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 This study analyzes the flow and heat transfer for three-dimensional stagnation point flow of 

water based nanofluid over an exponentially stretching surface. The base fluid for the under-

discussion problem is taken to be water (H2O) and three distinct nanoparticles, namely, copper 

(Cu), alumina (Al2O3), and titania (TiO2). The simulations in this study assume that the surface 

temperature is also distributed exponentially and reduce the governing equations to a set of 

ordinary differential equations using a similarity transformation. Series solutions are 

constructed for the velocity components and temperature. Results are discussed by plotting 

graphs. In order to find series solution of ordinary differential equations, we employed strong 

analytical technique referred as optimal homotopy method (OHAM). It is found that the drag 

force and rate of heat transfer can be enhance for Cu (Copper)- H2O (water) in comparison 

with other nanofluids.  
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1. INTRODUCTION 

 

In 1961, Sakiadis [1, 2] developed the flow past a 

continuously moving surface which were extended to the 

study of Newtonian, viscoelastic, and Non-Newtonian fluid 

our nonlinear and linear surface. The analysis of boundary 

layer flow retains its fundamental nature. Heat exchange in the 

flow of viscous fluid past a sheet that stretches with some 

velocity, play important rule in serval industrial manufacturing 

processes. The radiation effects in the boundary layer flow is 

very important due to its application in physics, engineering 

and industrial fields such as glass production, furnace design, 

polymer processing, gas cooled nuclear reactors and also in 

space technology like aerodynamics rockets, missiles, 

propulsion system, power plants for inter planetary flights and 

space craft’s operating at high temperatures. The investigation 

of this problem may have bearing in several engineering 

processes such as extrusion of plastic sheet, annealing and 

tinning of copper wire, paper production, crystal growing and 

glass blowing, continuous casting of metals and spinning of 

fibers. Relevant examples of such phenomena include 

substances manufactured in the industries by excursion of 

polymer, metal, and aerodynamic, production of glass 

substances, continuous stretching of plastic materials, artificial 

materials/fibers, petrochemical industries and metal spinning 

etc. A quality manufacturing product can be obtained in flow 

of viscous fluids past moving surfaces by stabilizing heat flow. 

Therefore, Crane [3] scrutinized analytically the investigation 

of Sakiadis and concluded his results for the stretched surface. 

The impacts of injection/suction, variable temperature, speed-

driven sheet by power law model, megnetohydrodynamic, 

thermal radiation, porous media, interior heat 

generation/absorption, and mixed convective consequence in 

flow past stretching surfaces dig out in [4-9]. In these analyses, 

most researchers analyzed the flow in presence of moving 

surfaces, where the stretching was taken to be linear except Ali 

[5], who measured a power-law model. Several flows past 

stretching surfaces are unable to satisfy power law type, linear 

and nonlinear in industries.  

Heat exchange in the viscous boundary layer flow produced 

by nonlinear stretching surfaces was analyzed by Magyari and 

Keller [10]. Later Elbashbeshy [11] dig out the impact of 

suction on the heat transfer. Khan and Sanjayanand [12, 13] 

considered friction drag and heat transfer in viscoelastic fluids 

analyzed by Magyari.  

In 2005, the approach of similarity variables was 

incorporated by Partha et al. [14], the investigation exhibits the 

characteristics of viscous dissipation due to dissipation energy 

on the viscous flow. In 2009, Abd El-Aziz [15] demonstrated 

the gravity impacts in a viscous flow which was the extension 

of the study introduced by the researcher Partha et al. which 

was dig out for the dissipation energy in the flow.   

Pal [16], scrutinized magnetic field and its impacts on the 

heat flow. Furthermore, Nadeem et al. [17] scrutinized the heat 

flow in sight of radiation effect in Jaffrey fluid, disturbance in 

the flow were produced in the flow due to surface in a 

nonlinear way. Bhattacharyya et al. [18] examined the flow of 

heat and friction drag in the flow past a sheet shrinking in a 

non-linear way. Bhattacharyya got the numerical solution by 

using shooting technique (Matlab) with 4th order Runge-Kutta 

method. Optimal solutions were dig out for the exchange of 

mass, heat, and friction drag in the flow of a viscous liquid by 

Nadeem and Lee [19]. Liu et al. [20] numerically dig out, the 

flow of heat in the viscos fluid past a sheet that is stretched in 

a nonlinear way.  

The obtained results depict that good accuracy of numerical 

consequences be examined by Runge-Kutta 5th order 

integration scheme in the presence of multidimensional 

Newton-Raphson method. The literature in this direction are 

cited in the references [21-23]. It is pointed that flow of heat 
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for three-dimensional flow past a nonlinear stretched surface 

is never incorporated in the existing literature. Thus, taking 

these assumption into account, the present scrutiny depicts the 

flow of heat in a three-dimensional steady viscous fluid flow 

in presence of stagnation point past an exponential horizontal 

sheet. The work is extended with the exponentially surface 

temperature the surface. Further, a self-similar transformation 

is incorporated to reduce the momentum and energy equations, 

to get nonlinear ordinary differential equations. 

 

 

2. MATHEMATICAL MODELING OF THE PROBLEM 

 

Let us consider the time independent, laminar and boundary 

layer three-dimensional fluid flow in sight of nanoparticles 

past a stretching surface, further presumed that surface is 

stretched in connection with distinct velocity components 𝑈𝑤 

and 𝑉𝑤 along 𝑥−, −axes respectively. Additionally, 𝑇𝑤 

symbolizes temperature at sheet, and 𝑇∞ mark ambient 

temperature. Main point of this study is to dig out heat transfer 

rate for viscous flow past a surface, where flow is produced in 

the fluid through stretching the surface in a nonlinear way 

shows in Figure 1. 

 

 
 

Figure 1. Flow geometry 

 

𝑇𝑤=𝑇∞ + 𝑇0𝑒
𝐴(𝑥+𝑦)

2𝐿  

 

𝑈𝑤=𝑈0𝑒
𝑥+𝑦

𝐿  
 

By taking above assumptions into account, the laws of 

conservation of momentum, mass, and energy are given by 

 

𝛁. 𝐕 = 0,                                          (1) 

 

𝜌𝑛𝑓
𝑑𝐕

𝑑𝑡
= div𝑻∗,                                 (2) 

 

(𝜌𝐶𝑝)𝑛𝑓
𝑑𝑇

𝑑𝑡
= 𝑘𝑛𝑓𝛁

2𝑇                             (3) 

 

where the velocity is of the form 

 

𝑽 = [u(x, y, z), v(x, y, z), w(x, y, z)]                  (4) 

 

The constitutive equations for viscous incompressible fluid 

are assumed by 

 

T∗ = −𝑝𝐈 + 𝜇𝑛𝑓𝐀1                                 (5) 

𝐀1 = 𝐋 + 𝐋𝑇                                     (6) 

 

𝐋 = grad𝐕                                      (7) 

 

grad𝐕 =

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

                             (8) 

 

Here T∗  represents the Cauchy stress tensor, (𝜌𝐶𝑝) 

nanofluid heat capacity, 𝑝 denote pressure, 
𝑑

𝑑𝑡
 scrutinized the 

material derivate, 𝑘𝑛𝑓 is the nanofluid thermal conductivity, T 

refers temperature, 𝐈 identity tensor and 𝐀1 the first Rivlin-

Erickson tensor which is defined by 

 

𝐀1 =

[
 
 
 
 𝟐

𝜕𝑢

𝜕𝑥
   

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
  
𝜕𝑤

𝜕𝑥
+ 

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
𝟐

𝜕𝑣

𝜕𝑦
  
𝜕𝑤

𝜕𝑦
+ 

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
   𝟐

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

                (9) 

 

Using Eqns. (4) - (9) in Eq. (2) we get the shear and the 

normal components of stress tensor T∗ These are given by 

 

𝜎𝑥𝑥 = 2𝜇𝑛𝑓
𝜕𝑢

𝜕𝑥
                                      (10) 

 

𝑇𝑥𝑦 = 𝑇𝑦𝑥 = 𝜇𝑛𝑓 (
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)                        (11) 

 

𝜎𝑦𝑦 = 2𝜇𝑛𝑓
𝜕𝑣

𝜕𝑦
                                  (12) 

 

𝑇𝑥𝑧 = 𝑇𝑧𝑥 = 𝜇𝑛𝑓 (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)                     (13) 

 

𝑇𝑦𝑧 = 𝑇𝑧𝑦 = 𝜇𝑛𝑓 (
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)                    (14) 

 

𝜎𝑧𝑧 = 2𝜇𝑛𝑓
𝜕𝑤

𝜕𝑧
                                 (15) 

 

Invoking above results in Eq. (2) we get 𝑥, and 𝑧 

components of the momentum equation. The components are 

given by 

 
2 2 2

2 2

2 2

2

2

             

nf nf nf nf

nf nf

du p u u v

dt x x yx y

u w

z xz

   

 

   
= − + + + +

   

 
+

 

 (16) 

 
2 2 2

2 2

2 2

2

2

         

nf nf nf nf

nf nf

dv p u v v

dt y x y x y

v w

z yz

   

 

   
= − + + + +

    

 
+

 

 (17) 

 
2 2 2

2 2

2 2

2
2

nf nf nf nf

nf nf

dw p w u w

dt z x zx y

v w

y z z

   

 

   
= − + + + +

   

 
+

  

 (18) 

 

With the help of boundary layer approach and Eq. (1), we 
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find that Eq. (18) vanishes and Eq. (16)-(17) take the form 

 
2

2

1
 

nf

nf

nf

u u u p u
u v w u

x y z x Kz

 




    
+ + = − + −

    
 (19) 

 
2

2

1
   

nf

nf

nf

v v v p v
u v w v

x y z y Kz

 




    
+ + = − + −

    
(20) 

 

After invoking boundary layer approximation, energy Eq. 

(3) becomes 

 
2

2
   nf

T T T T
u v w

x y z z


   
+ + =

   
            (21) 

 

Here boundary conditions are 

 

𝑢 = 𝑈𝑤 , 𝑣 = 𝑉𝑤 , 𝑤 = 0, 𝑇 = 𝑇𝑤    𝑧 = 0,      (22) 

 

𝑢 = 𝑈𝑠(𝑥, 𝑦), 𝑣 = 𝑉𝑠(𝑥, 𝑦), 𝑤 = 0, 𝑇 = 𝑇∞   𝑧 → (23) 

 

Here subscript ‘w’ refers conditions at the wall. This 

consideration accepts that the stretching sheet velocities and 

the wall temperature are define as 

 

𝑈𝑤 = 𝑈0𝑒
𝑦+𝑥

𝐿 , 𝑉𝑤 = 𝑉0𝑒
𝑦+𝑥

𝐿 , 𝑇𝑤 = 𝑇∞ + 𝑇0𝑒
𝐴(𝑦+𝑥)

2𝐿   (24)  

 

𝑈𝑠(𝑥, 𝑦) = 𝑈𝑒𝑒
𝑥+𝑦

𝐿 , 𝑉𝑠(𝑥, 𝑦) = 𝑉𝑒𝑒
𝑥+𝑦

𝐿               (25) 

 

𝜌𝑛𝑓 represents density, 𝜇𝑛𝑓 stand for viscosity, 

𝜈𝑛𝑓 designated the kinematic velocity and 𝛼𝑛𝑓  represent 

thermal diffusivity of nanofluid defined as follow. 

 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜙)2.5 , 𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑠              (26) 

 

(𝜌𝐶𝑝)𝑛𝑓
= (1 − 𝜙)(𝜌𝑐𝑝)𝑓

+ 𝜙(𝜌𝑐𝑝)𝑠
, 𝜈𝑛𝑓 =

𝜇𝑛𝑓

𝜌𝑛𝑓
       (27) 

 
𝑘𝑛𝑓

𝑘𝑓
=

(𝑘𝑠+2𝑘𝑓)−2𝜙(𝑘𝑓−𝑘𝑠)

(𝑘𝑠+2𝑘𝑓)+𝜙(𝑘𝑓−𝑘𝑠)
, 𝛼𝑛𝑓 =

𝑘𝑛𝑓

(𝜌𝐶𝑝)
𝑛𝑓

  (28) 

 

Using Eq. (23) in Eqns. (19)-(20) we get 

 

( )
( )

( )
( )

2

2

2

2

1 1
 ,

1 1

x y

L
e e e

nf

x y

L
e e e

nf

p
U U V e

x L

p
U V V e

y L





+

+


− = +




− = +



           (29) 

 

Thus Eq. (19) and (20) become 

 

( )
( )2 2

2

2

1
,

x y

L
e e e nf

u u u u
v w U U V e

x y z L z


+
   

+ + = + +
   

(30) 

 

( )
( )2 2

2

2

1
,

x y

L
e e e nf

v v v v
u v w U V V e

x y z L z


+
   

+ + = + +
   

(31) 

 

provoking the similarity transformation 

 

( ) ( )
( )

 

( )

( )
( )

1
2

2

1
2

2 2
0

, ,

,
2

,
2

x y x y

L L
e e

x y

e L

A x y x y

eL L

u U e f v U e g

U
w e f f g g

L

U
T T T e e z

L

 


 

  


+ +

+

+ +



= =

 
= − + + + 

 

 
= + =  



 

 

 (32) 

 

and Equation (30)-(31) are transformed to the boundary value 

problem depicted in the equations below:  

 

( )

( ) ( ) ( )

2.5

'''

1

1

1

2 2 1

s

f

f

g f f g f f r f




 





−
−

=

   

  
− +  

  

− + + + − − +

(33) 

 

( )

( ) ( ) ( )

2.5

'''

1 1

1

1

2 2 1

s

f

g

g f g g f g r r




 



−

=



−

  
− +  

  

− + + + −  + 

    (34) 

 

( ) ( )( )
( ) ( )

''
/ 1

1 /

  

nf f

p ps f

k k

c c

g f A g f


   

 

 
 
 
− +  

=

  − + + +

Pr      (35) 

 

And equivalent boundary conditions (22) and (23) become 

 

𝑔(0) = 𝑓(0) = 0, 𝑓 ′(0) = 𝛼1, 𝑔
′(0) = 𝛼2, 𝜃(0) = 1 (36) 

 

( ) ( ) ( )11, , 0f g r  =  =  =                (37) 

 

The parameters of physical characteristics are the 

dimensionless surface friction drag coefficients 

 𝑐𝑓𝑥 and  𝑐𝑓𝑦 and the heat transfer rate or Nusselt number 

demarcated as 

 

𝑐𝑓𝑥 =
𝜏𝑤𝑥

𝜌𝑓𝑈0
2/2

,   

𝑐𝑓𝑦 =
𝜏𝑤𝑦

𝜌𝑓𝑈0
2/2

 ,   

𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘𝑓(𝑇−𝑇∞)
 .                            (38) 

 

The respective shear stresses are signified with 𝜏𝑤𝑥  and 𝜏𝑤𝑦  

in the  𝑥 − , 𝑦 − directions, respectively, and 𝑞𝑤 signifies 

surface heat flux 

 

𝜏𝑤𝑥 = 𝜇𝑛𝑓 (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

𝑧=0
,   

𝜏𝑤𝑦 = 𝜇𝑛𝑓 (
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)

𝑧=0

,   

𝑞𝑤 = −𝑘𝑛𝑓
𝜕𝑇

𝜕𝑧
|𝑧=0 .                             (39) 

 

Using Eq. (32) and (39), we get 
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( )

( )
( )

3

1/2 2
2.5

1
/ 2 0

1

x y

L
x fxRe C e f



+

−
=          (40) 

 
( )

( )
( )

3

1/2 2
2.5

1
/ 2 0

1

x y

L
y fyRe C e g



+

−
=          (41) 

 

( )1/2 2/ 2 0
x

x y
nfL

x u

f

kx
Re N e

L k


+

− = −             (42) 

 

where 𝑅𝑒 denote the Reynolds number given as 𝑅𝑒 = 𝑈0𝐿 𝜈⁄ . 

 

 

3. OPTIMAL HOMOTOPY ANALYSIS METHOD 

(OHAM) 
 

To obtain solutions of Eqns. (33-35), we utilized optimal 

homotopy analysis method (Optimal HAM). This powerful 

tool is used for the consequences of boundary value problem. 

The initial guess and corresponding operators for the method 

are defined as 

 

( ) ( ) ( )( )0 1  1 * 1 expf    = + − − −             (43) 

 

( ) ( ) ( ) ( )( )0 2 1 1 1 2* * 1 expg r r r    = − + + − − −  (44) 

 

( ) ( )0 exp *  = − Pr                        (45) 

 
3

3f

d f df

dd 
= −                             (46) 

( ) ( )1 2 3exp exp 0f C C C + + − =               (47) 

 
3

3g

d g dg

dd 
= −                               (48) 

 

( ) ( )4 5 6exp exp 0g C C C + + − =       (49) 

 
2

2

d d

dd


 


= + Pr                              (50) 

 

( )7 8 exp * 0C C + − =  Pr                    (51) 

 
where 𝑐𝑖(𝑖 = 1,2, … 8) are arbitrary constants. If 𝑞 ∈
[0,1]denotes embedding parameter. Here ℏ𝑓, ℏ𝑔 and ℏ𝜃 are 

subsidiary parameters, not equal to zero. In order to write 

zeroth and mth order deformation problems we proceed as 

follows: 

 

 

4. CONVERGENCE OF OHAM SOLUTION   
 

Optimal HAM gives more flexibility to control the 

convergence region for the series solution. Specific values are 

assigned to the auxiliary parameters ℏ𝑓, ℏ𝑔and ℏ𝜃 for 

obtaining the convergence solutions. The residual errors for 

the boundary value problem are examined. These residual 

errors are listed in the Tables 1 and 2 below. The obtained 

convergence in the tables claim that the values given to the 

auxiliary parameters and remaining appeared parameters in the 

flow are good to use. 

 

Table 1. Average residual square error ∈𝒎𝒕 
 

𝐯alues →

𝐨rder ↓
 ℏ𝑓 ℏ𝑔 ℏ𝜃 ∈𝒎

𝒕  

2 −𝟎. 𝟑𝟐𝟖𝟔𝟏 −𝟎. 𝟔𝟒𝟏𝟐𝟎 −𝟏.𝟎𝟎𝟑𝟏𝟏 
𝟏. 𝟗𝟐𝟑𝟏𝟐
× 𝟏𝟎−𝟓 

4 −𝟎. 𝟑𝟖𝟗𝟏𝟐 −𝟎. 𝟔𝟗𝟑𝟏𝟎 −𝟏. 𝟎𝟒𝟑𝟏𝟎1 
𝟕. 𝟎𝟑𝟎𝟑𝟏
× 𝟏𝟎−𝟔 

6 −𝟎. 𝟒𝟎𝟎𝟐𝟏 −𝟎. 𝟕𝟒𝟎𝟎𝟏 −𝟏. 𝟏𝟎𝟎𝟒𝟑𝟎 
𝟏. 𝟎𝟑𝟐𝟏𝟔𝟖
× 𝟏𝟎−𝟔 

8 −𝟎. 𝟒𝟒𝟎𝟗𝟏 −𝟎. 𝟖𝟎𝟎𝟎𝟏 −𝟏.𝟑𝟐𝟏𝟎𝟗 
𝟖. 𝟗𝟐𝟏𝟑𝟖
× 𝟏𝟎−𝟕 

10 −𝟎. 𝟔𝟓𝟏𝟕𝟖 −𝟎. 𝟖𝟑𝟏𝟎𝟖 −𝟏.𝟔𝟕𝟎𝟗𝟏 
𝟎. 𝟕𝟏𝟐𝟎𝟏
× 𝟏𝟎−𝟗 

 

Table 2. Individual residual square errors for ∈𝒎
𝒇
, ∈𝒎

𝒈
, and ∈𝒎

𝜽  

 
𝐯alues →

𝐨rder ↓
 

ℏ𝑓 =  −𝟎. 𝟔𝟓𝟏𝟕𝟖

∈𝑚
𝑓

 
ℏ𝑔 = −𝟎.𝟖𝟑𝟏𝟎𝟖

∈𝑚
𝑔  

ℏ𝜃 = −𝟏. 𝟔𝟕𝟎𝟗𝟏

∈𝑚
𝜃

 

10 𝟑. 𝟖𝟏𝟐𝟎𝟏 × 𝟏𝟎−𝟕 𝟑. 𝟔𝟏𝟐𝟎𝟗 × 𝟏𝟎−𝟔 𝟑. 𝟔𝟏𝟐𝟗𝟑 × 𝟏𝟎−𝟔 

12 𝟏. 𝟗𝟏𝟎𝟑𝟒 × 𝟏𝟎−𝟏𝟎 𝟗. 𝟔𝟐𝟑𝟒𝟎 × 𝟏𝟎−𝟗 𝟏. 𝟓𝟒𝟏𝟐𝟖 × 𝟏𝟎−𝟔 

16 𝟓. 𝟑𝟏𝟗𝟐𝟎 × 𝟏𝟎−𝟏𝟏 
𝟏. 𝟎𝟎𝟒𝟏𝟐
× 𝟏𝟎−𝟏𝟑 

𝟕. 𝟒𝟐𝟗𝟖𝟕 × 𝟏𝟎−𝟕 

18 𝟖. 𝟕𝟓𝟒𝟐𝟎 × 𝟏𝟎−𝟏𝟑 
𝟎. 𝟎𝟑𝟖𝟕𝟏
× 𝟏𝟎−𝟏𝟓 

𝟑. 𝟑𝟗𝟎𝟖𝟔 × 𝟏𝟎−𝟗 

20 𝟏. 𝟓𝟐𝟏𝟑𝟗 × 𝟏𝟎−𝟏𝟗 
𝟔. 𝟗𝟐𝟑𝟒𝟓
× 𝟏𝟎−𝟏𝟕 

𝟏. 𝟒𝟐𝟗𝟖𝟎 × 𝟏𝟎−𝟗 
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4.1 Result and discussion 

 

This section is developed to characterize and scrutinize the 

results examined for the present flow analysis. Impacts of 

sundry dimensionless parameters on the friction drag, axial 

velocity, heat transfer rate, and temperature field are exhibited. 

The suggested parameters include the solid volume fraction 𝜙, 

𝑟1 the ratio or stagnation parameter, 𝛼1 and 𝛼2 stretching 

parameter, and A the exponent temperature parameter for 

water based nanofluid are dig out in Figures 2-10. Three 

distinct nanoparticles Cu (Copper), Al2O3 (Alumina), and 

TiO2 (Titania) are scrutinized in the present flow. Keep in 

mind that these particles were also examined by the Oztop and 

Abu-Nada [27]. During the scrutiny of by Oztop and Abu-

Nada [27], the parameters were taken 𝜙 is taken from 0 to 0.2 

(0≤𝜙≤0.2), here 𝜙=0, depicts the case of flow where the 

nanoparticles are absent and only base fluid remains, and for 

water based nanofluid Prandtl number Pr as 6.2. The 

thermophysical characteristics of the base-fluid and distinct 

nanoparticles, namely, Cu (Copper), Al2O3 (Alumina), and 

TiO2 (Titania) are tabulated in Table 2. This section contains 

Figures 2-10. The results are exhibited in order to dig out the 

impacts of sundry parameters on temperature and velocity 

performance. Table 1 is prepared to access the number of 

approximation order, required for convergent solution. Here 

we found that 30th order of approximation is sufficient. 

Figures 2-5 examines the impacts of Cu (Copper) and 𝑟1 the 

ratio or stagnation parameter on the axial velocity and 

temperature field. We depicted that enhancing the solid 

volume friction 𝜙 of Cu (Copper) results in the enhancement 

of temperature field and velocity field. The velocity field 

arises, whereas, the temperature field declines for the ratio 

parameter 𝑟1(≥𝛼2). Figures 8-10 elucidate the influence of 

distinct nanoparticles i.e., Cu (Copper), Al2O3 (Alumina), and 

TiO2 (Titania) on the flow under consideration. Figures 6 and 

7 depicts that for Al2O3 (Alumina)-water nanofluids leads to 

thick the momentum boundary as compare to Cu (Copper) and 

TiO2 (Titania). The thicker boundary layer for temperature 

field is dig out for the nanoparticle TiO2 (Titania) and base 

fluid water (H2𝑂) shown in Figure 8 as compare to Cu (Copper) 

and Al2O3 (Alumina) nanoparticles. Thicker thermal boundary 

layer is dig out for the arising exponent temperature parameter 

A. Impacts of arisen parameters on the friction drag along 

𝑥,𝑦−direction is delineated in Figure 9. The friction drag 

enhances along 𝑥,𝑦−direction for large values of ratio 

parameter, whereas, it declines for stretching parameters 𝛼1 

and 𝛼2.  

 

 
 

Figure 2. Error decay approximation of order 8 

 

 
 

Figure 3. Influence of Cu-water based and 𝒓𝟏 on 𝒇′(𝜼) 

 

 
 

Figure 4. Effect of Cu-water based on 𝒈′(𝜼) at 𝒓𝟏=𝟎.𝟓 
 

 
 

Figure 5. Influence of Cu-nanoparticle volume fractions 

on 𝒈′(𝜼) at 𝒓𝟏=𝟎.𝟓 
 

 
 

Figure 6. Impact of Cu-nanoparticle volume fractions and 𝒓𝟏 

on (𝜼) 
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Figure 7. Impact of nanoparticle on 𝒇′(𝜼) 

 

 
 

Figure 8. Effect of nanoparticle on 𝒈′(𝜼) 

 

 
 

Figure 9. Inspiration of nanoparticles and temperature 

exponent 𝑨 on 𝜽(𝜼) 

 

 

 
 

Figure 10. Impact of 𝝓 for distinct nanoparticles on friction 

drag along 𝒙−direction when 𝒓𝟏=𝟎,.𝟓,𝟏 
 

 
 

Figure 11. Impact of 𝝓 for distinct nanoparticles on Skin-

friction coefficient along 𝒙−direction when 𝜶𝟏=𝟎,𝟎.𝟓 
 

4.2 Conclusions 

 

The effects of stagnation point on the two-phase flow of 

nanofluid past an exponentially stretching sheet are discovered. 

The arising nonlinear problem is computed. The present study 

reveals following key points. 

The solid volume fraction 𝜙 appreciably increases the 

dimensionless axial velocity and temperature field. It also 

increases heat flux and skin friction. 
 

Table 3. Thermophysical characteristics of water and 

nanoparticles 
 

Physical 

Properties 

Base-Fluid 

(water) 
𝐂𝐮 𝐀𝐥𝟐𝐎𝟑 𝐓𝐢𝐎𝟐 

𝑪𝒑 (𝐉 𝐤𝐠𝐊⁄ ) 4179 385 765 686.2 

𝝆 (𝐤𝐠 𝐦𝟑⁄ ) 997.1 8933 3970 4250 

𝒌 (𝐖 𝐦𝐊⁄ ) 0.613 400 40 8.9538 

Table 4. Numerical simulations for friction drag and Nusselt number when 𝜶𝟏=𝜶𝟐=𝟎.𝟏 and 𝑷𝒓=𝟔.𝟐. 𝝓 
 

𝝓 ↓ 𝐀 𝒓𝟏 𝒇′′(𝟎) (𝟏 − 𝝓)𝟐𝟓/𝟏𝟎⁄  𝒈′′(𝟎) (𝟏 − 𝝓)𝟐𝟓/𝟏𝟎⁄  −𝒌𝒏𝒇 𝒌𝒇⁄ 𝜽′(𝟎) 

0.1 -0.5 0.5 -2.91470 (Cu) -1.35140 (Cu) 1.29210 (Cu) 

   -2.5048(TiO2) -1.1613(TiO2) 1.2437(Al2O3) 

   -2.4781(Al2O3) -1.4190(Al2O3) 1.2170(TiO2) 

  1.5 -3.78720(Cu) -5.81340(Cu) 1.61950(Cu) 

   -3.2545(TiO2) -4.9958(TiO2) 1.5519(Al2O3) 

   -3.2199(Al2O3) -4.9426(Al2O3) 1.5176(TiO2) 

0.2 0.5 0.5 -4.05680(Cu) -1.88080(Cu) 2.92980(Cu) 

   -3.2395(TiO2) -1.5019(TiO2) 2.7360(Al2O3) 

   -3.1839(Al2O3) -1.4762(Al2O3) 2.6213(TiO2) 

  1.5 -5.27130(Cu) -8.09140(Cu) 3.66880(Cu) 

   -4.20900(TiO2) -6.4610(TiO2) 3.4109(Al2O3) 

   -4.1369(Al2O3) -6.3501(Al2O3) 3.2669(TiO2) 
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The ratio/stagnation parameter 𝑟1 enhances the velocity and 

temperature profile.  

The impacts of temperature exponent 𝐀 increases 

dimensionless temperature, heat flux, and thermal boundary 

layer.  

The friction drag along 𝑥,−direction enhances for Cu 

(Copper)- H2𝑂(water) nanofluid and decline for Al2O3 

(Alumina)- H2𝑂(water) nanofluid shown in Table 4.  

The Nusselt number along 𝑥,−direction enhances for Cu 

(Copper)- H2𝑂(water) nanofluid and decline for TiO2 

(Titania)- H2𝑂(water) nanofluid shown in Table 4.  
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