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In a sensorless control of PMSM based on Extended Kalman Filter (EKF), the correct 

selection of system and measurement noise covariance has a great influence on the 

estimation performances of the filter. In fact, it is extremely difficult to find their optimal 

values by trial and error method. Therefore, the main contribution of this work is to prove 

the efficiency of Biogeography-Based-Optimization (BBO) technique to obtain the 

optimal noise covariance matrices Q and R. The BBO and EKF combination gives a BBO-

EKF algorithm, which allows to estimate all the state variables of PMSM drive 

particularly, the rotor position and speed. In this paper, three evolutionary algorithms 

namely Particle Swarm Optimization (PSO), genetic algorithms (GAs) and BBO are used 

to get the best Q and R of EKF. Simulations tests performed in Matlab Simulink 

environment show excellent performance of BBO-EKF compared to GAs-EKF and PSO-

EKF approaches either in resolution or in convergence speed. 
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1. INTRODUCTION

In nowadays permanent Magnet Synchronous Motors 

(PMSMs) are widely applied in a various electromechanical 

system, computerized numerical control (CNC) machine tools 

and industrial robots because of their numerous advantages 

such as high-power factor, high torque to inertia ratio and high 

efficiency [1-3]. 

In most drive systems, the use of speed and position sensors 

in the control of PMSM seems to be a major drawback in 

control systems due to cost, weight and reduced reliability or 

even overall system dynamic performance [4-8]. Therefore, an 

observer is required in order to estimate the system state. This 

observer can efficiently replace transducers and encoders. 

Currently, different control algorithms were presented in 

several works to eliminate mechanical sensors placed on the 

motor shaft [5-7]. In fact, a PMSM sensorless performance 

control depends mostly on the quality of the state variables and 

disturbances estimation. 

This remains a major problem because of errors in 

measurement, model parameters variations, mathematical 

models uncertainties, and the instability when approaching 

zero speed range. Thus, an important effort is required to 

enhance quality and accuracy of the states and parameters 

estimation [3, 8]. For linear cases, Luenberger [9] and Kalman 

filter [10, 11] are considered as appropriate observers. 

However, these methods are not applicable for non-linear 

estimation systems. In order to overcome this drawback, 

several observers were presented in the previously reported 

works [12-18]. 

During the last few years, Extended Kalman Filter (EKF) 

was employed to estimate PMSM rotor speed and position 

considered as one of the best tools of state estimation using 

stator currents and voltages [5, 19]. Therefore, the most 

important benefit of the EKF over is its capability of tracking 

non-linear system dynamics with higher accuracy, high 

dynamic performance, disturbance resistance and it can 

operate under stochastic uncertainties (model uncertainties 

and inherent nonlinearities). However, the estimation 

performance of EKF is highly affected by system parameters 

values and covariance matrices Q and R of state and 

measurement noises, respectively [2]. Regarding Kalman filter 

theory, Q and R are obtained by considering the stochastic 

properties of equivalent noises [2]; but, more often these are 

unknown, in most cases, the covariance matrices are employed 

as free tuning parameters. These matrices were first adjusted 

manually by trial and error methods but it was find that this 

procedure is ineffective because of time duration [20-22]. 

In order to solve this issue and prevent test computations 

complication, many researchers try to find a convenient way 

to determine the noise covariance matrix of EKF by using 

some intelligent methods. Genetic algorithm (GA) is proposed 

in Ref. [21] to optimizes Q and R matrices automatically. The 

authors [22] have applied an evolutionary algorithm inspired 

by social interactions called Particle Swarm Optimization 

(PSO) technique to calculate Q and R matrices optimal values. 

In order to fulfill the objective of finding an efficient, simple 

and easy tool for PMSM position and speed estimation, the 

present paper proposes a new alternative intelligent technique 

called Biogeography-Based-Optimization (BBO) [23, 24]. As 

this technique is not previously widely investigated and 

applied for PMSM position and speed estimation, the present 

work is exclusively reserved for this algorithm to optimize Q 

and R matrices.  
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The principal idea of this paper is the estimation of all the 

state variables of PMSM drive using an EKF tuned by BBO 

algorithm. The proposed strategy will be performed in two 

steps. First, the covariance matrices Q and R are optimized off-

line by the BBO algorithm, after that, these optimal values 

obtained are introduced into an EKF estimator that works 

online. 

Simulation tests were carried out to investigate the 

effectiveness of the proposed approach and also a comparative 

study between BBO with both evolutionary algorithms GAs 

and PSO were performed.  

The structure of this paper is as follows: Section 2 reviews 

the principle and algorithm of EKF, describes the ideas and 

concepts of BBO algorithm and presents the discrete PMSM 

model. In section 3, the proposed structure of the BBO-EKF 

approach used to optimize the noise covariance matrices is 

presented. Simulation and results are given in section 4. 

Finally, conclusions are drawn in section 5. 

 

 

2. THEORETICAL DEVELOPMENTS 

 

2.1 Extended Kalman filter (EKF) 

 

An EKF is an optimal recursive state estimator that can be 

used to simultaneously estimate states and parameters of 

nonlinear stochastic dynamic systems [2, 5]. This research 

aims to obtain the best linear estimate of the PMSM state 

vector according to the nonlinear dynamic equation in discrete 

time, as expressed below.  
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where, f(.) is the nonlinear function of xk, h(.) is the nonlinear 

function relates the state xk and the measurement zk, uk is the 

input vector, vk and wk represent the system and measurement 

noises with covariance matrices 𝑄 = 𝐸[𝑤𝑘𝑤𝑘
𝑇]  and 𝑅 =

𝐸[𝑣𝑘𝑣𝑘
𝑇], respectively.   

Employing the first order Taylor approximation close to the 

reference point (�̂�𝑘 , �̂�𝑘 = 0, �̂�𝑘 = 0), the approximated linear 

model can be expressed as follows: 
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Fk, Wk, Hk and Vk are the Jacobians determined by the 

following expression: 
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Consequently, the set of Kalman filter equations can be 

expressed by the recursive equations below: 
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where, �̂�𝑘+1/𝑘  is the predicted state vector at the (k+1)th 

instant, �̂�𝑘+1/𝑘+1 is the corrected estimation vector, 𝑃𝑘+1/𝑘is 

the error covariance matrix at the (k+1)th instant, 𝑃𝑘+1/𝑘+1 is 

the corrected error covariance matrix and Kk is the Kalman 

filter gain. The structure of the EKF is illustrated in Figure 1.  

 

 
 

Figure 1. Extended Kalman filter structure 
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2.2 Biogeography based optimization (BBO) 

 

As an evolutionary algorithm (EA), BBO consists in 

studying the distribution of biological species through time 

and space between islands in search of more convivial habitats. 

Dan Simon was the first to introduce this algorithm in 2008 for 

setting optimization problems [24]. 

In this algorithm, the population corresponds to a number of 

islands (habitats), each possible solution is considered as an 

island. The characteristics that describe the habitability are 

called the habitat suitability index (HSI) employed to measure 

the solution quality which is equivalent to the fitness function 

in other EA like AGs and PSO. The effectiveness of each 

solution that characterizes habitability named suitability index 

variables (SIV) [25-27]. 

Islands indicate solutions, thus a solution with a high HSI 

will be able to export its dominant genes to adapt the other 

islands. In contrast solutions with low HIS, will be able to 

receive the dominant genes to be adapted.  

In BBO, each habitat has its own rate of immigration λj and 

its rate of emigration µj. These two rates are based on the 

number of species in the habitat. In Figure 3, E and I illustrate 

the highest rates of immigration and emigration, respectively, 

and S0 denotes species equilibrium number and Smax is the 

maximum number of species [24-27]. 
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S
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S
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where, λj and μj are respectively the immigration and the 

emigration rates for the jth habitat. S is the species number in 

the jth habitat; BBO migration is employed to modify both the 

existing solution and the island. The probability of choosing 

the jth habitat as the emigration the probability of selecting jth 

habitat as emigrating habitat is computed as follows: 
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Figure 2(a) shows the details of the migration procedure (i.e. 

how to select emigrating habitat) in the BBO algorithm.  

where, NP denotes population size, rand(0;1) is a uniformly 

distributed random number in the interval [0, 1] and Hi(j) is 

the jth SIV of the solution Hi. 

However, the mutation is employed to rise population 

diversity to obtain the right solutions. Operator mutation 

shown in Figure 2(b), randomly modifies the SIV of a habitat 

according to the mutation rate [25-27].  

The mutation rate mj for the jth habitat with j species number 

is expressed as follows:  
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where, mmax denotes the maximum mutation rate; Pmax 

represents the maximum species count probability and Pj is jth 

habitat species count probability.  

 
Figure 2. Migration and mutation of BBO algorithm 

 

 
 

Figure 3. Emigration and immigration rates species model 

 

Therefore, in Figure 4, are illustrated the main steps of the 

standard BBO algorithm. 

 

 
 

Figure 4. Standard BBO algorithm flowchart  
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2.3 Mathematical model of PMSM  

 

The PMSM model can be expressed in the synchronous 

reference frame (d, q), fixed to the rotor by considering four 

state variables, the stator currents (ids, iqs) and the mechanical 

variables (rotor speed ωr and position θr), the stator voltages 

(vds, vqs) sush as control variables, the measurements y, state 

and measurement noises (w and v) are defined respectively, as 

follows: 
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Then, the PMSM model is expressed by the continuous 

nonlinear representation below: 
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Since EKF is a discrete algorithm, then discretization of Eq. 

(14) and Eq. (15) is required. This discretization is conducted 

by Euler method providing a suitable model approximation for 

a short sampling period. PMSM time-discrete model is 

expressed by the compact discrete nonlinear representation 

illustrated below: 
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where, f is the nonlinear stochastic difference equation and h 

is the discrete output such as: 
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3. BBO-EKF ESTIMATION APPROACH 
 

A critical part of EKF design is to employ the right elements 

of the covariance matrices Q and R, having an important 

influence on filter stability and convergence time. However, 

the equivalent noises stochastic properties are very often 

unknown, thus these matrices are employed as free parameters 

[2]. Firstly, they were adjusting manually by trial and error 

methods which appeared as difficult tasks [21]. In order to 
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solve this issue, many evolutionary algorithms (EAs) were 

proposed in recent years to regulate Q and R automatically 

[20-22].  

In this paper, a novel approach is proposed to adjust and 

optimize all the covariance matrices elements using BBO 

technique, and then comparing it with the AG and PSO 

algorithms. This method consists of two stages: First, the EAs 

must work offline to guarantee Q and R optimal values. After 

that, these values will be injected into the EKF algorithm to 

estimate online all PMSM drive state variables. The structure 

of this estimation system associated to PMSM drive is 

illustrated in Figure 5. This presented structure principally 

consists from a PMSM, a field-orientation mechanism, a pulse 

width modulation (PWM) voltage-source inverter, a speed 

controller since it usually has a considerable wide bandwidth 

[1, 6] controller and two current controllers. 

 It is shown that the d-axis current is forced to be zero to 

make the electromagnetic torque directly proportional to the 

q-axis component. The performance evaluator computes the 

Mean Square Error (MSE) criterion between output and it’s 

estimated as a cost function. Based on MSE values, BBO 

optimizer will compute and optimize the unknown parameters 

of covariance matrices elements. 

 

 
 

Figure 5. Block diagram of PMSM drive associated to BBO-EKF observer 

 

Note that the BBO-EKF algorithm requires much iteration 

to achieve suitable solutions. For a single iteration, the 

estimator has to be executed many times to guarantee the 

optimization of Q and R parameters from every measurement. 

The quality of each solution is measured by the Habitat 

Suitability Index (HSI), which is directly proportional to the 

objective function (MSE). Thus, solutions with high HIS 

values are better than those with low HSI values. 

 

 

4. SIMULATION RESULTS 

 

To validate and test the performance of the proposed BBO-

EKF approach, the simulation of the system is performed by 

Matlab software with sampling time 10-4 sec. The PMSM 

parameters used in simulation has presented in appendix. It is 

supposed that the state and the measurement in PMSM were 

corrupted by white Gaussian noises having variances 10-2 and 

10-4, respectively.   

Remember that the adjustment of the Q and R values will 

be necessary, because the correct selection of these matrices 

guarantees the convergence of the estimation results with 

small estimation errors. In fact, by increasing Q the model 

uncertainties become higher and Kalman filter gain rises. 

Therefore, the credibility of measurement performance 

increase and the transient state become faster. Contrary, if R 

rises this will correspond to strong noise measurements 

weighting less by EKF, thus filtre gain deceases and the 

transient performance will be slower. 

Firstly, in this study the elements of covariance matrices Q 

and R are obtained manually by trial and error until it reaches 

the preferred behaviors of the state estimation. The case 

studied in this paper, EKF error covariance matrix P is equal 

to a unit 4 by 4 matrix, Q and R are 4 by 4 and 2 by 2 matrices 

respectively, are supposed as follows: 
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EKF with different Q and R compositions is evaluated by 

MSE criterion (objective function) and a comparison of 

estimated values and measured system outputs are conducted 

by the following equation: 
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where, �̂�  is the estimated output values, z is the measured 

system outputs and N is the number of samples. 

Figure 6 shows the simulation results with the typical 

covariance matrices entries: 𝑞𝑖𝑑𝑠 = 10−2, 𝑞𝑖𝑞𝑠 =

10−3, 𝑞𝛺=10, q𝜃=10, rids=0.02 , 𝑟𝑖𝑞𝑠 = 10−3  and their 

corresponding MSE determined by manual test manner. We 

confirm that the estimation quality is not quite good and 

estimation errors are large. These Q and R values are obtained 

by performing a large number of tests manually. Thus, 

efficient estimation performance can be obtained by a 

considerable effort of an experienced operator. The trial and 

error method is easy to realize, but is time consuming. In order 

to overcome this problem, many evolutionary algorithms can 

be used. In the present study, it is proposed to employ three 

distinguish methods (PSO, GAs and BBO) to obtain the 

optimal covariance matrices to guarantee more precise 

estimations. 

The comparison between the three previous optimization 

EAs was carried out in the same conditions (initial population, 

Swarm size, population size). As mentioned in the ref. [23], 

the convergence of the PSO technique to the best result 

depends on the parameters c1, c2 and w. During simulations, 

swarm population is set to 20 particles and the coefficients are 

set as follows: Social coefficient c2=1.5, Inertia weight w=0.8 

and Self-recognition coefficient c1=1. 

 

 
 

Figure 6. State estimation result using trial and error method (Best MSE=0.0882) 

 

Table 1. EKF performance using PSO algorithm 

 

Iterations 
Diagonal elements of matrices Q and R 

𝑴𝑺𝑬 
qid qiq qω qθ rid riq 

5 0.0105 0.0042 0.0484 0.1165 0.2145 0.0750 0.0225 

10 0.0108 0.0024 0.0803 0.1154 0.1961 0.0755 0.0209 

15 0.0014 0.0043 0.0898 0.0881 0.2245 0.1270 0.0171 

20 0.0022 0.0035 0.1675 0.2367 0.2937 0.1569 0.0148 

 

Table 2. EKF performances using GAs algorithm 

 

Generations 
Diagonal elements of matrices Q and R 

𝑴𝑺𝑬 
qid qiq qω qθ rid riq 

5 0.036 0.112 0.559 0.971 0.884 0.512 0.0317 

10 0.014 0.104 0.856 1.047 0.942 0.655 0.0265 

15 0.013 0.141 0.863 1.144 1.760 1.601 0.0216 

20 0.013 0.014 0.818 1.258 0.650 0.347 0.0155 

 

Table 3. EKF performances using BBO algorithm 

 

Iterations 
Diagonal elements of matrices Q and R 

𝑴𝑺𝑬 
qid qiq qω qθ rid riq 

5 0.1090 0.3750 8.8364 9.0673 0.1818 0.0838 0.0188 

10 0.0881 0.4852 17.7553 12.3701 12.2714 4.1770 0.0178 

15 0.5789 0.1584 6.1838 19.4921 17.0806 12.9395 0.0160 

20 0.0127 0.0108 0.6934 0.5012  1.5007  1.5733 0.0138 
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Figure 7 shows that EKF tuned by PSO is able to generate 

accurate speed and position estimation and all the state 

variables (electromagnetic torque and currents) compared to 

conventional EKF regulates manually. The MSE reduced to 

0.0148 after 20 iterations.  

Table 1 illustrates Q and R optimized parameters with their 

equivalent MSEs acquired by PSO-EKF scheme presented in 

reference [22].  

Table 2 presents GA-EKF process convergence, where 

MSE is reduced to 0.0155 after 20 iterations. GA parameters 

of are taken from reference [21] with the following data. 

Initial population size 100; Probability of crossover 0.8; 

Mutation probability 0.01; Initial range of real-valued strings 

[0, 0.1]. Simulation investigations show that these proposed 

approaches give excellent estimations within 20 iterations 

compared to trial and error way. In Table 2, are presented the 

optimized parameters Q and R with their corresponding MSEs 

obtained by GA-EKF approach.  

 

 
 

Figure 7. State estimation result using PSO-EKF method (After 20 iterations, under load Cr=0.05 at t=0.5s) 

 

 
 

Figure 8. Simulation results obtained by BBO-EKF (after 20 iterations, under load Cr=0.05 at t=0.5s) 
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Figure 9. Evolution of MSE versus EAs methods and 

iterations number 

 

 
(a) Speed and position estimation errors using EKF-AGs 

 
(b) Speed and position estimation errors using EKF-PSO 

 
(c) Speed and position estimation errors using EKF-BBO 

 

Figure 10. Estimation errors of PMSM drive, using EKF 

tuned by different optimization techniques 

 

Figure 8 shows the plotted simulation results representing 

the best optimal values of EKF parameters (20 iterations) 

employing BBO algorithm. It can be noted from this figure a 

perfect concordance between actual and estimated rotor speed 

and position in both transient and steady states. It can also be 

observed that speed and position estimation errors stay both 

within admissible limits. 

Table 3 shows the convergence of BBO-EKF process for 

various numbers of iterations, where the best solution is a 

habitat with low MSE. The latter decreased to 0.0138 after 20 

iterations. The BBO algorithm is running with parameters 

selected as follows: Population size (number of habitat) 20; 

Number of decision variables (SIVs):6; Immigration rate (I) 

and emigration rate (E): l; absorption coefficient α: 0.9 and 

probability mutation mmax: 0.1. 

The proposed BBO-EKF is compared to trial-error method, 

GAs and PSO techniques. Note that EKF optimized by both 

GAs and PSO method a precise rotor speed and position can 

be achieved regarding the trial and error technique as 

illustrated in Tables 1, 2 and 3. 

It is worth to note that the BBO-EKF technique has higher 

performances compared to EKF optimized by GAs or PSO 

methods in precision, MSE with BBO is less than the MSE 

with GA or PSO. In convergence rate BBO algorithm is faster 

than others, which proves the advantage of BBO-EKF method 

as illustrated in Figure 9, where it is gives the recapitulative of 

the evolution of MSE versus the three EAs methods treated 

above and iterations number.  

In Figure 10, a comparison between the estimation errors 

obtained using EKF tuned by the three preceding optimization 

algorithms shows that the performance of the PMSM drive 

joint to BBO-EKF was enhanced than the PSO-EKF or AGs-

EKF techniques. 

Figure 11 presents the corresponding evolution of the 

fitness function MSE for the best solutions with respect to the 

number of iterations (case of 20 iterations) obtained through 

PSO-EKF and BBO-EKF algorithms.  
 

 
a) Fitness function relative to PSO-EKF 

 
b) Fitness function relative to AGs-EKF  

 
c) Fitness function relative to BBO-EKF 

 

Figure 11. Evolution of the fitness function (MSE) 

 

Evaluating the effectiveness of the proposed approach, the 

estimation based BBO-EKF are tested under load and reversal 

of the rotor speed. Figure12, shows the actual and estimated 

rotor speed and position of the PMSM drive under 0.05 N.m 

load with reversal speed at t=0.5s. Analyzing the results, it can 

be noted that the state estimation has stayed inside a very 

narrow error band, which encourages the employment of the 

developed estimation method for PMSM sensorless control. 

As shown in Figure12, the values of rotor speed and position 

estimated by BBO-EKF is very close to the actual values and 

offer precise estimation at low speeds when exposed to 

frequent reversals of speed. 
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Figure 12. Simulation results of PMSM drive based on BBO-EKF observer under load and speed variation 
 

 

5. CONCLUSIONS 

 

A combined BBO-EKF algorithm is proposed in this work 

as a technique to optimize the noise covariance matrices Q and 

R on which the EKF performance strongly depends.  

A comparison between BBO-EKF with both approaches 

(PSO-EKF and AGs-EKF) was performed in the presence 

noises. The simulation results have confirmed that the 

estimation performance of PMSM drive with combined BBO-

EKF technique is more efficiency compared to both 

optimization methods PSO-EKF and AGs-EKF. In terms of 

accuracy, after 20 iterations, the mean squared error (MSE) of 

the BBO-EKF approach is found to be 0.0138 however for 

both AGs-EKF and PSO-EKF algorithms are equal to 0.0148 

and 0.0155 respectively. In convergence rate BBO algorithm 

is faster than others, which proves the advantage of BBO-EKF.  

The estimation algorithm was also experimented under 

various load torque and speed variations. The results have 

showed high performances, encouraging the employment of 

the proposed technique for PMSM drives sensorless control. 
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NOMENCLATURE 

 

,ds qsi i  Stator currents in d-q coordinate system 

,ds qsv v  Stator voltages in d-q coordinate system 

m  Rotor Magnetic flux  

sR  Stator resistance  

J  Moment inertia of the rotor 

rf  Vicous friction coefficient 

p  Pole pairs Number 

q (L )dL  Stator inductance in d-q coordinate system 

r  Rotor speed 

r  Rotor angle position 

rC  Load torque 

 

 

APPENDIX 

 

PMSM Parameters used in Simulation 

 

Components Rating values 

Pn 

Vn 

Rs 

Ld 

Lq 

Փ 

J 

fr 

p 

Cn 

Rated power 

Rated voltage 

Stator resistance 

Direct axis inductance of stator 

Quadrature axis inductance of stator 

PM flux linkage 

Inertia of rotor 

Frictional coefficient 

Number of pole pairs 

Nominal torque 

100 W 

28 v 

3.4 Ω 

0.0121 H 

0.0121 H 

0.013 Wb 

5.9e-5 kg.m2 

10-4 N.m/rad/s 

2 

0.05 N.m 
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