) Jp2k compression (c) Blurring 

  
(d) Jpeg compression (e) All distortions 

 

Figure 6. Scatter plots of predicted and actual DMOS scores for cross validation of all distortions and individual distortion with 

LIVE IQA as training dataset and CSIQ as test dataset (a-e) 
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(a) White noise (b) Jp2k compression (c) Blurring 

  
(d) Jpeg compression (e) All distortions 

 

Figure 7. Scatter plots of predicted and actual DMOS scores for cross validation of all distortions and individual distortion with 

CSIQ as training dataset and LIVE IQA as test dataset 

 

Original Image: WN (img146) DMOS = 

0.0 

WN (img8) with DMOS = 

20.7114160011119 

WN (img31) with DMOS = 

27.4915734648744 

   
Predicted DMOS = 0.03641214 

(a) 

Predicted DMOS = 0.2349273 

(b) 

Predicted DMOS = 0.3146033 

(c) 

WN (img124) with DMOS = 

46.9103473254394 

WN (img92) with DMOS = 

51.3184224119651 

WN (img24) with DMOS = 

65.5358355849048 

   
Predicted DMOS = 0.48280033 

(d) 

Predicted DMOS = 0.53661203 

(e) 

Predicted DMOS = 0.70794284 

(f) 

 

Figure 8. LIVE IQA original image, distorted images and their predicted DMOS scores by the model 
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Original Image: JPEG (sunsetcolor) 

DMOS = 0.0 

JPEG (sunsetcolor.JPEG.1) with DMOS 

= 0.031 

JPEG (sunsetcolor.JPEG.2) with DMOS 

= 0.436 

   
Predicted DMOS = 0.1930024 

(a) 

Predicted DMOS = 0.41772422 

(b) 

Predicted DMOS = 0.60261774 

(c) 

JPEG (sunsetcolor.JPEG.3) with DMOS 

= 0.693 

JPEG (sunsetcolor.JPEG.4) with DMOS 

= 0.885 

JPEG (sunsetcolor.JPEG.5) with DMOS 

= 0.918 

   
Predicted DMOS = 0.7051542 

(d) 

Predicted DMOS = 0.75876117 

(e) 

Predicted DMOS = 0.75876117 

(f) 

 

Figure 9. CSIQ original image, distorted images and their predicted DMOS scores by the model 

 

Table 3 and Table 4 compare the values of SROCC and 

PLCC respectively between the predicted and actual image 

quality scores computed with the proposed model in the testing 

phase with the other state-of-the-art models. The values are 

listed for all the experiments conducted with all and individual 

distortions using LIVE IQA dataset in the independent 

validation framework. The values show that the proposed 

model competes with the performance of the other models 

mentioned despite its simplicity and less complexity. Table 5 

and Table 6 show similar results for the CSIQ dataset. The 

performance metrics of the proposed model in both cases 

generalize its capability of image quality assessment 

independent of the distortions and the datasets. 

 

Table 3. SROCC for individual and all distortions in independent validation framework using LIVE IQA dataset. FR-IQA 

algorithms are mentioned in font Italic and others are NR-IQA algorithms 

 
SROCC WN JP2K GBLUR JPEG FF ALL 

PSNR 0.982 0.904 0.807 0.894 0.894 0.883 

SSIM [27] 0.970 0.960 0.951 0.973 0.956 0.948 

VIF [28] 0.984 0.968 0.971 0.982 0.962 0.963 

DIVINE [10] 0.984 0.913 0.921 0.910 0.863 0.916 

BLINDS-II SVM [12] 0.969 0.928 0.923 0.942 0.889 0.930 

BLINDS-II Prob. [12] 0.978 0.950 0.943 0.941 0.862 0.920 

BRISQUE [9] 0.978 0.913 0.951 0.964 0.876 0.939 

CNN [16] 0.978 0.952 0.962 0.977 0.908 0.956 

OG-IQA [13] 0.986 0.937 0.961 0.964 0.898 0.950 

CurveletQA [11] 0.987 0.937 0.965 0.911 0.900 0.930 

CORNIA [14] 0.976 0.943 0.969 0.955 0.906 0.942 

Proposed model 0.981 0.959 0.970 0.894 0.886 0.946 
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Table 4. PLCC for individual and all distortions in independent validation framework using LIVE IQA dataset. FR-IQA 

algorithms are mentioned in font Italic and others are NR-IQA algorithms 

 
PLCC WN JP2K GBLUR JPEG FF ALL 

PSNR 0.982 0.885 0.803 0.878 0.892 0.864 

SSIM [27] 0.986 0.971 0.955 0.981 0.962 0.946 

VIF [28] 0.992 0.980 0.977 0.989 0.968 0.961 

DIVINE [10] 0.988 0.922 0.923 0.921 0.888 0.917 

BLINDS-II SVM [12] 0.979 0.934 0.938 0.967 0.895 0.930 

BLINDS-II Prob. [12] 0.985 0.963 0.948 0.979 0.863 0.923 

BRISQUE [9] 0.985 0.922 0.950 0.973 0.903 0.942 

CNN [16] 0.984 0.953 0.953 0.981 0.933 0.953 

OG-IQA [13] 0.990 0.945 0.967 0.982 0.911 0.952 

CurveletQA [11] 0.985 0.946 0.969 0.928 0.918 0.932 

CORNIA [14] 0.987 0.951 0.968 0.965 0.917 0.935 

Proposed model 0.986 0.943 0.954 0.914 0.910 0.940 

 

Table 5. SROCC for individual and all distortions in independent validation framework using CSIQ dataset. All are NR-IQA 

methods 

 
SROCC AWGN JPEG2000 BLUR JPEG ALL 

SFOSR [29] 0.918 0.923 0.877 0.938 0.887 

PRLIQM-I [30] 0.856 0.872 0.886 0.887 0.863 

PRLIQM-II [30] 0.868 0.884 0.902 0.901 0.872 

Proposed model 0.962 0.923 0.922 0.911 0.872 

 

Table 6. PLCC for individual and all distortions in independent validation framework using CSIQ dataset. All are NR-IQA 

methods 

 
PLCC AWGN JPEG2000 BLUR JPEG ALL 

SFOSR [29] 0.892 0.925 0.889 0.941 0.883 

PRLIQM-I [30] 0.879 0.916 0.902 0.901 0.873 

PRLIQM-II [30] 0.883 0.925 0.905 0.911 0.907 

Proposed model 0.983 0.967 0.970 0.984 0.924 

 

 

Table 7 presents the values of SROCC and PLCC between 

the predicted and actual image quality scores computed with 

the proposed model in the testing phase of cross validation 

framework. The values are listed for all the experiments 

conducted with all and individual distortions using LIVE 

IQA dataset for training CSIQA dataset for testing. Table 8 

shows similar results where CSIQ dataset was applied for 

training and LIVE IQA dataset for testing. The performance 

metrics of the proposed model further consolidates the 

superior capability of the image quality assessment, which is 

independent of the distortions and the datasets. 

  
Table 7. SROCC, and PLCC for individual and all 

distortions in cross validation framework using LIVE IQA 

for training and CSIQ testing 

 
Proposed 

model 
WN JP2K GBLUR JPEG ALL 

SROCC 0.956 0.883 0.904 0.907 0.884 

PLCC 0.940 0.854 0.891 0.929 0.877 

 

Table 8. SROCC, and PLCC for individual and all 

distortions in cross validation framework using CSIQ for 

training and LIVE IQA testing 

 
Proposed 

model 
WN JP2K GBLUR JPEG ALL 

SROCC 0.978 0.897 0.945 0.894 0.898 

PLCC 0.933 0.880 0.914 0.817 0.869 

 

4. CONCLUSIONS 

 

We proposed a CNN for BIQA, which comes under the 

category of NR-IQA models. The proposed model uses the 

edge maps of the distorted images, which are computed using 

Prewitt kernel as an input to the CNN, which extracts the 

higher-level characteristics of the input image. The 

distortions in the high-level features are quantified as the 

image quality score by regression. The results conclude that 

the proposed model is generic and its capability of image 

quality estimation is independent of the datasets and the 

distortions present in the dataset. The performance metrics in 

terms of SROCC and PLCC prove that the model competes 

well with the state-of-the-art models. 
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