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The paper considers a two-stage hybrid flow shop scheduling problem with dedicated 

machines and release dates. Each job must be first processed on the single machine of 

stage 1, and then, the job is processed on one of the two dedicated machines of stage 2, 

depending on its type. Moreover, the jobs are available for processing at their respective 

release dates. Our goal is to obtain a schedule that minimizes the makespan. This problem 

is strongly NP-hard. In this paper, two mathematical models are developed for the 

problem: a mixed-integer programming model and a constraint programming model. The 

performance of these two models is compared on different problem configurations. And 

the results show that the constraint programming outperforms the mixed-integer 

programming in finding optimal solutions for large problem sizes (450 jobs) with very 

reasonable computing times.  
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1. INTRODUCTION

In many industrial applications, dedicated machines consist

in producing products of different types. First, all products go 

through the same main operations of the production process, 

and then they are processed on dedicated machines specific to 

each product. Such applications include pharmaceutical 

industries [1], woodworking industries [2], label sticker 

manufacturing [3], furniture assembly and mass customization 

[4]. 

Hybrid Flow Shop (HFS) with dedicated machines with two 

or more stages is strongly NP-hard [5, 6].  

In this paper, we deal with a two-stage HFS with dedicated 

machines and release dates. We focus on the case where there 

exists one machine in stage one, denoted as  𝑀𝑐 , and two

dedicated machines 𝐷𝑘 , 𝑘 = {1,2} in the second stage. Each

job 𝑗 must first be processed on 𝑀𝑐 and then, depending on its

type, it will be processed on a dedicated machine  𝐷𝑘 .

Furthermore, we assume that each job j is available for 

processing at its release date 𝑟𝑗 . The aim is to minimize the

makespan (maximum completion time) denoted as  𝐶𝑚𝑎𝑥 .

Following the notation 𝛼|𝛽|𝛾 of Graham et al. [7], we denote 

such a problem as 2𝐹𝐻𝐷|1, 2,  𝑟𝑗|𝐶𝑚𝑎𝑥.

The rest of the paper is organized as follows: 

Section 2 presents a brief literature review on exact, 

heuristic and metaheuristic methods that have been proposed 

for the HFS with dedicated machines. In Section 3, we deploy 

several notations and assumptions. Sections 4 and 5 describe 

respectively the mixed-integer programming (MIP) and the 

constraint programming (CP) models that we propose for the 

purpose of our paper. To assess the performance of these 

formulations, several test problems are solved, and the results 

are reported in Section 6. Finally, Section 7 concludes the 

paper. 

2. LITERATURE REVIEW

In the academic literature, few exact methods have been

employed to solve the HFS with dedicated machines. 

Riane et al. [8] developed a dynamic program for the case 

of two stages, where two dedicated machines are in the second 

stage. The goal is to minimize the maximum completion time. 

The results show that the developed dynamic program is 

baffled for problems of more than 15 jobs. 

Moseiov and Sarig [9] developed an integer programming 

model for the two-stage HFS with m dedicated machines and 

due dates. Besbes et al. [10] considered a two-stage HFS with 

parallel-dedicated machines in both stages. They proposed a 

mixed-integer linear programming model to minimize the 

maximum completion time among all jobs. This model is 

based on the mathematical formulation of Guinet et al. [11] 

and is solved by Cplex. The authors proved that Cplex can 

obtain an optimal solution for only small sizes. With the 

objective of minimizing the makespan, Hadda et al. [12] also 

proposed a branch and bound algorithm for the case of m 

dedicated machines in the second stage. The authors used an 

elimination rule to improve even more the performance of 

their algorithm. The experimental results demonstrated that 

many big size instances are solved, and the elimination rule 

has contributed to discard up to 50% of the nodes. Chikhi et al. 

[13] studied the case of the two-stage robotic flow shop

scheduling problem with the objective of minimizing the

makespan. There are two dedicated machines in stage 1 and

only one machine in stage 2. Depending on the job type, each

job is firstly processed on a dedicated machine and is then

transported by a robot, to be processed on the single machine.

The authors developed a mixed-integer programming model,

which is using valid inequalities based on a set of lower

bounds. Nabli et al. [14] proposed two mixed-integer
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programming models (M1 and M2) for solving the hybrid flow 

shop scheduling problem with parallel machines in the first 

stage and two dedicated machines in the second stage. The first 

model (M1) is based on time indexed variables, while the 

second model (M2) is based on ordering variables. In their 

paper, the authors compared the computational time 

performances of M1 and M2, and they found that M2 (linear 

ordering variables) is faster than M1 (time index variables). 

Other studies have developed heuristic and metaheuristic 

approaches for solving the hybrid flow shop with dedicated 

machines. For example, Lin et al. [3] developed a heuristic 

approach with combined rules for the two-stage HFS with 

setup times and due dates in a label sticker manufacturing 

company. The objective was to minimize the weighted 

maximum tardiness of jobs. Oguz et al. [15] developed a 

heuristic approach, which is based on the Johnson’s algorithm 

[16] for minimizing the makespan.  

Yang [17] proposed an optimal solution for the case where 

the processing times on the common machine are identical. 

The aim is to minimize the total completion time. Besbes et al. 

[10] considered respectively s and m dedicated machines in 

stages one and two. The authors developed two approaches. 

The first approach is based on the Johnson’s algorithm [16], 

while the second one consists of a genetic algorithm. Huang 

and Lin [18] considered the case of two stages with setup time 

where a single machine is in the first stage and two dedicated 

machines are in the second stage. Their aim is to obtain a 

schedule that has the minimum makespan. They investigated 

the case where the processing schedules of the two types of 

jobs are fixed. To solve the problem, the authors proposed a 

polynomial-time dynamic programming algorithm.  

Nabli et al. [19] studied a two-stage hybrid flow shop with 

dedicated machines and release dates. There are two parallel 

machines in stage one and two dedicated machines in stage 

two. The objective is to minimize the makespan. To solve the 

problem, the authors proposed three heuristic and two lower 

bounds. Harbaoui et al. [20] compared the performance of two 

metaheuristic: a tabu search and a genetic algorithm for the no-

wait hybrid flow shop problem with dedicated machines under 

makespan minimization. The authors [21] studied a hybrid 

flow shop with dedicated machines, sequence dependent setup 

and time lags, and they developed a genetic algorithm to 

minimize the makespan. 

Dealing with the minimization of the makespan for the case 

of m dedicated machines in the second stage, many heuristics 

were also developed in the references [22, 23]. 

For the case of more than two stages, Riane et al. [2] 

considered a three-stage HFS with two dedicated machines in 

the second stage and one single machine in stages one and 

three. They developed a dynamic programming-based 

heuristic and a branch and bound based heuristic. Ouled 

Bedhief et al. [1] studied the case of three-stage HFS with 

dedicated machines in the third stage. The authors studied a 

set of cases and proposed a heuristic approach for the general 

problem that is denoted by IH-DP. For the same problem, 

Ouled Bedhief et al. [24] proposed an improved genetic 

algorithm. Many computational experiments demonstrated its 

efficiency with a mean percentage deviation from the lower 

bound that does not exceed 0.5%, and a very reasonable 

computational time.  

The literature review shows that most of the available 

studies on the hybrid flow shop with dedicated machines are 

focused on the development of heuristic approaches. However, 

few exact methods have been employed to solve this kind of 

problems.  

Furthermore, most of these exact methods are mixed-integer 

linear programming models. To the best of our knowledge, 

there is no report on constraint programming (CP) models for 

the HFS scheduling problem with dedicated machines. 

Based on logic programming, the constraint programming 

is, also, an efficient exact method that has been widely used 

for solving industrial scheduling problems [25-27]. 

It is further applied for solving many other types of 

scheduling problems such as: scheduling problems in 

operating theatres [28] or medical resident scheduling 

problems [29]. 

In this paper, we compare a constraint programming model 

(CP) to a mixed-integer programming model (MIP) for 

the 2𝐹𝐻𝐷|1, 2,  𝑟𝑗|𝐶𝑚𝑎𝑥 scheduling problem.  

 

 

3. NOTATIONS AND ASSUMPTIONS 

 

For convenience and readability, we will use the following 

notations for our problem 2𝐹𝐻𝐷|1, 2,  𝑟𝑗|𝐶𝑚𝑎𝑥:  

• 𝑛: Number of jobs 

• 𝐽: Set of n jobs, 𝐽 = {1,2, … 𝑛} 

• 𝐽𝑘: Subset of jobs of type 𝑘, 𝑘 = {1,2}, such that 𝐽1 ∪
𝐽2 = 𝐽 and 𝐽1 ∩ 𝐽2 = ∅ 

• 𝑀𝑐: Common machine of the first stage 

• 𝐷𝑘 : Dedicated machine of type  𝑘, 𝑘 = {1,2}of the 

second stage 

• 𝑎𝑗: Processing time of job 𝑗 on 𝑀𝑐 

• 𝑏𝑗𝑘: Processing time of job 𝑗 on 𝐷𝑘  , 𝑘 = {1,2} 

• 𝑟𝑗 : Release date of job 𝑗, 𝑗 ∈ 𝐽 

 

Furthermore, we assume that each job should be processed 

on exactly one machine at the same time and each machine 

processes one job at a time. The transportation time between 

machines is zero and no preemption is allowed. Also, the job 

does not visit the same machine twice.  

 

 

4. MIXED-INTEGER PROGRAMMING MODEL (MIP) 
 

In this section, we propose a mixed-integer programming 

model for the 2𝐹𝐻𝐷|1, 2,  𝑟𝑗|𝐶𝑚𝑎𝑥  problem. This MIP model 

is composed only of linear equations. The goal is to minimize 

the makespan (𝑖. 𝑒 maximum completion time of jobs).  

At the beginning, we define the decision variables of our 

MIP model as follows:  
 

Binary variables:  

• 𝑋0𝑗 = 1 if 𝑗  is the first job processed on 𝑀𝑐 , 0 

otherwise; 𝑗 ∈ 𝐽; 

• 𝑋𝑖𝑗 =1 if job 𝑖  is scheduled before job  𝑗  on 𝑀𝑐 , 0 

otherwise; 𝑖, 𝑗 ∈ 𝐽 and 𝑖 ≠ 𝑗; 

• 𝑋0𝑗
(𝑘)

= 1 if 𝑗  is the first job processed on 𝐷𝑘 , 0 

otherwise; 𝑗 ∈ 𝐽𝑘 , 𝑘 = {1,2}; 

• 𝑋𝑖𝑗
(𝑘)

=1 if job 𝑖 is scheduled before job 𝑗 on 𝐷𝑘 , 0 

otherwise; 𝑖, 𝑗 ∈ 𝐽𝑘 , 𝑘 = {1,2} and 𝑖 ≠ 𝑗; 
 

Continuous variables:  

• 𝐶𝑗: Completion time of job 𝑗 on 𝑀𝑐, 𝑗 ∈ 𝐽; 

• 𝐶𝑗
(𝑘)

: Completion time of job 𝑗  on 𝐷𝑘 , 𝑗 ∈ 𝐽𝑘, 𝑘 =

{1,2}; 
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Our proposed MIP model can now be given as: 

Objective function: 𝑚𝑖𝑛 𝐶𝑚𝑎𝑥. 

Subject to: 

 

∑    𝑋0𝑗

𝑛

𝑗=1

= 1  𝑗 ∈ 𝐽 (1) 

 

∑  𝑋𝑖𝑗

𝑛

𝑖=0,𝑖≠𝑗

 = 1    𝑗 ∈ 𝐽 (2) 

 
∑  𝑋𝑗𝑖

𝑛
𝑖=1,𝑖≠𝑗  ≤ 1 𝑗 ∈ 𝐽 (3) 

 

∑ 𝑋0𝑗
(𝑘)𝑛𝑘

𝑗=1 = 1  𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (4) 

 

∑ 𝑋𝑖𝑗
(𝑘)𝑛𝑘

𝑖=0,𝑖≠𝑗 = 1  𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (5) 

 

∑ 𝑋𝑗𝑖
(𝑘)𝑛𝑘

𝑖=1,𝑖≠𝑗  ≤ 1   𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (6) 

 

𝐶𝑗 ≥ 𝑟𝑗 + 𝑎𝑗  𝑗 ∈ 𝐽 (7) 

 

𝐶𝑖 +  𝑎𝑗 + (𝑋𝑖𝑗 − 1)𝑀 ≤ 𝐶𝑗  𝑗 ∈ 𝐽 (8) 

 

𝐶𝑗
(𝑘)

≥ 𝐶𝑗 + 𝑏𝑗𝑘 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (9) 

 

 𝐶𝑖
(𝑘)

+ 𝑏𝑗𝑘 + (𝑋𝑖𝑗
(𝑘)

− 1)𝑀 ≤ 𝐶𝑗
(𝑘)

 𝑖, 𝑗 ∈ 𝐽𝑘;  𝑖 ≠

𝑗;  𝑘 ∈ {1,2} 
(10) 

 

𝐶𝑖 ≤ 𝐶𝑗 + 𝑀 (1 − 𝑋𝑖𝑗
(𝑘)

)  𝑖, 𝑗 ∈ 𝐽𝑘;  𝑘 ∈ {1,2} (11) 

 

𝐶 𝑚𝑎𝑥 ≥ 𝐶𝑗
(𝑘)

  𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (12) 

 

𝐶𝑗 ≥ 0  𝑗 ∈ 𝐽 (13) 

 

𝐶𝑗
(𝑘)

≥ 0 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (14) 

 

𝑋𝑖𝑗  ∈   {0,1} 𝑖, 𝑗 ∈ 𝐽 (15) 

 

𝑋𝑖𝑗 
(𝑘)

∈  {0,1}  𝑖, 𝑗 ∈ 𝐽𝑘;  𝑘 ∈ {1,2} (16) 

 

𝑋0𝑗  ∈  {0,1} 𝑗 ∈ 𝐽 (17) 

 

𝑋0𝑗 
(𝑘)

∈  {0,1} (18) 

 

In this mixed-integer programming model, the objective 

function is to minimize the maximum completion time  𝐶𝑚𝑎𝑥 

among all jobs.  

M is a sufficiently large number (an upper bound on the 

completion time on both stage 1 (Constraint set (8)) and stage 

2 (Constraint set (10)).   

Constraint set (1) (resp. (4)) ensures that every job-sequence 

on 𝑀𝑐 (resp.𝐷𝑘) begins with exactly one job. Constraint set (2) 

(resp. (5)) assures that every job should have a predecessor, 

otherwise, it is the first job processed on 𝑀𝑐  (resp. 𝐷𝑘 ). 

Constraint sets (3) and (6) state that every job must have at 

most only one direct successor. Constraint set (7) insures the 

respect of the release dates of jobs. Constraint set (8) (resp. 

(10)) states that no job can be processed on 𝑀𝑐  (resp.𝐷𝑘 ) 

before the completion time of the current job. Constraint set 

(9) ensures that the second operation can only begin when the 

first one is completed.  

Constraint set (11) guarantees the obtaining of permutation 

solutions. In fact, a permutation schedule is defined when the 

processing order of jobs on the machines is the same.  

The maximum completion time is defined through 

constraint set (12). Finally, constraint sets from (13) … to (18) 

define the decision variables of our model.  

In general, the efficiency of mixed-integer programming is 

ostensibly not guaranteed, especially, when the problem size 

increases. However, constraint programming (CP) provides 

suitable modeling techniques to optimize several complex 

problems, which are most often qualified by logical and non-

linear constraints. 

 

 

5. CONSTRAINT PROGRAMMING MODEL (CP) 

 

Unlike the previous model (MIP), Constraint Programming 

model uses a CP language which has a more advanced 

descriptive power than traditional linear programming 

language, and which allows non-linear equations to be 

incorporated.  

In our CP model, operations on machines 𝑀𝑐  and 𝐷𝑘  are 

represented by interval variables instead of binary variables in 

MIP model. An interval variable represents an interval of time 

during which an operation is performed. We note here that the 

processing of job j on machine 𝑀𝑐  (𝑟𝑒𝑠𝑝. 𝐷𝑘 , 𝑘 = {1,2}) is 

referred to as 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗]  (𝑟𝑒𝑠𝑝. 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘[𝑗] , 𝑘 =
{1,2}) and its duration is 𝑎𝑗 (𝑟𝑒𝑠𝑝. 𝑏𝑗𝑘 , 𝑘 = {1,2}). 

The definition of interval variables for operations is given 

as follows: 

 

𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗 𝑖𝑛 𝐽]𝑠𝑖𝑧𝑒 𝑎𝑗 , 𝑗 ∈ 𝐽; 

𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘  [𝑗 𝑖𝑛 𝐽𝑘] 𝑠𝑖𝑧𝑒 𝑏𝑗𝑘      𝑗 ∈ 𝐽𝑘  ∀ 𝑘

∈ {1,2}; 
 

Accordingly, the constraint programming (CP) model will 

be as follows:  

Objective function: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑚𝑎𝑥. 

Subject to: 

 

𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗])
≥ 𝑟𝑗 + 𝑠𝑖𝑧𝑒𝑂𝑓  (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗]) 

 𝑗 ∈ 𝐽 

(19) 

 

𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑖]) ≠ 𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗]) 

𝑖, 𝑗 ∈ 𝐽; 𝑖 ≠ 𝑗 
(20) 

 

𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘  [𝑗])
≥ 𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗])
+ 𝑠𝑖𝑧𝑒𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘  [𝑗]) 

𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} 

(21) 

  

𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘  [𝑖 ])
≠ 𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘  [𝑗 ])  

                                   𝑖, 𝑗 ∈ 𝐽𝑘;  𝑖 ≠ 𝑗;  𝑘 ∈ {1,2} 

(22) 

 

𝐶𝑚𝑎𝑥 ≥ 𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘[𝑗]) 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2}  (23) 

 

In this constraint programming model, constraint set (19) 

ensures that completion time of job j on 𝑀𝑐 is greater than or 
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equal to its release date plus its processing time. Constraint set 

(20) (resp. (22)) states that every two jobs i and j cannot be 

completed on 𝑀𝑐  (resp. 𝐷𝑘 , 𝑘 = 1,2 ) at the same time. 

Constraint set (21) imposes that second operation of job j can 

only begin when the first one is completed.  

Finally, the maximum completion time 𝐶𝑚𝑎𝑥 is defined by 

the constraint set (23).  

In our CP model, two jobs must not overlap since machines 

cannot occur simultaneously. To model this, we have also used 

two constructs: 

• The sequence decision variables. 

• The noOverlap scheduling constraints. 

A sequence variable represents a total order over a set of 

interval variables. The definition of sequence variables in our 

CP model is given as below: 

 

𝑆𝐸𝑄𝑈𝐸𝑁𝐶𝐸 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑖𝑛 𝑎𝑙𝑙 (𝑗 𝑖𝑛 𝐽) 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗]; 
𝑆𝐸𝑄𝑈𝐸𝑁𝐶𝐸 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑘  𝑖𝑛 𝑎𝑙𝑙 (𝑗 𝑖𝑛 𝐽𝑘)  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘  [𝑗] 

∀ 𝑘 ∈ {1,2}; 
 

NoOverlap constraints are added to constrain the intervals 

in sequences such that they:  

• are ordered in time corresponding to the order in the 

sequence. 

• do not overlap. 

• respect transition times. 

The definition of NoOverlap constraints in our CP model is 

given by: 

 

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒); 
𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑘  ) ∀ 𝑘 ∈ {1,2}; 

 

 

6. COMPARISON OF THE TWO MODELS 

 

In this section, we compare the performance of the two 

formulated models MIP and CP to assess which is the most 

successful for solving the 2𝐹𝐻𝐷|1, 2,  𝑟𝑗|𝐶𝑚𝑎𝑥  problem. The 

criteria that we use for this purpose are: 

• the problem size that the model can solve. 

• the computational time for solving this problem size. 

 

To achieve this objective, a set of numerical experiments 

were performed on a personal computer with an Intel 2.50 

GHz CPU and 1.96 GB RAM.  

The Mixed-Integer Programming model (MIP) is coded in 

ILOG OPL STUDIO V6 and solved by Cplex 12.  

Cplex is a major product release that incorporates the latest 

enhancements in both solution speed and flexibility for 

mathematical programming. While constraint programming 

model (CP) is coded in ILOG OPL STUDIO V6 and solved by 

CP Optimizer that is included in IBM ILOG CPLEX 

Optimizers. 

Furthermore, four classes of test problems are generated to 

perform the computational analysis. In each class problems, 

processing times in the first stage are random integers from a 

uniform distribution from 1 to 20, denoted by  𝑎𝑗~𝑈[1,20]. 

However, the balance between average workloads of 

dedicated machines and the total workload on the single 

machine is important driving factor to easily find a satisfying 

solution for the studied problem. Hence, the processing times 

of jobs on the dedicated machines are generated randomly 

from the following uniform distributions: 

 

CLASS 1: 𝑏𝑗𝑘~𝑈[1,20]∀𝑘 ∈ {1,2} 

 

CLASS 2:  𝑏𝑗𝑘~𝑈[1,40]∀𝑘 ∈ {1,2} 

 

CLASS 3:  𝑏𝑗𝑘~𝑈[20,40]∀𝑘 ∈ {1,2} 

 

CLASS 4:  𝑏𝑗𝑘 =  𝑎𝑗 + 5 with 𝑘 ∈ {1,2} 

 

In fact, for CLASS 1, the processing times of jobs are of the 

same order of magnitude. Thus, the total load on each of the 

dedicated machines is less than that of the single machine. As 

for CLASS 2 and CLASS 3, the processing times of jobs on 

dedicated machines are greater than those on 𝑀𝑐, which tends 

to balance the global load of different machines. Finally, for 

CLASS 4, we intend to study specific instances, which are 

more difficult to schedule. 

We further note that release dates of jobs are generated 

randomly from two uniform distributions: 

 

𝑟𝑗~𝑈[0, 100]and 𝑟𝑗~𝑈[0, 𝑛 ∗ 10]. 

 

For each class of test problems, several problem sizes are 

evaluated. For each combination of parameters (𝑟𝑗 , n), we 

randomly generated 20 instances and provided the average 

computation time of each proposed model for finding the 

optimal solution.  

 

6.1 Results analysis for MIP model 

 

Table 1 presents the average computational time (seconds) 

that is needed by Cplex for finding the optimal solution, for 

𝑟𝑗 ∈ [0.100] and 𝑟𝑗 ∈ [0. 𝑛 ∗ 10].  

The sign (-) indicates that Cplex solver failed to obtain an 

optimal solution. 

The results show that Cplex provides an optimal solution 

within a reasonable time for only small sizes that do not exceed 

9 jobs.  

In fact, mixed-integer programming performs poorly with 

the growth of problem size, increasing computing time. This 

can also be observed from Figures 1 and 2 below. 

However, the running time of Cplex does not exceed 9.1 

seconds when the number of jobs is less than 8. 

 

6.2 Results analysis for CP model 

 

Table 2 presents the average computational time (seconds) 

that is needed by CP Optimizer for finding the optimal solution, 

for 𝑟𝑗 ∈ [0.100] and 𝑟𝑗 ∈ [0. 𝑛 ∗ 10]. 

The results reveal that constraint programming model 

outperforms the other formulation (MIP model) in finding 

optimal solutions for large problem sizes.  

In fact, CP optimizer can obtain an optimal solution for 

almost all cases of test problems for which the problem size 

does not exceed 450 jobs. Moreover, such an optimal solution 

can be obtained within a very reasonable time that is less than 

three minutes for n=450 jobs. This can also be observed from 

Figures 3 and 4 below.
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Table 1. Results analysis for MIP model (Cplex solver) 

 
𝒓𝒋 ∈ [𝟎, 𝟏𝟎𝟎] 

 𝑛 = 5 𝑛 = 6 𝑛 = 7 𝑛 = 8 𝑛 = 9 𝑛 = 10 

CLASS 1 0.02 2.94 4.54 4.66 7200 - 

CLASS 2 0.03 3.66 5.90 7.27 7920 - 

CLASS 3 2.00 2.49 5.71 9.04 - - 

CLASS 4 3.70 4.74 4.90 8.60 - - 

𝒓𝒋 ∈ [𝟎, 𝒏 ∗ 𝟏𝟎]  

 𝑛 = 5 𝑛 = 6 𝑛 = 7 𝑛 = 8 𝑛 = 9 𝑛 = 10 

CLASS 1 0.02 0.32 1.53 2.90 10800 - 

CLASS 2 0.04 0.90 2.42 3.06 11520 - 

CLASS 3 0.03 0.95 1.30 3.37 - - 

CLASS 4 0.34 1.22 4.59 9.03 - - 

           
 

Figure 1. Average CPU time of Cplex for 𝑟𝑗 ∈ [0, 100]     Figure 2. Average CPU time of CP Optimizer for 𝑟𝑗 ∈   [0. 𝑛 ∗ 10] 

 

Table 2. Results analysis for CP model (CP Optimizer) 

 
𝒓𝒋 ∈  [𝟎. 𝟏𝟎𝟎] 

 𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 250 𝑛 = 350 𝑛 = 450 

CLASS 1 0.03 1.50 4.37 19.1 59.9 201 

CLASS 2 0.04 1.57 4.71 18.6 64.3 196 

CLASS 3 0.03 1.28 4.11 15.6 112 204 

CLASS 4 0.03 1.60 4.96 22.3 163 - 

𝒓𝒋 ∈ [𝟎. 𝒏 ∗ 𝟏𝟎] 

 𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 250 𝑛 = 350 𝑛 = 450 

CLASS 1 0.02 0.75 1.54 3.40 17.2 45.6 

CLASS 2 0.02 0.63 1.07 3.15 19.9 57.8 

CLASS 3 0.03 0.71 1.53 4.52 25.5 80.7 

CLASS 4 0.02 0.83 1.42 7.56 16.3 61.9 

 
 

Figure 3. Average CPU time of CP Optimizer for 𝑟𝑗 ∈
[0, 100] 

 
 

Figure 4. Average CPU time of CP Optimizer for 𝑟𝑗 ∈
[0. 𝑛 ∗ 10] 
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Considering the results per problem class, we can see from 

Table 2 and from Figures 3 and 4 that average CPU time of CP 

Optimizer increases with the problem size. But it is, on 

average, similar from one problem class to another. This is to 

say that the performance of CP Optimizer for obtaining an 

optimal solution for the HFS with dedicated machines is not 

very sensitive to data variations and their influences on 

machine workloads. 

These results may be explained by two factors: 

- The first factor is that the number of variables in MIP 

model increases more quickly than in CP model.  

- The second factor consists in constraint propagation along 

with domain filtering, which are fundamental in constraint 

programming strategy. Indeed, the propagation phase can 

reduce the size of the search space and avoid exploring an 

exponential size space. In the initial constraint propagation 

stage, the CP engine uses domain filtering techniques to 

eliminate infeasible values from the domains of variables. A 

filtering algorithm is applied to make the CP model arc 

consistent. This means, for any value of a given variable in a 

constraint, there exists at least a value for the other variables 

to satisfy this constraint. All constraints must be filtered, and 

filtering is repeated until no domain is changed. This reduces 

considerably the search space.  

Consequently, as an advantage, CP model allows various 

constraints to be taken into consideration, because the solver 

takes parcels out of the search space. Contrariwise, the MIP 

model does not let many complicated constraints which are 

found in real life to be integrated without convoluting the 

model since it becomes difficult to build, generalize and solve.  

However, constraint programming remains a tree-based 

searching method. On some large problem sizes, this tree 

traversal becomes very combinatorial and penalizing in terms 

of execution time. 
 

 

7. CONCLUSION 
 

In this paper, we have dealt with the two-stage hybrid flow 

shop with dedicated machines and releases dates. The 

objective is to minimize the makespan. Such a problem is NP-

hard.  

To obtain an optimal solution, we have proposed two 

mathematical models for the problem, namely a mixed integer-

programming model and a constraint programming model. A 

set of computational experiments was conducted to evaluate 

the performance of the developed models. The results showed 

that constraint programming dominates the other formulation 

(mixed-integer programming) in finding optimal solutions. In 

fact, with constraint programming model, we can obtain an 

optimal solution for large problem sizes, which can reach 450 

jobs, within reasonable computational time (≤ 3 𝑚𝑖𝑛𝑢𝑡𝑒𝑠). 

On the other hand, we find that mixed integer programming 

can solve only small sizes (≤ 9 jobs) within more than 192 

minutes (when the number of jobs is 9). 

Going forward, we intend to assess the performance of these 

two models on more realistic situations such as multiple stages 

with dedicated machines. Moreover, we are interested to 

compare the developed models using various 

parameterizations of search methods in CP Optimizer. 
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