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In this paper, stable and adaptive neural network compensators are proposed to control the 

uncertain permanent magnet synchronous motor (PMSM). Firstly, the overall uncertainties 

caused by mathematical modelling, parameters variation during operation and external 

load torque disturbances are modelled. Secondly, a new motion control scheme, where (d-

q) current loops are dotted by two on-line tuning neural network compensators (NNCs), is 

used to compensate these uncertainties. As a result, the speed control loop is processed 

easily by proportional integral (PI) controller. Stability of the closed-loop system is also 

designed according to the Lyapunov stability. Compared to classical vector control, the 

simulations of PMSM system at different speeds including nominal, low and high speed, 

with and without uncertainties, show the effectiveness of the proposed control scheme.  
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1. INTRODUCTION

In the past two decades, many problems of uncertain 

nonlinear systems such as PMSM, manipulators, robots etc. 

are intensively studied in the automatic research field. PMSM 

is increasingly used in industrial applications due to its high 

efficiency, high speed, high power density, low cost and large 

torque to inertia ratio [1, 2]. But it is still a challenging domain 

of research to control these types of motors perfectly, because 

of their mathematical modelling, multi-variability, 

nonlinearities, parameters uncertainties, high degrees of 

freedom and external disturbances. These problems can cause 

undesired behavior of PMSM that can extremely destroy the 

stabilization of the motor drive. However, traditional control 

techniques cannot be used in this case [3]. In order to 

overcome these drawbacks, many adaptive techniques are 

proposed in recent years. The most popular of them are 

backstepping control with disturbance observer [4], unknown 

disturbance estimation with a hybrid sliding mode observer [5], 

and adaptive sliding model control [6, 7]. However, these 

mentioned control methods require the exact mathematical 

model of the dynamical system, but the model is approximated 

by ignoring some physical phenomena. To overcome this 

problem others modern optimized and intelligent techniques 

are proposed in the literatures [8-12]. 

In recent years, neural networks (NN) have always been 

considered as an efficient method in control of linear and 

nonlinear systems, due to its high accuracy and robustness 

against internal and external disturbances [13-16]. The NN is 

a set of the neuron’s structures using training algorithm to 

adjust the NN weight’s [17]. The online weight updating 

mechanism is an extended version of training algorithm with 

a simple structure by adding an adaptive term to guarantee the 

robustness of uncertainty. Extended version of neural 

networks control has been found one of the most popular and 

conventional tools in engineering control, identification and 

functional approximations [18-20]. 

The NN control has strong ability of handling uncertain 

information and can be easily used in the engineering control 

systems that are too complex to have an exact mathematical 

model. Actually, NN techniques have been developed in both 

continuous and discrete-time, but the techniques implemented 

in discrete-time have the favor that they can be directly 

implemented in digital hardware [21-32]. Unfortunately, one 

of the most important problems of NN control system analysis 

is the stability, and especially when the system is in discrete-

time [21, 22]. Over the past decade, the stability and 

stabilization of NN systems have been considered as an 

essential and necessary area of researches [21-27]. However, 

stability analysis of NN systems was studied mainly by 

Lyapunov stability theory and others different kinds of its 

extended versions [28-32]. 

The main objective of this work is to use an intelligent 

dynamic approach based on two on-line tuning neural 

networks compensators (NNCs), which can adapt their 

weights dynamically to any uncertainty in the PMSM drives. 

This adaptation allows the NNCs to eliminate all disturbances 

related to nonlinearities uncertainties caused by mathematical 

modelling, external disturbance affected by the external load 

and parameters uncertainty. The discrete Lyapunov function is 

also considered to verify the stability of the PMSM under these 

uncertainties. In order to validate the effectiveness of the 

proposed approach we used several inputs references data for 

respective simulation tests. The simulation results are 

discussed and compared to those obtained in classical vector 

control. The results indicate that the proposed approach is 

successful and simple to control PMSM systems in spite of the 

uncertainty problems. 

2. MATHEMATICAL MODEL DESCRIPTION AND

PROBLEM FORMULATION OF PMSM

By considering the simplifying conditions, assumptions and 

Journal Européen des Systèmes Automatisés 
Vol. 54, No. 4, August, 2021, pp. 575-589 

Journal homepage: http://iieta.org/journals/jesa 

575

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.540407&domain=pdf


 

physical laws, the three-phase mathematical model of PMSM 

can be expressed easily in three-phase (abc) frame [5-17]. 

Then, by developing this coupled three-phase mathematical 

model of PMSM, the (dq) axis of current, voltage and flux can 

be also obtained from Park and Concordia transformations 

[33]. So, according to the above steps the electromechanical 

behavior of PMSM system can be described by the following 

first order differential equations [33]: 

 

{
 
 
 
 
 

 
 
 
 
 𝐿𝑑

𝑑𝑖𝑑
𝑑𝑡

= 𝑢𝑑 − 𝑅𝑖𝑑 + 𝑝𝐿𝑞𝜔𝑟𝑖𝑞

𝐿𝑞
𝑑𝑖𝑞
𝑑𝑡

= 𝑢𝑞 − 𝑅𝑖𝑞 − 𝑝𝐿𝑑𝜔𝑟𝑖𝑑 − 𝑝𝜑𝑣𝜔𝑟

𝐽
𝑑𝜔𝑟
𝑑𝑡

= 𝑇𝑒 − 𝑇𝑟 − 𝐵𝜔𝑟

𝑑𝜃𝑟
𝑑𝑡

= 𝜔𝑟

𝜔𝑒 = 𝑝𝜔𝑟
𝑇𝑒 = 1.5𝑝(𝜑𝑣𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞)

 (1) 

where, R represents the stator resistance, 𝜃𝑟  represents the 

rotor position, 𝑢𝑑  and 𝑢𝑞  represent the stator voltages at 

rotational reference frame, 𝑖𝑑  and 𝑖𝑞  represent the direct and 

quadrature stator currents, 𝜔𝑟  and 𝜔𝑒  represent the electrical 

and mechanical rotor speeds, 𝜑𝑣  represents the stator flux 

linkage due to the permanent magnet, 𝑇𝑒  represents the 

electrical torque, 𝑝  represents the number of pole pairs, J 

represents the rotor inertia, B represents the friction, 𝐿𝑑 and 𝐿𝑞 

represent the direct and quadrature stator inductances and 𝑇𝑟 

represents the mechanical load torque. 

Furthermore, by using the following notations: 𝑖𝑑(𝑘) =
𝑥1(𝑘) , 𝑖𝑑(𝑘 + 1) = 𝑥2(𝑘) , 𝑖𝑞(𝑘) = 𝑥3(𝑘) , 𝑖𝑞(𝑘 + 1) =

𝑥4(𝑘), 𝜔𝑟(𝑘) = 𝑥5(𝑘), 𝜔𝑟(𝑘 + 1) = 𝑥6(𝑘), 𝜃𝑟(𝑘) = 𝑥7(𝑘), 
𝜃𝑟(𝑘 + 1) = 𝑥8(𝑘) , 𝑇𝑒(𝑘) = 𝑥9(𝑘) , 𝑇𝑒(𝑘 + 1) = 𝑥10(𝑘)  the 

dynamic of the PMSM can be rewritten in the Brunovsky 

discrete-time domain form by the following system of 

equations, according to Newton discretization method: 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑥1(𝑘 + 1) = 𝑥2(𝑘)

𝑥2(𝑘 + 1) = 𝑥2(𝑘) + (𝑢𝑑(𝑘) − 𝑅𝑥2(𝑘) + 𝑝𝐿𝑞𝑥4(𝑘)𝑥6(𝑘)) (
𝑇𝑠
𝐿𝑑
)

𝑥3(𝑘 + 1) = 𝑥4(𝑘)

𝑥4(𝑘 + 1) = 𝑥4(𝑘) + (𝑢𝑑(𝑘) − 𝑅𝑥4(𝑘) − 𝑝𝐿𝑞𝑥2(𝑘)𝑥6(𝑘) − 𝑝𝜑𝑣𝑥6(𝑘)) (
𝑇𝑠
𝐿𝑑
)

𝑥5(𝑘 + 1) = 𝑥6(𝑘)

𝑥6(𝑘 + 1) = 𝑥6(𝑘) + (𝑥10(𝑘) − 𝑇𝑟 − 𝐵𝑥6(𝑘)) (
𝑇𝑠
𝐽
)

𝑥7(𝑘 + 1) = 𝑥8(𝑘)

𝑥8(𝑘 + 1) = 𝑥8(𝑘) + 𝑥6(𝑘)𝑇𝑠
𝑥9(𝑘 + 1) = 𝑥10(𝑘)

𝑥10(𝑘 + 1) = 1.5p (𝜑𝑣𝑥4(𝑘 + 1) + (𝐿𝑑 − 𝐿𝑞)𝑥2(𝑘 + 1)𝑥4(𝑘 + 1))

 (2) 

 

where, 𝑇𝑠 is the sampling time. In the fact, the parameters 𝜑𝑣 , 
𝑅, 𝐿𝑑 , 𝐿𝑞 , 𝐵, 𝐽, and load torque 𝑇𝑟  are uncertain during the 

operation, then: 

 
�̂�𝑑 = 𝐿𝑑 + �̃�𝑑 𝐽 = 𝐽 + 𝐽 �̂�𝑟 = 𝑇𝑟 + �̃�𝑟
�̂�𝑞 = 𝐿𝑞 + �̃�𝑞 �̂� = 𝑅 + �̃� �̂�𝑣 = 𝜑𝑣 + �̃�𝑣

�̂� = 𝐵 + �̃�

  (3) 

where, the parameters defined by cap depict the parameter 

actual values, the tiled parameters depict the individual errors 

and the parameters without accent depict constant (nominal) 

values. Substituting nominal parameters in Eq. (2) by those 

caped in Eq. (3), the uncertain PMSM can be modelled by the 

following equations: 

 

 

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
𝑥1(𝑘 + 1) =𝑥2(𝑘)

𝑥2(𝑘 + 1) =𝑥2(𝑘) + (𝑢𝑑(𝑘) − 𝑅𝑥2(𝑘) + 𝑝𝐿𝑞𝑥4(𝑘)𝑥6(𝑘)) (
𝑇𝑠
𝐿𝑑
)

+(

−�̃�𝑥2(𝑘) + 𝑝�̃�𝑞𝑥4(𝑘)𝑥6(𝑘) −

(𝑢𝑑(𝑘) − 𝑅𝑥2(𝑘) + 𝑝𝐿𝑞𝑥4(𝑘)𝑥6(𝑘)) (
�̃�𝑑
𝐿𝑑
)
)(

𝑇𝑠

𝐿𝑑 + �̃�𝑑
) = 𝑓𝑑(𝑥(𝑘)) + 𝜏𝑑(𝑘) + 𝑑𝑑(𝑘)

𝑥3(𝑘 + 1) =𝑥4(𝑘)

𝑥4(𝑘 + 1) =𝑥4(𝑘) + (
𝑢𝑞(𝑘) − 𝑅𝑥4(𝑘)

−𝑝𝐿𝑞𝑥2(𝑘)𝑥6(𝑘) − 𝑝𝜑𝑣𝑥6(𝑘)
)(

𝑇𝑠
𝐿𝑞
)

+(

−�̃�𝑥4(𝑘) − 𝑝�̃�𝑑𝑥2(𝑘)𝑥6(𝑘) − 𝑝�̃�𝑣𝑥6(𝑘) −

(𝑢𝑞(𝑘) − 𝑅𝑥4(𝑘) − 𝑝𝐿𝑑𝑥2(𝑘)𝑥6(𝑘) − 𝑝𝜑𝑣𝑥6(𝑘))(
�̃�𝑞
𝐿𝑞
)
)(

𝑇𝑠

𝐿𝑞 + �̃�𝑞
) = 𝑓𝑞(𝑥(𝑘)) + 𝜏𝑞(𝑘) + 𝑑𝑞(𝑘)

𝑥5(𝑘 + 1) =𝑥6(𝑘)

𝑥6(𝑘 + 1) =𝑥6(𝑘) + (𝑥10(𝑘) − 𝑇𝑟 − 𝐵𝑥6(𝑘)) (
𝑇𝑠
𝐽
)

+(−�̃�𝑟 − �̃�𝑥6(𝑘) − (𝑥10(𝑘) − 𝑇𝑟 − 𝐵𝑥6(𝑘))(
𝐽

𝐽
))(

𝑇𝑠

𝐽 + 𝐽
) = 𝑥6(𝑘) + (𝑥10(𝑘) − 𝑇𝑟 − 𝐵𝑥6(𝑘)) (

𝑇𝑠
𝐽
) + 𝑑𝜔(𝑘)

𝑥7(𝑘 + 1) =𝑥8(𝑘)

𝑥8(𝑘 + 1) =𝑥8(𝑘) + 𝑥6(𝑘)𝑇𝑠
𝑥9(𝑘 + 1) =𝑥10(𝑘)

𝑥10(𝑘 + 1)=1.5p (𝜑𝑣𝑥4(𝑘 + 1) + (𝐿𝑑 − 𝐿𝑞)𝑥2(𝑘 + 1)𝑥4(𝑘 + 1))

+1.5p(�̃�𝑣𝑥4(𝑘 + 1) + (�̃�𝑑 − �̃�𝑞)𝑥2(𝑘 + 1)𝑥4(𝑘 + 1)) 1.5p(𝜑𝑣𝑥4(𝑘 + 1) + (𝐿𝑑 − 𝐿𝑞)𝑥2(𝑘 + 1)𝑥4(𝑘 + 1)) + 𝑑𝑇(𝑘)

 (4) 
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where, 𝑥𝑖(𝑘) ∈  ℝ
10, 𝑖 = {1,2… ,10} , and 𝜏𝑖(𝑘) ∈  ℝ

2, 𝑖 =
{d, q} . The vector 𝑑𝑖(𝑘) ∈  ℝ

4, 𝑖 = {d, q, ω, T}  denotes an 

unknown disturbance acting on the system at the 𝑘𝑡ℎ time with 

known constant. 

From the Eq. (4) we conclude that the output 𝜏𝑖(𝑘) is related 

to the uncertain control input 𝑢𝑖(𝑘) , 𝑖 = {𝑑, 𝑞}  through the 

following nonlinear expression: 

 

 

{
 
 
 

 
 
 
𝜏𝑑(𝑘) = 𝑢𝑑(𝑘) (

𝑇𝑠
𝐿𝑑
) + (

−�̃�𝑥2(𝑘) + 𝑝�̃�𝑞𝑥4(𝑘)𝑥6(𝑘) −

(𝑢𝑑(𝑘) − 𝑅𝑥2(𝑘) + 𝑝𝐿𝑞𝑥4(𝑘)𝑥6(𝑘)) (
�̃�𝑑
𝐿𝑑
)
)(

𝑇𝑠

𝐿𝑑 + �̃�𝑑
)

𝜏𝑞(𝑘) = 𝑢𝑞(𝑘) (
𝑇𝑠
𝐿𝑞
) + (

−�̃�𝑥4(𝑘) − 𝑝�̃�𝑑𝑥2(𝑘)𝑥6(𝑘) − 𝑝�̃�𝑣𝑥6(𝑘) −

(𝑢𝑞(𝑘) − 𝑅𝑥4(𝑘) − 𝑝𝐿𝑑𝑥2(𝑘)𝑥6(𝑘) − 𝑝𝜑𝑣𝑥6(𝑘)) (
�̃�𝑞

𝐿𝑞
)
)(

𝑇𝑠

𝐿𝑞 + �̃�𝑞
)

 (5) 

 

Since a backlash is a dynamic nonlinearity, the uncertainties 

in Eq. (5) can be modelled by the following backlash in 

discrete time domain [21, 22]: 

 

𝜏𝑖(𝑘) =𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ(𝜏𝑖(𝑘 − 1), 𝑢𝑖(𝑘 − 1), 𝑢𝑖(𝑘))

= {

𝑚𝑖𝑢𝑖(𝑘) 𝑖𝑓 ((𝑢𝑖(𝑘) > 0) 𝑎𝑛𝑑 𝑢𝑖(𝑘 − 1) = 𝑚𝑖(𝜏𝑖(𝑘 − 1) − 𝑑𝑖+))

𝑖𝑓 ((𝑢𝑖(𝑘) < 0) 𝑎𝑛𝑑 𝑢𝑖(𝑘 − 1) = 𝑚𝑖(𝜏𝑖(𝑘 − 1) − 𝑑𝑖−))

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 (6) 

 

where, 𝑢𝑖(𝑘 − 1)  and 𝑢𝑖(𝑘)  are the inputs of backlash 

function, 𝜏𝑖(𝑘 − 1)  is the state, and 𝑚𝑖 , 𝑑𝑖+ and 𝑑𝑖−  are 

unknown values, 𝑖 = {𝑑, 𝑞}. 
The control law of this nonlinear discrete-time control of 

PMSM system is based on the following assumptions [21, 22]: 

Assumption 1: The desired trajectory is assumed to be 

bounded in the sense that ‖𝑥(𝑖,1)
∗ (𝑘)‖

𝑇
≤ 𝑋(𝑖,1)  and 

‖𝑥(𝑖,2)
∗ (𝑘)‖

𝑇
≤ 𝑋(𝑖,2)  for a known bound 𝑋(𝑖,1)  and 𝑋(𝑖,2) , 

where 𝑥(𝑖,1)
∗ (𝑘) is the delayed value of 𝑥(𝑖,2)

∗ (𝑘), 𝑖 = {𝑑, 𝑞}. 

Assumption 2: The nonlinear function 𝑓𝑖(𝑥(𝑘)) is assumed 

to be unknown, but a fixed estimate 𝑓𝑖(𝑥(𝑘))  is assumed 

known such that the functional estimation error 𝜀�̃�(𝑥(𝑘)) =

𝑓𝑖(𝑥(𝑘)) − 𝑓𝑖(𝑥(𝑘))  satisfies ‖𝜀̃(𝑥(𝑘))‖ ≤ 𝑓𝑖𝑀(𝑥(𝑘))  for 

some known bounding function 𝑓𝑖𝑀(𝑥(𝑘)), 𝑖 = {𝑑, 𝑞}. 

Assumption 3: The unknown disturbance is also assumed 

to satisfy: ‖𝜏𝑖‖ ≤ 𝜏𝑖𝑀 , with 𝜏𝑖𝑀(𝑘) are a known positive 

constants, 𝑖 = {𝑑, 𝑞}. 
Assumption 4: The unknown values 𝑚𝑖 ,  𝑑𝑖+ and 𝑑𝑖−  are 

bounded by known constants 𝑀𝑖 , 𝐷𝑖+ and 𝐷𝑖− as: ‖𝑚𝑖‖ ≤ 𝑀𝑖 , 

‖𝑑𝑖+‖ ≤ 𝐷𝑖+ and ‖𝑑𝑖‖ ≤ 𝐷𝑖−. 

Assumption 5: The dynamics of the backlash compensator 

is invertible. Its dynamic inverse is indicated by the following 

equation: 

 

𝑢𝑖(𝑘) = 𝐵𝑎𝑐𝑘𝑙𝑎𝑠ℎ
−1(𝑢𝑖(𝑘 − 1), 𝑤𝑖(𝑘 − 1), 𝑤𝑖(𝑘)) (7) 

 

where, 𝑤𝑖(𝑘 − 1)  and  𝑤𝑖(𝑘)  are the signals input of the 

backlash inverse that generates the signal 𝑢𝑖(𝑘) , which is 

subsequently sent into the backlash to generate 𝜏𝑖(𝑘). 
Assumption 6: The parameters 𝑚𝑖 ,  𝑑𝑖+ and 𝑑𝑖− used in the 

backlash inverse are exactly corrects. 

Our objective is to control the speed and currents of 

uncertain PMSM such that the tracking errors of 𝑥𝑖(𝑘), 𝑖 =
{1,2, … ,10} closely converge to zero in the presence of any 

uncertainty. To achieve this objective, the stable discrete-time 

adaptive neural networks compensators are used. To prove the 

stability of the system the Lyapunov function is applied. 

 

 

3. STRATEGY OF THE PROPOSED CONTROL 

DESIGN 

 

3.1 Main scheme of the proposed technique 

 

The tracking control system is presented schematically in 

Figure 1. The overall system consists of the uncertain PMSM 

coupled to variable external load disturbance, space vector 

pulse width modulation (SVPWM), voltage-source inverter 

(VSI), two backlash models, two estimated functions, two 

filters, two proportional-plus-derivative (PD) controllers, two 

NNCs and three essential loops. 

 

 
 

Figure 1. Stable and adaptive scheme for uncertain PMSM 

control 

 

The controllers employ a structure of cascade control loop 

including a speed loop and two inner current loops. Here, the 

controllers, which are used to stabilize the (dq)-axis currents 

error, are adopted according to 𝜆𝑖  Hurwitz gains, which are 

followed by two inner PD controllers with gains (𝐾𝑖 and 𝜅𝑖, 
𝑖 = {𝑑, 𝑞}). The PI controller is also used to track the desired 

speed. As it can be seen from Figure 1, the electrical angular 

speed 𝜔𝑟  can be obtained from the position sensor, The 

currents 𝑖𝑑  and 𝑖𝑞  can be calculated from measured three-

phase currents 𝑖𝑎 and 𝑖𝑏 by Park transformations. 
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According to the actual value of the angle 𝜃𝑟, the backlash 

outputs can be transformed, from the rotating (d, q) frame to 

the stator-fixed coordinates (𝛼, 𝛽) , to be the inputs of 

SVPWM that activates the transistors state of the inverter. 

Finally, the suitable stator voltages are applied on the motor 

with respect to the amplitude and the desired frequency. The 

uncertainty of PMSM destroys the tracking, and then the 

classical PD controllers are not capable to compensate it. To 

correct the errors due to this uncertainty, neural network 

compensators are used. 

More details about the design procedure for the proposed 

control strategy (Figure 1) are presented step-by-step in the 

following subsection. 

 

3.2 Discrete-time PI controller of the speed 

 

To handle speed trajectory a PI controller is considered. The 

expressions of the proportional and integral controller gain 

respectively 𝐾𝑃  and 𝐾𝐼  are determined by the following 

equations [20]: 

 

{
𝐾𝐼 =

4𝐽𝑅2

𝐿𝑞
2

𝐾𝑃 =
𝐾𝐼𝐿𝑞

𝑅

  (8) 

 

This controller compares, at each iteration, the actual speed 

value with the desired speed value. Then, it processes the 

speed errors defined by the Eq. (9) by the Eq. (10) to track the 

desired speed perfectly. 

 

{
𝑒𝑖(𝑘) = 𝑥𝑖

∗(𝑘) − 𝑥𝑖(𝑘)

𝑒𝑖(𝑘 + 1) = 𝑥𝑖
∗(𝑘 + 1) − 𝑥𝑖(𝑘 + 1)

;     𝑖 = {5,6} (9) 

 

where, 𝑒𝑖(𝑘)  and 𝑒𝑖(𝑘 + 1) , represent the speed errors at 

discrete-times k and (𝑘 + 1). 
 

{
 

 
𝑥9
∗(𝑘) = 𝑥9

∗(𝑘 − 1) + 𝐾𝑃𝑒5(𝑘) + (𝐾𝐼𝑇𝑠 − 𝐾𝑃)𝑒5(𝑘 − 1)

𝑥10
∗ (𝑘) = 𝑥10

∗ (𝑘 − 1) + 𝐾𝑃𝑒6(𝑘) + (𝐾𝐼𝑇𝑠 − 𝐾𝑃)𝑒6(𝑘 − 1)

𝑥9
∗(𝑘 + 1) = 𝑥9

∗(𝑘) + 𝐾𝑃𝑒5(𝑘 + 1) + (𝐾𝐼𝑇𝑠 − 𝐾𝑃)𝑒5(𝑘)

𝑥10
∗ (𝑘 + 1) = 𝑥10

∗ (𝑘) + 𝐾𝑃𝑒6(𝑘 + 1) + (𝐾𝐼𝑇𝑠 − 𝐾𝑃)𝑒6(𝑘)

 (10) 

 

For 𝑖𝑑
∗ = 0 strategy, the desired trajectory of 𝑖𝑞  is related to 

the desired trajectory of the torque with the following 

equations: 

 

{
  
 

  
 𝑥3

∗(𝑘) =
2

3𝑝𝜑𝑣
𝑥9
∗(𝑘)

𝑥3
∗(𝑘 + 1) =

2

3𝑝𝜑𝑣
𝑥9
∗(𝑘 + 1)

𝑥4
∗(𝑘) =

2

3𝑝𝜑𝑣
𝑥10
∗ (𝑘)

𝑥4
∗(𝑘 + 1) =

2

3𝑝𝜑𝑣
𝑥10
∗ (𝑘 + 1)

  (11) 

 

Hence, by substituting Eq. (10) in Eq. (11), the desired 

trajectory 𝑖𝑞
∗  is related to the tracking errors of the speed with 

the following equations: 

 

{
  
 

  
 𝑥3

∗(𝑘) = 𝑥3
∗(𝑘 − 1) +

2

3𝑝𝜑𝑣
(𝐾𝑃𝑒5(𝑘) + (𝐾𝐼𝑇𝑠 −𝐾𝑃)𝑒5(𝑘 − 1))

𝑥3
∗(𝑘 + 1) = 𝑥3

∗(𝑘) +
2

3𝑝𝜑𝑣
(𝐾𝑃𝑒5(𝑘 + 1) + (𝐾𝐼𝑇𝑠 − 𝐾𝑃)𝑒5(𝑘))

𝑥4
∗(𝑘) = 𝑥4

∗(𝑘 − 1) +
2

3𝑝𝜑𝑣
(𝐾𝑃𝑒6(𝑘) + (𝐾𝐼𝑇𝑠 −𝐾𝑃)𝑒6(𝑘 − 1))

𝑥4
∗(𝑘 + 1) = 𝑥4

∗(𝑘) +
2

3𝑝𝜑𝑣
(𝐾𝑃𝑒6(𝑘 + 1) + (𝐾𝐼𝑇𝑠 − 𝐾𝑃)𝑒6(𝑘))

  (12) 

 

3.3 Discrete-time adaptive neural networks compensators 

 

 
 

Figure 2. The structure of neural network compensators 

The multi-layer perceptron neural networks (MLPNNs), 

used as compensators in this work (Figure 2), have dynamic 

weights between hidden and output neurons and static weights 

between input and hidden layers neurons. Consequently, they 

possess lesser number of weights to be updated and can be 

trained quickly and easily. 

The concept of the adaptation technique law is to track 

precisely the desired trajectories of the uncertain PMSM. The 

tracking current errors of the desired trajectories 𝑖(𝑖,2)
∗ (𝑘) and 

their first delayed values 𝑖(𝑖,1)
∗ (𝑘), 𝑖 = {𝑑, 𝑞} are expressed as: 

 

{
𝑒(𝑖,1)(𝑘) = 𝑖(𝑖,1)

∗ (𝑘) − 𝑖(𝑖,1)(𝑘)

𝑒(𝑖,2)(𝑘) = 𝑖(𝑖,2)
∗ (𝑘) − 𝑖(𝑖,2)(𝑘)

 (13) 

 

Eq. (14) defines a filtered tracking error 𝑟𝑖(𝑘) calculated 

from 𝑒(𝑖,2)(𝑘)  tracking errors of currents and their delayed 

values 𝑒(𝑖,1)(𝑘), 𝑖 = {𝑑, 𝑞}. 

 

𝑟𝑖(𝑘) = 𝑒(𝑖,2)(𝑘) + 𝜆𝑖𝑒(𝑖,1)(𝑘) (14) 

 

where, 𝜆𝑖 are chosen according to Hurwitz stability. Eq. (14) 

is used also to calculate 𝑟𝑖(𝑘 + 1) for discrete-time (𝑘 + 1). 
From Eq. (2), (13) and (14) we obtain the expression of the 

filtered tracking errors 𝑟𝑖(𝑘 + 1), 𝑖 = {𝑑, 𝑞} as follows: 

 

𝑟𝑖(𝑘 + 1) = 𝑓𝑖(𝑥(𝑘)) − 𝑖(𝑖,1)
∗ (𝑘 + 1) + 𝜆𝑖𝑒(𝑖,1)(𝑘)

+ 𝜏𝑖(𝑘) + 𝑑𝑖(𝑘) 
(15) 

 

where, the nonlinear function 𝑓𝑑(𝑥(𝑘)) and 𝑓𝑞(𝑥(𝑘)) can be 

estimated successively by the terms 𝑓𝑑(𝑥(𝑘)) and 𝑓𝑞(𝑥(𝑘)) as 

follows: 

 

{
 

 𝑓𝑑(𝑥(𝑘)) = 𝑥2(𝑘) + (−𝑅𝑥2(𝑘) + 𝑝𝐿𝑞𝑥4(𝑘)𝑥6(𝑘)) (
𝑇𝑠
𝐿𝑑
)

𝑓𝑞(𝑥(𝑘)) = 𝑥4(𝑘) + (
−𝑅𝑥4(𝑘) − 𝑝𝐿𝑞𝑥2(𝑘)𝑥6(𝑘)

−𝑝𝜑𝑣𝑥6(𝑘)
) (
𝑇𝑠
𝐿𝑑
)

 (16) 
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An adaptive compensation scheme for the unknown term 

𝑓(𝑥(𝑘))  is provided by selecting the following tracking 

controller: 

 

𝜏𝑖
∗(𝑘) = 𝐾𝑖𝑟𝑖(𝑘 + 1) − 𝑓𝑖(𝑥(𝑘)) + 𝑥(𝑖,2)

∗ (𝑘 + 1)

+ 𝜆𝑖𝑒(𝑖,1)(𝑘) 
(17) 

 

The term 𝜏𝑖
∗(𝑘)  is the actuator output, which is also the 

desired control signal. The feedback gain matrix 𝐾𝑖  is often 

selected diagonal and greater than zero [8]. 

The complete error system dynamics can be expressed by 

the following equation: 

 

{
�̃�𝑑(𝑘) = 𝜏𝑑

∗(𝑘) − 𝜏𝑑(𝑘)

�̃�𝑞(𝑘) = 𝜏𝑞
∗(𝑘) − 𝜏𝑞(𝑘)

 (18) 

 

Using the Eq. (17), the Eq. (15) can be rewritten as follows: 

 

𝑟𝑖(𝑘 + 1) = 𝐾𝑖𝑟𝑖(𝑘) + 𝜀�̃�(𝑖𝑖(𝑘)) + 𝑑𝑖(𝑘) − �̃�𝑖(𝑘) (19) 

 

where, 𝑖 = {𝑑, 𝑞} , The substitution of 𝜏𝑖(𝑘 + 1)  by 

𝐵𝑖(𝜏𝑖(𝑘), 𝑢𝑖(𝑘), 𝑢𝑖(𝑘 + 1)) in equation 18 gives the following 

equation: 

 
�̃�𝑖(𝑘 + 1)= 𝜏𝑖

∗(𝑘 + 1) − 𝜏𝑖(𝑘 + 1)

= 𝜏𝑖
∗(𝑘 + 1) − 𝐵𝑖(𝜏𝑖(𝑘), 𝑢𝑖(𝑘), 𝑢𝑖(𝑘 + 1))

 (20) 

 

Furthermore, the ideal backlash inverse and its 

approximation is given by: 

 

{
𝑢𝑖(𝑘 + 1) = 𝐵𝑖

−1(𝜏𝑖(𝑘), 𝑢𝑖(𝑘), 𝑢𝑖(𝑘 + 1))

�̂�𝑖(𝑘 + 1) = �̂�𝑖
−1(�̂�𝑖(𝑘), �̂�𝑖(𝑘), �̂�𝑖(𝑘 + 1))

  (21) 

 

where, 𝑖 = {𝑑, 𝑞}. We define also the backlash errors by the 

following equation: 

 
�̃�𝑖(𝜏𝑖(𝑘), 𝑢𝑖(𝑘), 𝑢𝑖(𝑘 + 1))= 𝐵𝑖(𝜏𝑖(𝑘), 𝑢𝑖(𝑘), 𝑢𝑖(𝑘 + 1))

−�̂�𝑖(𝜏𝑖(𝑘), 𝑢𝑖(𝑘), 𝑢𝑖(𝑘 + 1))
 (22) 

 

Thus, 

 
𝜏𝑖(𝑘 + 1) = �̂�𝑖(𝑘 + 1) + �̃�𝑖(𝑘 + 1)

=  �̂�𝑖(𝜏𝑖(𝑘), 𝑢𝑖(𝑘), 𝑢𝑖(𝑘 + 1))

+�̃�𝑖(𝜏𝑖(𝑘), 𝑢𝑖(𝑘), 𝑢𝑖(𝑘 + 1))

  (23) 

 

where, 𝑖 = {𝑑, 𝑞} . In order to design a stable closed-loop 

system with backlash compensation, we select a nominal 

backlash inverse �̂�𝑖(𝑘 + 1).  Then, the system dynamics can 

be represented as follows: 

 

�̂�𝑖(𝑘 + 1) = −𝜅𝑖�̃�𝑖(𝑘) + 𝛿𝑖(𝑘) +

�̂�𝑇(𝑘)𝜎(𝑉𝑇𝑋𝑁𝑁(𝑘))  
(24) 

 

The term �̂�𝑇(𝑘)𝜎(𝑉𝑇𝑋𝑁𝑁(𝑘)) is used to compensate the 

backlash inverse and the filtered error by using the NN 

approximation property, where �̂�(𝑘)  and 𝑉(𝑘)  are the 

weights of NN. The term 𝛿𝑖(𝑘) is the filter dynamic of 𝜏𝑖
∗(𝑘) 

processed by a discrete time filter 
𝑎𝑖𝑧

𝑧+𝑎𝑖
. The discrete-time filter 

output 𝛿𝑖(𝑘) , 𝑖 = {𝑑, 𝑞}  is calculated by the following 

equation: 
 

𝛿𝑖(𝑘) = 𝑎𝑖𝛿𝑖(𝑘 − 1) − 𝑎𝑖𝜏𝑖
∗(𝑘) (25) 

where, 𝑎𝑖 and 𝐾𝑖 represent respectively constant values of  

discrete-time filter and gain vector, and 𝜎  represents 

sigmoidal function. 

Each NNC is composed of: input, hidden and output layers 

(Figure 2). 

The input layer vector of 𝑁𝑁𝐶𝑖, 𝑖 = {𝑑, 𝑞} is expressed by: 

 

𝑋𝑖(𝑘) = [1 𝑟𝑖
𝑇(𝑘) (𝑟𝑖

∗)𝑇(𝑘) �̃�𝑖
𝑇(𝑘) 𝜏𝑖

𝑇(𝑘)]𝑇 (26) 

 

The expression of the hidden output 𝑗 of 𝑁𝑁𝐶𝑖, 𝑖 = {𝑑, 𝑞} 
is expressed by the following sigmoidal function: 

 

𝑌𝑗
𝑖(𝑘) =

1

1 + 𝑒𝑥𝑝(∑ 𝑊(𝜄,𝑗)
𝑖𝑛1

𝜄=1
(𝑘)𝑋𝜄

𝑖(𝑘) + 𝑅𝑎𝑛𝑑𝑗
𝑖)

 (27) 

 

where, 𝑅𝑎𝑛𝑑𝑖
𝑗
 is the 𝑗𝑡ℎ normalized random bias value of the 

compensator 𝑁𝑁𝐶𝑖 , 𝑖 = {𝑑, 𝑞}, 𝜄 = {1,2, … , 𝑛1} ,  𝑗 =
{1,2, … , 𝑛2} , 𝑛1 and 𝑛2  are respectively the numbers of the 

input layer neurons and the hidden layer neurons. 

The output layer of each 𝑁𝑁𝐶𝑖 , 𝑖 = {𝑑, 𝑞} has one output 

neuron which is expressed by: 

 

𝑍𝑖(𝑘) =∑𝑊(𝑗,ℎ)
𝑖 (𝑘)𝑌𝑗

𝑖(𝑘)

𝑛2

𝑗=1

 (28) 

 

Then, the expression of 𝑢𝑖(𝑘 + 1) is depicted by: 

 

𝑢𝑖(𝑘 + 1) = 𝜅𝑖(𝜏𝑖
∗(𝑘) − 𝜏𝑖(𝑘)) + 𝛿𝑖(𝑘) + 𝑍

𝑖(𝑘) (29) 

 

where, 𝜅𝑖  is a design parameter, which is always selected 

greater than zero [8]. Finally 𝜏𝑖(𝑘 + 1) is showed by: 

 

𝜏𝑖(𝑘 + 1) = 𝐵𝑖(𝜏𝑖(𝑘), 𝑢𝑖(𝑘), 𝑢𝑖(𝑘 + 1)) (30) 

 

And hence, 

 

𝜏𝑖(𝑘 + 1)

=

{
 
 

 
 
𝑚𝑖𝑢𝑖(𝑘 + 1) 𝑖𝑓  (𝑢𝑖(𝑘 + 1) > 0.0)

𝑎𝑛𝑑 (𝑢𝑖(𝑘) = 𝑚𝑖𝜏𝑖(𝑘) − 𝑚𝑖𝑑𝑖+)

𝑜𝑟 (𝑢𝑖(𝑘 + 1) < 0.0) 

𝑎𝑛𝑑 (𝑢𝑖(𝑘) = 𝑚𝑖𝜏𝑖(𝑘) − 𝑚𝑖𝑑𝑖+)

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(31) 

 

where, 𝑖 = {𝑑, 𝑞} , 𝑑𝑖+ , 𝑑𝑖−  and 𝑚𝑖  are the backlash 

parameters. The right choice of the values of these parameters 

provides a correct backlash. 

Notice that the weights vector 𝑊(𝜄,𝑗)
𝑖  between neurons of 

layers 𝜄  and 𝑗  of 𝑁𝑁𝐶𝑖 , 𝑖 = {𝑑, 𝑞}  are not time dependent 

since they are selected randomly at the initial time to provide 

a basis [18], and then they are kept constant through the tuning 

process. For the hidden layer, the NN weights are on-line 

adjusted in real time with no preliminary off-line learning 

required. The on-line tuning rule of hidden layer weights of 

the network are updated by the following expression [21]: 

 

�̂�𝑖(𝑘 + 1) =�̂� 𝑖(𝑘) + 𝛼𝑖𝑌
𝑖(𝑘)[𝑟𝑖

𝑇(𝑘 + 1) + �̃�𝑖(𝑘 + 1)]

−𝛾𝑖‖𝐼 − 𝛼𝑖𝑌
𝑖(𝑘)𝑌𝑖𝑇(𝑘)‖�̂�𝑖(𝑘)

 (32) 

 

where, 𝑖 = {𝑑, 𝑞}, 𝛼𝑖  and 𝛾𝑖  are the networks learning rates 

[21], 𝐼 is the identity matrix of the size (𝑛2 + 1)(𝑛2 + 1) and 

𝑌𝑖𝑌𝑖𝑇  is expressed by: 
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𝑌𝑖(𝑘)𝑌𝑖𝑇(𝑘) = √∑∑(𝑌(𝜄+1)
𝑖 (𝑘)𝑌(𝑗+1)

𝑖 (𝑘))
2

𝑛2

𝑗=1

𝑛1

𝜄=1

 (33) 

 

The convergence of Eq. (32) in such a manner that closed-

loop stability is guaranteed, can be ensured by Lyapunov 

stability theory [22], in the following section. 

 

3.4 Stability analysis of the proposed control 

 

To show the boundedness of all closed-loop signals, the 

following positive discrete-time Lyapunov function is selected: 

 

𝑉(𝑘) = 𝑉1(𝑘) + 𝑉2(𝑘) (34) 

 

The positive 𝑉1(𝑘)  represents the closed speed loop 

Lyapunov function which is used to weight the speed error 

𝑒𝜔(𝑘) . The positive 𝑉2(𝑘)  is used to weight the filtered 

tracking errors 𝑟𝑖(𝑘), the NN weights estimation errors �̃�𝑖(𝑘) 
and the backlash errors �̃�𝑖(𝑘), 𝑖 = {𝑑, 𝑞}. These functions are 

defined by the following equations: 

 

𝑉1(𝑘) =
1

2
𝑒𝜔
2 (𝑘) (35) 

 

𝑉2(𝑘)= 2𝑟𝑑
𝑇(𝑘)𝑟𝑑(𝑘) + 2𝑟𝑞

𝑇(𝑘)𝑟𝑞(𝑘) + 2𝑟𝑑
𝑇(𝑘)�̃�𝑑(𝑘)

+2𝑟𝑞
𝑇(𝑘)�̃�𝑞(𝑘) + 2�̃�𝑑

𝑇(𝑘)�̃�𝑑(𝑘) + 2�̃�𝑞
𝑇(𝑘)�̃�𝑞(𝑘)

+
1

𝛼𝑑
(𝑊𝑑

𝑇(𝑘)�̃�𝑑(𝑘)) +
1

𝛼𝑞
(𝑊𝑞

𝑇(𝑘)�̃�𝑞(𝑘))

 (36) 

 

The variation of the Eq. (35) gives the following equation: 

 

Δ𝑉1(𝑘) =
1

2
𝑒𝜔
2 (𝑘 + 1) −

1

2
𝑒𝜔
2 (𝑘)

1

2
(𝜔𝑟

∗(𝑘 + 1) − 𝜔𝑟(𝑘 + 1))
2
−
1

2
𝑒𝜔
2 (𝑘)

 (37) 

 

By using the PI speed loop design method, according to 

Euler integration, we obtain the virtual desired q-axis current 

𝑖𝑞
∗  and by using the strategy law the desired d-axis current is 

𝑖𝑑
∗ = 0. Then, the expression of input currents is: 

 

{
 
 

 
 𝑖𝑑

∗ = 0

𝑖𝑞
∗ =

2

3𝑝𝜑𝑣
(

𝐵𝜔𝑟(𝑘) + 𝑇𝑟

+𝐽 (𝐾𝑃𝑒𝜔(𝑘) + 𝐾𝐼∑𝑒𝜔 (𝑘))
)

 (38) 

 

where, 𝐾𝐼  and 𝐾𝑃 are a positive constant gains of PI controller. 

Substituting Eqs. (2) and (38) in Eq. (37) the variation of 𝑉1(𝑘) 
can be expressed by the following equation: 

 

Δ𝑉1(𝑘) =
1

2

(

 
𝜔𝑟
∗(𝑘) + (𝑇𝑒(𝑘) − 𝑇𝑟 − 𝐵𝜔𝑟

∗(𝑘)) (
𝑇𝑠
𝐽
)

−𝜔𝑟
∗(𝑘) + (𝑇𝑒

∗(𝑘) − 𝑇𝑟 − 𝐵𝜔𝑟
∗(𝑘)) (

𝑇𝑠
𝐽
)
)

 

2

−
1

2
𝑒𝜔
2 (𝑘)

= −
𝐵𝑇𝑠
𝐽
(2 −

𝐵𝑇𝑠
𝐽
) 𝑒𝜔

2 (𝑘)

+2 (1 −
𝐵𝑇𝑠
𝐽
)
𝑇𝑠
𝐽
(𝑇𝑒

∗(𝑘 − 1) − 𝑇𝑒(𝑘 − 1) + 𝐾𝑃𝑒𝜔(𝑘)

+(𝐾𝐼𝑇𝑠 − 𝐾𝑃)𝑒𝜔(𝑘 − 1))𝑒𝜔(𝑘)

+(𝑇𝑒
∗(𝑘 − 1) − 𝑇𝑒(𝑘 − 1) + 𝐾𝑃𝑒𝜔(𝑘) + (𝐾𝐼𝑇𝑠 − 𝐾𝑃)𝑒𝜔(𝑘 − 1))

2

(
𝑇𝑠
𝐽
)
2

 (39) 

 

Substituting Eq. (2) in Eq. (39), we obtain the following equation: 

 

Δ𝑉1(𝑘) = −
𝐵𝑇𝑠
𝐽
(2 −

𝐵𝑇𝑠
𝐽
) 𝑒𝜔

2 (𝑘)

+2 (1 −
𝐵𝑇𝑠
𝐽
)
𝑇𝑠
𝐽
(

(
𝐽

𝑇𝑠
+ 𝐵) 𝑒𝜔(𝑘) +

𝐽

𝑇𝑠
𝑒𝜔(𝑘 − 1) 

+𝐾𝑃𝑒𝜔(𝑘) + (𝐾𝐼𝑇𝑠 −𝐾𝑃)𝑒𝜔(𝑘 − 1)

) 𝑒𝜔(𝑘)

+ (
𝑇𝑠
𝐽
)
2

(
(
𝐽

𝑇𝑠
+ 𝐵) 𝑒𝜔(𝑘) +

𝐽

𝑇𝑠
𝑒𝜔(𝑘 − 1) + 𝐾𝑃𝑒𝜔(𝑘)

+(𝐾𝐼𝑇𝑠 − 𝐾𝑃)𝑒𝜔(𝑘 − 1)

)

2

 (40) 

 

The Eq. (40) can be represented as follows: 

 

 

Δ𝑉1(𝑘) = −
𝐵𝑇𝑠
𝐽
(2 −

𝐵𝑇𝑠
𝐽
) 𝑒𝜔

2 (𝑘)

+2 (1 −
𝐵𝑇𝑠
𝐽
)
𝑇𝑠
𝐽
((
𝐽

𝑇𝑠
+ 𝐵 +𝐾𝑃) 𝑒𝜔(𝑘) + (

𝐽

𝑇𝑠
+𝐾𝐼𝑇𝑠 − 𝐾𝑃) 𝑒𝜔(𝑘 − 1)) 𝑒𝜔(𝑘)

+(
𝑇𝑠
𝐽
)
2

((
𝐽

𝑇𝑠
+ 𝐵 + 𝐾𝑃) 𝑒𝜔(𝑘) + (

𝐽

𝑇𝑠
+ 𝐾𝐼𝑇𝑠 −𝐾𝑃) 𝑒𝜔(𝑘 − 1))

2

 (41) 
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Finally, the expression of Lyapunov function variation Δ𝑉1(𝑘) is: 

 

Δ𝑉1(𝑘)=−
𝐵𝑇𝑠
𝐽
(2 −

𝐵𝑇𝑠
𝐽
) 𝑒𝜔

2 (𝑘)

+2 (1 −
𝐵𝑇𝑠
𝐽
)
𝑇𝑠
𝐽
(𝑒𝜔(𝑘) + 𝐾0𝑒𝜔(𝑘 − 1))𝑒𝜔(𝑘) + (

𝑇𝑠
𝐽
)
2

(𝑒𝜔(𝑘) + 𝐾0𝑒𝜔(𝑘 − 1))
2
 (42) 

 

where, 𝐾0 =
(
𝐽

𝑇𝑠
+(𝐾𝐼𝑇𝑠−𝐾𝑃))

(
𝐽

𝑇𝑠
+𝐵+𝐾𝑃)

 is a positive constant and 

−𝐵
𝑇𝑠

𝐽
(2 − 𝐵

𝑇𝑠

𝐽
) < 0  according to the parameter values, 

which will be declared in the simulation. Then, according to 

Slotine [34], if 𝐾0 is chosen properly for the controller, then 

(𝑒𝜔(𝑘) + 𝐾0𝑒𝜔(𝑘 − 1)) → 0 . So, it is evident that the 

equation 42 is negative, meaning that the speed tracking errors 

is guaranteed to converge to zero. On the other hand, the 

variation of 𝑉2(𝑘) is expressed by:

 

∆𝑉2(𝑘)= 2𝑟𝑑
𝑇(𝑘 + 1)𝑟𝑑(𝑘 + 1) + 2𝑟𝑞

𝑇(𝑘 + 1)𝑟𝑞(𝑘 + 1) + 2𝑟𝑑
𝑇(𝑘 + 1)�̃�𝑑(𝑘 + 1)

+2𝑟𝑞
𝑇(𝑘 + 1)�̃�𝑞(𝑘 + 1) + 2�̃�𝑑

𝑇(𝑘 + 1)�̃�𝑑(𝑘 + 1) + 2�̃�𝑞
𝑇(𝑘 + 1)�̃�𝑞(𝑘 + 1)

+
1

𝛼𝑑
(𝑊𝑑

𝑇(𝑘 + 1)�̃�𝑑(𝑘 + 1)) +
1

𝛼𝑞
(𝑊𝑞

𝑇(𝑘 + 1)�̃�𝑞(𝑘 + 1)) − 2𝑟𝑑
𝑇(𝑘)𝑟𝑑(𝑘)

−2𝑟𝑞
𝑇(𝑘)𝑟𝑞(𝑘) − 2𝑟𝑑

𝑇(𝑘)�̃�𝑑(𝑘) − 2𝑟𝑞
𝑇(𝑘)�̃�𝑞(𝑘) − 2�̃�𝑑

𝑇(𝑘)�̃�𝑑(𝑘) − 2�̃�𝑞
𝑇(𝑘)�̃�𝑞(𝑘)

−
1

𝛼𝑑
(𝑊𝑑

𝑇(𝑘)�̃�𝑑(𝑘)) −
1

𝛼𝑞
(𝑊𝑞

𝑇(𝑘)�̃�𝑞(𝑘))

 (43) 

To not burden this paper, we note that the proof of 

Δ𝑉2(𝑘) < 0 is similar to that determined in [21] (appendix 

(section 5.A)). So, according to the standard Lyapunov 

theorem extension, it can be concluded that the tracking error 

𝑟𝑖(𝑘), the actuator error �̃�𝑖(𝑘), and the errors of estimated NN 

weights �̃�𝑖(𝑘) , 𝑖 = {𝑑, 𝑞}  are globally, uniformly and 

ultimately bounded (GUUB). So the uncertain PMSM is 

globally stable in the presence of internal and external 

uncertainties. 

 

 

4. SIMULATION RESULTS 

 

In this simulation the inverter is simulated by its ideal 

switching frequency 20 KHz. The motor is represented by its 

dynamic model in the Park frame. Thus, after several 

simulation tests we found that the average execution time of 

our program is around 0.0117s for 30000 simulation cycles. 

We deduce that the execution time needed for one cycle is 

around 3.9 𝜇𝑠. Bearing in mind that practically the sensors, the 

analog/digital converters, the switching elements of the 

inverter and the algorithm processing in DSP are time 

consuming. It is practically difficult to achieve such system 

with small sampling period. Thus, in practice, convenient 

sampling periods, such as 100 𝜇𝑠 or larger is normally 

selected for processing. So, to make our proposed adaptive 

method feasible for the uncertain PMSM with parameters 

shown below, it was simulated with the sampling time 𝑇𝑠 =
100 𝜇𝑠, meaning that for 30000 samples the time of simulation 

is 𝑇 = 3 𝑠. 
The values of PMSM parameters used in this study are 

given in Table 1 [9]. 

The two gains 𝐾𝑃 = 0.3669  and 𝐾𝐼 = 88.5612 , of PI 

controller are given according to the expressions of [20]. In 

order to show the effectiveness of the proposed method the 

two backlash are considered differently with the parameters 

𝑚𝑑 = 0.5 , 𝑚𝑞 = 0.55 , 𝑑𝑑+ = 0.2 , 𝑑𝑑− = 0.2 , 𝑑𝑞+ = 0.2 

and 𝑑𝑞− = 0.2.  

After several simulation tests, the appropriate values of the 

following parameters are chosen as: The Hurwitz and PD 

controller parameters gains are 𝜆𝑑 =  2.5, 𝜆𝑞 =  0.23, 𝐾𝑑 =

0.0001285 ; 𝐾𝑞 = 0.1285 , 𝜅𝑑 = 2.25  and 𝜅𝑞 = 2.0 . The 

number of hidden layer neurons, the bounded weights values 

of hidden layer with sigmoidal activation are respectively 

chosen as: 𝑛2 = 10 , 𝑊(𝑗,ℎ)
𝑖 ∈ [−0.1, +0.1] . The first layer 

weights and bias are initialized randomly and uniformly 

distributed in the [−0.1, +0.1] and 𝑅𝑎𝑛𝑑𝑗
𝑖 ∈ [−100,+100]. 

The filters that generate the signals 𝛿𝑑  and 𝛿𝑞  are 

implemented respectively with the gains 𝑎𝑑 = 0.05006 and 

𝑎𝑑 =  0133425. 

 

Table 1. Parameters of PMSM 

 
Location Symbols Values Units 

Stator resistance R 1.4 Ω 

d-axis inductance 𝐿𝑑 6.6 𝑚𝐻 

q-axis inductance 𝐿𝑞 5.8 𝑚𝐻 

Magnetic Flux constant 𝜑𝑣 0.1546 𝑊𝑏 

Friction coefficient 𝐵 0.00038 𝑁.𝑚𝑟𝑎𝑑−1𝑠−1 

Motor inertia 𝐽 0.00176 𝐾𝑔𝑚2 

Nominal speed 𝜔𝑛 1430 𝑟𝑝𝑚 

 

In order to demonstrate the high performance of the 

proposed technique, numerous simulation tests are performed 

at the different operating conditions indicated below: 

• The motor is started running under no load, 

• The motor is suddenly under load torque disturbances 

variation: 𝑇𝑟 = 2 𝑁.𝑚  applied between 0.25s and 

1.75s, 

• The motor is suddenly under load torque disturbances 

variation: 𝑇𝑟 = 4 𝑁.𝑚  applied between 1.75s and 

3.00s. 

• The desired speeds with and without parameters 

uncertainty: 𝜔𝑟 = +150 𝑟𝑎𝑑. 𝑠−1 , 𝜔𝑟 =
−150 𝑟𝑎𝑑. 𝑠−1 , 𝜔𝑟 = +5 𝑟𝑎𝑑. 𝑠

−1 , 𝜔𝑟 =
−5 𝑟𝑎𝑑. 𝑠−1 , 𝜔𝑟 = +200 𝑟𝑎𝑑. 𝑠

−1  and 𝜔𝑟 =
−200 𝑟𝑎𝑑. 𝑠−1  respectively between [0 − 0.5] 𝑠 , 

[0.5 − 1.0] 𝑠 ,  [1.0 − 1.5] 𝑠 ,  [1.5 − 2.0] 𝑠 ,  [2.0 −
2.5] 𝑠 and [2.5 − 3.0] 𝑠 
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• The desired sinusoidal speeds under parameters 

uncertainty: 𝜔𝑟 = +150 𝑟𝑎𝑑. 𝑠−1 , 𝜔𝑟 =
−150 𝑟𝑎𝑑. 𝑠−1 , 𝜔𝑟 = +5 𝑟𝑎𝑑. 𝑠

−1 , 𝜔𝑟 =
−5 𝑟𝑎𝑑. 𝑠−1 , 𝜔𝑟 = +200 𝑟𝑎𝑑. 𝑠

−1  and 𝜔𝑟 =
−200 𝑟𝑎𝑑. 𝑠−1  respectively between [0 − 0.5] 𝑠 , 

[0.5 − 1.0] 𝑠 ,  [1.0 − 1.5] 𝑠 ,  [1.5 − 2.0] 𝑠 ,  [2.0 −
2.5] 𝑠 and [2.5 − 3.0] 𝑠 with 𝑓 = 4 𝐻𝑧. 

 

These conditions allow the testing of motor operation at 

nominal speed, low speed and high speed with a rotation 

reversing and under load torque disturbances variation. 

The Figure 3 shows the simulation results of the speed 

response without parameters uncertainty. From the Figure 3(a), 

we remark that the classical vector control and the proposed 

adaptive method follow the desired references. In the zoomed 

Figures 3(b) to 3(i) we can see that the motor actual speed with 

the proposed adaptive method closely follows the reference 

speed; at reversing speed and load torque application; without 

overshoot and undershoot and converges rapidly with shorter 

settling time (0.025s). It can be seen also that the motor 

follows the speed reference without oscillation in steady state 

time. In contrast, the settling time, the overshoot and the 

undershoot of the classical vector control are noted 

respectively as (0.125s), (50%) and (25%). In Figure 3(j), 

speed tracking errors 𝑒𝜔 is plotted, it is clear that the speed 

errors of the proposed method drop to zero rapidly than the 

classical vector control. This means that the PMSM tracks the 

reference speed trajectory with high accuracy in proposed 

control. 

Furthermore, the Figures 4 and 5 show the control currents 

while the motor is running under load torque disturbance in the 

same mentioned conditions. As can be seen from the zoomed 

Figures 4(b) to 4(c) and 5(b) to 5(c), the proposed adaptive 

method follows the currents reference in steady state time 

without oscillations. On the other hand, the zoomed Figures 

4(d) and 5(d) show the currents responses during speed 

reversing. We remark clearly that the proposed method tracks 

rapidly the currents reference. 

 

 

 
 

Figure 3. Speed response under load torque disturbance only: (a) Speed response, (b) zoom around 0 s, (c) zoom around 0.25 s, 

(d) zoom around 0.5 s, (e) zoom around 1.0 s, (f) zoom around 1.5 s, (g) zoom around 1.75 s, (h)zoom around 2.0 s, (i) zoom 

around 2.5 s, (j) tracking errors 
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Figure 4. Evolution of the currents 𝑖𝑞  response under load torque disturbance: (a) currents response, (b) zoom around 0.25 s, (c) 

zoom around 1.75 s, (d) zoom around 2.5 s  

 

 

 
 

Figure 5. Evolution of the currents 𝑖𝑑 response under load torque disturbance: (a) currents response, (b) zoom around 0.25 s, (c) 

zoom around 0.5 s, (d) zoom around 2.5 s 

 

The Figures 6 presents the evolution of electrical torque 

responses under the same conditions mentioned above. We can 

also see that the proposed method follows the desired torque 

without oscillations in steady state time and drops rapidly to 

the desired reference during speed reversing. 

Figures 7, 8, 9 and 10 show the simulations of uncertain 

PMSM, following the same desired trajectories, indicated 

above. In addition to mathematical uncertainty, perturbed 

PMSM parameters introduced in the control are set randomly 

to the following values: Increasing 300% in the stator 

resistance, 55% in the rotor moment of inertia and the friction, 

decreasing 25% in the stator inductances. The perturbed 

PMSM magnetic flux is expressed by the following function: 

𝜑𝑣 = −0.05𝑡 + 0.1546 where t is the time. 

The Figure 7 plots the desired and actual speed responses. 

As is shown in Figure 7(a), it is clear that the uncertain PMSM 

tracks precisely the reference speed trajectory with the 

proposed adaptive method, whereas the classical controller 

follows the reference quietly well at the beginning, after the 

application of the load torque of approximately (2 𝑁.𝑚) it 
loses completely its performance. From the zoomed Figures 

7(b) to 7(i) we can also see that the proposed method follows 

the desired speed without oscillations in steady state time and 

drops rapidly to the desired reference during speed reversing 

and load torque application. In addition, the Figure 7(j) 

displays the tracking errors. The tracking errors in steady state 

trends to zero with the proposed adaptive method but for the 

classical vector control the tracking errors rate is greater than 

15%, 76% and 36% respectively in nominal, low and high 

speed simulations. Table 2 resume a qualitative comparison 

between proposed technique and classical vector control of 

PMSM. 
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Figure 6. Evolution of the torque responses under load torque disturbance only: (a) Torque responses, (b) zoom around 0.15s, (c) 

zoom around 0.37s, (d) zoom around 2.5s 

 

 

 

 
 

Figure 7. Speed response in the presence of uncertainties: (a) Speed response, (b) zoom around 0s, (c) zoom around 0.25s, (d) 

zoom around 0.5s, (e) zoom around 1.0s, (f) zoom around 1.5s, (g) zoom around 1.75s, (h) zoom around 2.0s, (i) zoom around 

2.5s, (j) tracking errors 
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Table 2. Performance comparison 
 

 Classical vector 

control 

Proposed 

technique 

Settling time 

(s) 

More than 0.045 Less than 0.015 

overshoot More than 16% 0% 

undershoot More than 16 % 0% 

oscillation yes no 

stability no yes 

Static error More than 15% 0 

 

Figures 8 and 9 show respectively the evolution of the 

currents 𝑖𝑞  and 𝑖𝑑 . The fluctuations that appear at the 

beginning and during speed inversion can be eliminated easily 

with the limiters. The simulation results for the currents 

trajectory tracking control at steady state time are shown in 

zoomed Figures 8(b) to 8(c) and 9(b) to 9(c). They indicate 

that in this situation the proposed adaptive method again has 

superior control performance to classical vector control. 

During the speed reversion, as can be seen from the zoomed 

Figures 8(d) and 9(d), it still has the best performance when 

the classical vector control degrades considerably. 

 

 

 
 

Figure 8. Evolution of the currents 𝑖𝑞  response in the presence of uncertainties: (a) currents response, (b) zoom around 0.25s, (c) 

zoom around 1.5s, (d) zoom around 2.5s 

 

 

 
 

Figure 9. Evolution of the currents 𝑖𝑑 response in the presence of uncertainties: (a) currents response, (b) zoom around 0.25s, (c) 

zoom around 0.5s, (d) zoom around 2.5s 

 

The Figure 10 plots the load torque disturbances variation 

and the electrical torque. Clearly, the zoomed Figures 10(b) 

and 10(c) show that the torque in the proposed method follow 

the load torque variation without ripples in the steady state 

time, whereas the classical vector control loses its reference 

and presents more ripples. As can be seen from Figure 10(d) 

the proposed adaptive method drops with short time to desired 

values and the classical vector control presents large ripples 

with long settling time during the speed reversing. Thus, the 

proposed adaptive method still gains better control 

performance over the classical vector control. 
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Figure 10. Evolution of the torque responses in the presence of uncertainties: (a) Torque responses, (b) zoom around 0.15s, (c) 

zoom around 0.37s, (d) zoom around 2.5s 

 

Once the speed and currents control system are designed 

with and without uncertainties, we proceed to prove the 

robustness of the proposed technique for uncertain PMSM by 

applying sinusoidal speed reference. The dynamic reference 

and actual speed response of the proposed adaptive method are 

given in Figure 11(a). We can observe that the disturbances 

rejection capacity of the proposed adaptive method leads to a 

good speed tracking performance. In addition, the Figure 11(b) 

presents the tracking errors. It shows that the asymptotic speed 

tracking objective is obtained with good accuracy under 

uncertainties. 

Furthermore, in the Figure 12 the evolution of the currents 

𝑖𝑑 and 𝑖𝑞  and their tracking errors are presented. Since the 

reference speed trajectory is in sinusoidal form, the currents, 

𝑖𝑑 and 𝑖𝑞  follow the same form as is shown in Figure 12(a), we 

note also that the current 𝑖𝑑 is closely near to zero according 

to the control strategy. The Figure 12(b) shows that the 

tracking errors trends to zero with sinusoidal form due to the 

sinusoidal form of the speed reference. 

The Figure 13 presents the load and electrical torques. We 

can observe from this figure that the electrical torque has also 

sinusoidal form with the average equal to the step of load 

torque disturbance. This is due to the sinusoidal form of the 

lumped disturbance and the uncertainty effect on the PMSM 

resulting from the sinusoidal form of the speed reference. As 

can be seen from this figure, precise control performance is 

reached during both transient and steady state times. In 

addition, we can observe that the tracking errors remain near 

to zero stably, in the presence of any uncertainty. 

 

 

 

 
Figure 11. Speed response for sinusoidal reference in the proposed adaptive control in the presence of uncertainties: (a) Speed 

response and (b) speed tracking errors 
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Figure 12. Currents response in the proposed adaptive control in the presence of uncertainties: (a) Currents response and (b) 

currents tracking error 

 

 
 

Figure 13. Evolution of the torque in the proposed adaptive control in the presence of uncertainties  

 

 
 

Figure 14. Trajectories of the desired and actual speed with classical vector control in the presence of uncertainties 

 

The proposed adaptive method, for its part, maintains its 

performance because of the adaptive compensation by reacting 

quickly to clear the errors occurred by the uncertainty. 

Whereas the classical vector control loses its reference 

completely in this case, as is demonstrated in Figure 14. 

From the results of these simulations, it is seen clearly that 

the proposed adaptive method can suppress the uncertain 

behavior coming from mathematical modelling, parameters 

uncertainty and load torque disturbance in PMSM drive 

system and achieve a good tracking performance whatever the 

references of desired input signals. 
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5. CONCLUSION 

 

This paper presents a robust speed-control strategy using 

stable and adaptive neural network compensators for the 

uncertain permanent magnet synchronous motor drives. The 

neural network compensators are based on the on-line 

parameter training methodology and they are designed to 

stabilize the PMSM despite of the uncertainties. The Hurwitz 

technique is used to determine the current controller gains, 

whereas the speed control is processed by PI controller. The 

stability of the closed-loop system is proven by using the 

Lyapunov function. Simulations are conducted to demonstrate 

the effectiveness of the proposed control scheme. Compared 

precisely to classical vector control, the obtained results show 

that all signals of the closed-loop system are tracked perfectly 

under the uncertainties conditions. 
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