
Comparing Mixed-Integer Programming and Constraint Programming Models for the

Hybrid Flow Shop Scheduling Problem with Dedicated Machines

Asma Ouled Bedhief1,2

1 Department of Industrial Engineering, National Engineering school of Tunis, University of Tunis El Manar, Tunis 1002,

Tunisia
2 ESPRIT School of Engineering, Tunis 1002, Tunisia

Corresponding Author Email: asma.ouledbedhief@enit.utm.tn

https://doi.org/10.18280/jesa.540408 ABSTRACT

Received: 22 March 2021

Accepted: 20 July 2021

The paper considers a two-stage hybrid flow shop scheduling problem with dedicated

machines and release dates. Each job must be first processed on the single machine of

stage 1, and then, the job is processed on one of the two dedicated machines of stage 2,

depending on its type. Moreover, the jobs are available for processing at their respective

release dates. Our goal is to obtain a schedule that minimizes the makespan. This problem

is strongly NP-hard. In this paper, two mathematical models are developed for the

problem: a mixed-integer programming model and a constraint programming model. The

performance of these two models is compared on different problem configurations. And

the results show that the constraint programming outperforms the mixed-integer

programming in finding optimal solutions for large problem sizes (450 jobs) with very

reasonable computing times.

Keywords:

hybrid flow shop scheduling, dedicated

machines, mixed-integer programming,

constraint programming, Cplex, CP optimizer

1. INTRODUCTION

In many industrial applications, dedicated machines consist

in producing products of different types. First, all products go

through the same main operations of the production process,

and then they are processed on dedicated machines specific to

each product. Such applications include pharmaceutical

industries [1], woodworking industries [2], label sticker

manufacturing [3], furniture assembly and mass customization

[4].

Hybrid Flow Shop (HFS) with dedicated machines with two

or more stages is strongly NP-hard [5, 6].

In this paper, we deal with a two-stage HFS with dedicated

machines and release dates. We focus on the case where there

exists one machine in stage one, denoted as 𝑀𝑐 , and two

dedicated machines 𝐷𝑘 , 𝑘 = {1,2} in the second stage. Each

job 𝑗 must first be processed on 𝑀𝑐 and then, depending on its

type, it will be processed on a dedicated machine 𝐷𝑘 .

Furthermore, we assume that each job j is available for

processing at its release date 𝑟𝑗 . The aim is to minimize the

makespan (maximum completion time) denoted as 𝐶𝑚𝑎𝑥 .

Following the notation 𝛼|𝛽|𝛾 of Graham et al. [7], we denote

such a problem as 2𝐹𝐻𝐷|1, 2, 𝑟𝑗|𝐶𝑚𝑎𝑥.

The rest of the paper is organized as follows:

Section 2 presents a brief literature review on exact,

heuristic and metaheuristic methods that have been proposed

for the HFS with dedicated machines. In Section 3, we deploy

several notations and assumptions. Sections 4 and 5 describe

respectively the mixed-integer programming (MIP) and the

constraint programming (CP) models that we propose for the

purpose of our paper. To assess the performance of these

formulations, several test problems are solved, and the results

are reported in Section 6. Finally, Section 7 concludes the

paper.

2. LITERATURE REVIEW

In the academic literature, few exact methods have been

employed to solve the HFS with dedicated machines.

Riane et al. [8] developed a dynamic program for the case

of two stages, where two dedicated machines are in the second

stage. The goal is to minimize the maximum completion time.

The results show that the developed dynamic program is

baffled for problems of more than 15 jobs.

Moseiov and Sarig [9] developed an integer programming

model for the two-stage HFS with m dedicated machines and

due dates. Besbes et al. [10] considered a two-stage HFS with

parallel-dedicated machines in both stages. They proposed a

mixed-integer linear programming model to minimize the

maximum completion time among all jobs. This model is

based on the mathematical formulation of Guinet et al. [11]

and is solved by Cplex. The authors proved that Cplex can

obtain an optimal solution for only small sizes. With the

objective of minimizing the makespan, Hadda et al. [12] also

proposed a branch and bound algorithm for the case of m

dedicated machines in the second stage. The authors used an

elimination rule to improve even more the performance of

their algorithm. The experimental results demonstrated that

many big size instances are solved, and the elimination rule

has contributed to discard up to 50% of the nodes. Chikhi et al.

[13] studied the case of the two-stage robotic flow shop

scheduling problem with the objective of minimizing the

makespan. There are two dedicated machines in stage 1 and

only one machine in stage 2. Depending on the job type, each

job is firstly processed on a dedicated machine and is then

transported by a robot, to be processed on the single machine.

The authors developed a mixed-integer programming model,

which is using valid inequalities based on a set of lower

bounds. Nabli et al. [14] proposed two mixed-integer

Journal Européen des Systèmes Automatisés
Vol. 54, No. 4, August, 2021, pp. 591-597

Journal homepage: http://iieta.org/journals/jesa

591

https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.540408&domain=pdf

programming models (M1 and M2) for solving the hybrid flow

shop scheduling problem with parallel machines in the first

stage and two dedicated machines in the second stage. The first

model (M1) is based on time indexed variables, while the

second model (M2) is based on ordering variables. In their

paper, the authors compared the computational time

performances of M1 and M2, and they found that M2 (linear

ordering variables) is faster than M1 (time index variables).

Other studies have developed heuristic and metaheuristic

approaches for solving the hybrid flow shop with dedicated

machines. For example, Lin et al. [3] developed a heuristic

approach with combined rules for the two-stage HFS with

setup times and due dates in a label sticker manufacturing

company. The objective was to minimize the weighted

maximum tardiness of jobs. Oguz et al. [15] developed a

heuristic approach, which is based on the Johnson’s algorithm

[16] for minimizing the makespan.

Yang [17] proposed an optimal solution for the case where

the processing times on the common machine are identical.

The aim is to minimize the total completion time. Besbes et al.

[10] considered respectively s and m dedicated machines in

stages one and two. The authors developed two approaches.

The first approach is based on the Johnson’s algorithm [16],

while the second one consists of a genetic algorithm. Huang

and Lin [18] considered the case of two stages with setup time

where a single machine is in the first stage and two dedicated

machines are in the second stage. Their aim is to obtain a

schedule that has the minimum makespan. They investigated

the case where the processing schedules of the two types of

jobs are fixed. To solve the problem, the authors proposed a

polynomial-time dynamic programming algorithm.

Nabli et al. [19] studied a two-stage hybrid flow shop with

dedicated machines and release dates. There are two parallel

machines in stage one and two dedicated machines in stage

two. The objective is to minimize the makespan. To solve the

problem, the authors proposed three heuristic and two lower

bounds. Harbaoui et al. [20] compared the performance of two

metaheuristic: a tabu search and a genetic algorithm for the no-

wait hybrid flow shop problem with dedicated machines under

makespan minimization. The authors [21] studied a hybrid

flow shop with dedicated machines, sequence dependent setup

and time lags, and they developed a genetic algorithm to

minimize the makespan.

Dealing with the minimization of the makespan for the case

of m dedicated machines in the second stage, many heuristics

were also developed in the references [22, 23].

For the case of more than two stages, Riane et al. [2]

considered a three-stage HFS with two dedicated machines in

the second stage and one single machine in stages one and

three. They developed a dynamic programming-based

heuristic and a branch and bound based heuristic. Ouled

Bedhief et al. [1] studied the case of three-stage HFS with

dedicated machines in the third stage. The authors studied a

set of cases and proposed a heuristic approach for the general

problem that is denoted by IH-DP. For the same problem,

Ouled Bedhief et al. [24] proposed an improved genetic

algorithm. Many computational experiments demonstrated its

efficiency with a mean percentage deviation from the lower

bound that does not exceed 0.5%, and a very reasonable

computational time.

The literature review shows that most of the available

studies on the hybrid flow shop with dedicated machines are

focused on the development of heuristic approaches. However,

few exact methods have been employed to solve this kind of

problems.

Furthermore, most of these exact methods are mixed-integer

linear programming models. To the best of our knowledge,

there is no report on constraint programming (CP) models for

the HFS scheduling problem with dedicated machines.

Based on logic programming, the constraint programming

is, also, an efficient exact method that has been widely used

for solving industrial scheduling problems [25-27].

It is further applied for solving many other types of

scheduling problems such as: scheduling problems in

operating theatres [28] or medical resident scheduling

problems [29].

In this paper, we compare a constraint programming model

(CP) to a mixed-integer programming model (MIP) for

the 2𝐹𝐻𝐷|1, 2, 𝑟𝑗|𝐶𝑚𝑎𝑥 scheduling problem.

3. NOTATIONS AND ASSUMPTIONS

For convenience and readability, we will use the following

notations for our problem 2𝐹𝐻𝐷|1, 2, 𝑟𝑗|𝐶𝑚𝑎𝑥:

• 𝑛: Number of jobs

• 𝐽: Set of n jobs, 𝐽 = {1,2, … 𝑛}

• 𝐽𝑘: Subset of jobs of type 𝑘, 𝑘 = {1,2}, such that 𝐽1 ∪
𝐽2 = 𝐽 and 𝐽1 ∩ 𝐽2 = ∅

• 𝑀𝑐: Common machine of the first stage

• 𝐷𝑘 : Dedicated machine of type 𝑘, 𝑘 = {1,2}of the

second stage

• 𝑎𝑗: Processing time of job 𝑗 on 𝑀𝑐

• 𝑏𝑗𝑘: Processing time of job 𝑗 on 𝐷𝑘 , 𝑘 = {1,2}

• 𝑟𝑗 : Release date of job 𝑗, 𝑗 ∈ 𝐽

Furthermore, we assume that each job should be processed

on exactly one machine at the same time and each machine

processes one job at a time. The transportation time between

machines is zero and no preemption is allowed. Also, the job

does not visit the same machine twice.

4. MIXED-INTEGER PROGRAMMING MODEL (MIP)

In this section, we propose a mixed-integer programming

model for the 2𝐹𝐻𝐷|1, 2, 𝑟𝑗|𝐶𝑚𝑎𝑥 problem. This MIP model

is composed only of linear equations. The goal is to minimize

the makespan (𝑖. 𝑒 maximum completion time of jobs).

At the beginning, we define the decision variables of our

MIP model as follows:

Binary variables:

• 𝑋0𝑗 = 1 if 𝑗 is the first job processed on 𝑀𝑐 , 0

otherwise; 𝑗 ∈ 𝐽;

• 𝑋𝑖𝑗 =1 if job 𝑖 is scheduled before job 𝑗 on 𝑀𝑐 , 0

otherwise; 𝑖, 𝑗 ∈ 𝐽 and 𝑖 ≠ 𝑗;

• 𝑋0𝑗
(𝑘)

= 1 if 𝑗 is the first job processed on 𝐷𝑘 , 0

otherwise; 𝑗 ∈ 𝐽𝑘 , 𝑘 = {1,2};

• 𝑋𝑖𝑗
(𝑘)

=1 if job 𝑖 is scheduled before job 𝑗 on 𝐷𝑘 , 0

otherwise; 𝑖, 𝑗 ∈ 𝐽𝑘 , 𝑘 = {1,2} and 𝑖 ≠ 𝑗;

Continuous variables:

• 𝐶𝑗: Completion time of job 𝑗 on 𝑀𝑐, 𝑗 ∈ 𝐽;

• 𝐶𝑗
(𝑘)

: Completion time of job 𝑗 on 𝐷𝑘 , 𝑗 ∈ 𝐽𝑘, 𝑘 =

{1,2};

592

Our proposed MIP model can now be given as:

Objective function: 𝑚𝑖𝑛 𝐶𝑚𝑎𝑥.

Subject to:

∑ 𝑋0𝑗

𝑛

𝑗=1

= 1 𝑗 ∈ 𝐽 (1)

∑ 𝑋𝑖𝑗

𝑛

𝑖=0,𝑖≠𝑗

 = 1 𝑗 ∈ 𝐽 (2)

∑ 𝑋𝑗𝑖

𝑛
𝑖=1,𝑖≠𝑗 ≤ 1 𝑗 ∈ 𝐽 (3)

∑ 𝑋0𝑗
(𝑘)𝑛𝑘

𝑗=1 = 1 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (4)

∑ 𝑋𝑖𝑗
(𝑘)𝑛𝑘

𝑖=0,𝑖≠𝑗 = 1 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (5)

∑ 𝑋𝑗𝑖
(𝑘)𝑛𝑘

𝑖=1,𝑖≠𝑗 ≤ 1 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (6)

𝐶𝑗 ≥ 𝑟𝑗 + 𝑎𝑗 𝑗 ∈ 𝐽 (7)

𝐶𝑖 + 𝑎𝑗 + (𝑋𝑖𝑗 − 1)𝑀 ≤ 𝐶𝑗 𝑗 ∈ 𝐽 (8)

𝐶𝑗
(𝑘)

≥ 𝐶𝑗 + 𝑏𝑗𝑘 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (9)

 𝐶𝑖
(𝑘)

+ 𝑏𝑗𝑘 + (𝑋𝑖𝑗
(𝑘)

− 1)𝑀 ≤ 𝐶𝑗
(𝑘)

 𝑖, 𝑗 ∈ 𝐽𝑘; 𝑖 ≠

𝑗; 𝑘 ∈ {1,2}
(10)

𝐶𝑖 ≤ 𝐶𝑗 + 𝑀 (1 − 𝑋𝑖𝑗
(𝑘)

) 𝑖, 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (11)

𝐶 𝑚𝑎𝑥 ≥ 𝐶𝑗
(𝑘)

 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (12)

𝐶𝑗 ≥ 0 𝑗 ∈ 𝐽 (13)

𝐶𝑗
(𝑘)

≥ 0 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (14)

𝑋𝑖𝑗 ∈ {0,1} 𝑖, 𝑗 ∈ 𝐽 (15)

𝑋𝑖𝑗
(𝑘)

∈ {0,1} 𝑖, 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (16)

𝑋0𝑗 ∈ {0,1} 𝑗 ∈ 𝐽 (17)

𝑋0𝑗
(𝑘)

∈ {0,1} (18)

In this mixed-integer programming model, the objective

function is to minimize the maximum completion time 𝐶𝑚𝑎𝑥

among all jobs.

M is a sufficiently large number (an upper bound on the

completion time on both stage 1 (Constraint set (8)) and stage

2 (Constraint set (10)).

Constraint set (1) (resp. (4)) ensures that every job-sequence

on 𝑀𝑐 (resp.𝐷𝑘) begins with exactly one job. Constraint set (2)

(resp. (5)) assures that every job should have a predecessor,

otherwise, it is the first job processed on 𝑀𝑐 (resp. 𝐷𝑘).

Constraint sets (3) and (6) state that every job must have at

most only one direct successor. Constraint set (7) insures the

respect of the release dates of jobs. Constraint set (8) (resp.

(10)) states that no job can be processed on 𝑀𝑐 (resp.𝐷𝑘)

before the completion time of the current job. Constraint set

(9) ensures that the second operation can only begin when the

first one is completed.

Constraint set (11) guarantees the obtaining of permutation

solutions. In fact, a permutation schedule is defined when the

processing order of jobs on the machines is the same.

The maximum completion time is defined through

constraint set (12). Finally, constraint sets from (13) … to (18)

define the decision variables of our model.

In general, the efficiency of mixed-integer programming is

ostensibly not guaranteed, especially, when the problem size

increases. However, constraint programming (CP) provides

suitable modeling techniques to optimize several complex

problems, which are most often qualified by logical and non-

linear constraints.

5. CONSTRAINT PROGRAMMING MODEL (CP)

Unlike the previous model (MIP), Constraint Programming

model uses a CP language which has a more advanced

descriptive power than traditional linear programming

language, and which allows non-linear equations to be

incorporated.

In our CP model, operations on machines 𝑀𝑐 and 𝐷𝑘 are

represented by interval variables instead of binary variables in

MIP model. An interval variable represents an interval of time

during which an operation is performed. We note here that the

processing of job j on machine 𝑀𝑐 (𝑟𝑒𝑠𝑝. 𝐷𝑘 , 𝑘 = {1,2}) is

referred to as 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗] (𝑟𝑒𝑠𝑝. 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘[𝑗] , 𝑘 =
{1,2}) and its duration is 𝑎𝑗 (𝑟𝑒𝑠𝑝. 𝑏𝑗𝑘 , 𝑘 = {1,2}).

The definition of interval variables for operations is given

as follows:

𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗 𝑖𝑛 𝐽]𝑠𝑖𝑧𝑒 𝑎𝑗 , 𝑗 ∈ 𝐽;

𝐼𝑁𝑇𝐸𝑅𝑉𝐴𝐿 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘 [𝑗 𝑖𝑛 𝐽𝑘] 𝑠𝑖𝑧𝑒 𝑏𝑗𝑘 𝑗 ∈ 𝐽𝑘 ∀ 𝑘

∈ {1,2};

Accordingly, the constraint programming (CP) model will

be as follows:

Objective function: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑚𝑎𝑥.

Subject to:

𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗])
≥ 𝑟𝑗 + 𝑠𝑖𝑧𝑒𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗])

 𝑗 ∈ 𝐽

(19)

𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑖]) ≠ 𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗])

𝑖, 𝑗 ∈ 𝐽; 𝑖 ≠ 𝑗
(20)

𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘 [𝑗])
≥ 𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗])
+ 𝑠𝑖𝑧𝑒𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘 [𝑗])

𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2}

(21)

𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘 [𝑖])
≠ 𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘 [𝑗])

 𝑖, 𝑗 ∈ 𝐽𝑘; 𝑖 ≠ 𝑗; 𝑘 ∈ {1,2}

(22)

𝐶𝑚𝑎𝑥 ≥ 𝑒𝑛𝑑𝑂𝑓 (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘[𝑗]) 𝑗 ∈ 𝐽𝑘; 𝑘 ∈ {1,2} (23)

In this constraint programming model, constraint set (19)

ensures that completion time of job j on 𝑀𝑐 is greater than or

593

equal to its release date plus its processing time. Constraint set

(20) (resp. (22)) states that every two jobs i and j cannot be

completed on 𝑀𝑐 (resp. 𝐷𝑘 , 𝑘 = 1,2) at the same time.

Constraint set (21) imposes that second operation of job j can

only begin when the first one is completed.

Finally, the maximum completion time 𝐶𝑚𝑎𝑥 is defined by

the constraint set (23).

In our CP model, two jobs must not overlap since machines

cannot occur simultaneously. To model this, we have also used

two constructs:

• The sequence decision variables.

• The noOverlap scheduling constraints.

A sequence variable represents a total order over a set of

interval variables. The definition of sequence variables in our

CP model is given as below:

𝑆𝐸𝑄𝑈𝐸𝑁𝐶𝐸 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑖𝑛 𝑎𝑙𝑙 (𝑗 𝑖𝑛 𝐽) 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑗];
𝑆𝐸𝑄𝑈𝐸𝑁𝐶𝐸 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑘 𝑖𝑛 𝑎𝑙𝑙 (𝑗 𝑖𝑛 𝐽𝑘) 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑘 [𝑗]

∀ 𝑘 ∈ {1,2};

NoOverlap constraints are added to constrain the intervals

in sequences such that they:

• are ordered in time corresponding to the order in the

sequence.

• do not overlap.

• respect transition times.

The definition of NoOverlap constraints in our CP model is

given by:

𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒);
𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑘) ∀ 𝑘 ∈ {1,2};

6. COMPARISON OF THE TWO MODELS

In this section, we compare the performance of the two

formulated models MIP and CP to assess which is the most

successful for solving the 2𝐹𝐻𝐷|1, 2, 𝑟𝑗|𝐶𝑚𝑎𝑥 problem. The

criteria that we use for this purpose are:

• the problem size that the model can solve.

• the computational time for solving this problem size.

To achieve this objective, a set of numerical experiments

were performed on a personal computer with an Intel 2.50

GHz CPU and 1.96 GB RAM.

The Mixed-Integer Programming model (MIP) is coded in

ILOG OPL STUDIO V6 and solved by Cplex 12.

Cplex is a major product release that incorporates the latest

enhancements in both solution speed and flexibility for

mathematical programming. While constraint programming

model (CP) is coded in ILOG OPL STUDIO V6 and solved by

CP Optimizer that is included in IBM ILOG CPLEX

Optimizers.

Furthermore, four classes of test problems are generated to

perform the computational analysis. In each class problems,

processing times in the first stage are random integers from a

uniform distribution from 1 to 20, denoted by 𝑎𝑗~𝑈[1,20].

However, the balance between average workloads of

dedicated machines and the total workload on the single

machine is important driving factor to easily find a satisfying

solution for the studied problem. Hence, the processing times

of jobs on the dedicated machines are generated randomly

from the following uniform distributions:

CLASS 1: 𝑏𝑗𝑘~𝑈[1,20]∀𝑘 ∈ {1,2}

CLASS 2: 𝑏𝑗𝑘~𝑈[1,40]∀𝑘 ∈ {1,2}

CLASS 3: 𝑏𝑗𝑘~𝑈[20,40]∀𝑘 ∈ {1,2}

CLASS 4: 𝑏𝑗𝑘 = 𝑎𝑗 + 5 with 𝑘 ∈ {1,2}

In fact, for CLASS 1, the processing times of jobs are of the

same order of magnitude. Thus, the total load on each of the

dedicated machines is less than that of the single machine. As

for CLASS 2 and CLASS 3, the processing times of jobs on

dedicated machines are greater than those on 𝑀𝑐, which tends

to balance the global load of different machines. Finally, for

CLASS 4, we intend to study specific instances, which are

more difficult to schedule.

We further note that release dates of jobs are generated

randomly from two uniform distributions:

𝑟𝑗~𝑈[0, 100]and 𝑟𝑗~𝑈[0, 𝑛 ∗ 10].

For each class of test problems, several problem sizes are

evaluated. For each combination of parameters (𝑟𝑗 , n), we

randomly generated 20 instances and provided the average

computation time of each proposed model for finding the

optimal solution.

6.1 Results analysis for MIP model

Table 1 presents the average computational time (seconds)

that is needed by Cplex for finding the optimal solution, for

𝑟𝑗 ∈ [0.100] and 𝑟𝑗 ∈ [0. 𝑛 ∗ 10].

The sign (-) indicates that Cplex solver failed to obtain an

optimal solution.

The results show that Cplex provides an optimal solution

within a reasonable time for only small sizes that do not exceed

9 jobs.

In fact, mixed-integer programming performs poorly with

the growth of problem size, increasing computing time. This

can also be observed from Figures 1 and 2 below.

However, the running time of Cplex does not exceed 9.1

seconds when the number of jobs is less than 8.

6.2 Results analysis for CP model

Table 2 presents the average computational time (seconds)

that is needed by CP Optimizer for finding the optimal solution,

for 𝑟𝑗 ∈ [0.100] and 𝑟𝑗 ∈ [0. 𝑛 ∗ 10].

The results reveal that constraint programming model

outperforms the other formulation (MIP model) in finding

optimal solutions for large problem sizes.

In fact, CP optimizer can obtain an optimal solution for

almost all cases of test problems for which the problem size

does not exceed 450 jobs. Moreover, such an optimal solution

can be obtained within a very reasonable time that is less than

three minutes for n=450 jobs. This can also be observed from

Figures 3 and 4 below.

594

Table 1. Results analysis for MIP model (Cplex solver)

𝒓𝒋 ∈ [𝟎, 𝟏𝟎𝟎]

 𝑛 = 5 𝑛 = 6 𝑛 = 7 𝑛 = 8 𝑛 = 9 𝑛 = 10

CLASS 1 0.02 2.94 4.54 4.66 7200 -

CLASS 2 0.03 3.66 5.90 7.27 7920 -

CLASS 3 2.00 2.49 5.71 9.04 - -

CLASS 4 3.70 4.74 4.90 8.60 - -

𝒓𝒋 ∈ [𝟎, 𝒏 ∗ 𝟏𝟎]

 𝑛 = 5 𝑛 = 6 𝑛 = 7 𝑛 = 8 𝑛 = 9 𝑛 = 10

CLASS 1 0.02 0.32 1.53 2.90 10800 -

CLASS 2 0.04 0.90 2.42 3.06 11520 -

CLASS 3 0.03 0.95 1.30 3.37 - -

CLASS 4 0.34 1.22 4.59 9.03 - -

Figure 1. Average CPU time of Cplex for 𝑟𝑗 ∈ [0, 100] Figure 2. Average CPU time of CP Optimizer for 𝑟𝑗 ∈ [0. 𝑛 ∗ 10]

Table 2. Results analysis for CP model (CP Optimizer)

𝒓𝒋 ∈ [𝟎. 𝟏𝟎𝟎]

 𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 250 𝑛 = 350 𝑛 = 450

CLASS 1 0.03 1.50 4.37 19.1 59.9 201

CLASS 2 0.04 1.57 4.71 18.6 64.3 196

CLASS 3 0.03 1.28 4.11 15.6 112 204

CLASS 4 0.03 1.60 4.96 22.3 163 -

𝒓𝒋 ∈ [𝟎. 𝒏 ∗ 𝟏𝟎]

 𝑛 = 50 𝑛 = 100 𝑛 = 150 𝑛 = 250 𝑛 = 350 𝑛 = 450

CLASS 1 0.02 0.75 1.54 3.40 17.2 45.6

CLASS 2 0.02 0.63 1.07 3.15 19.9 57.8

CLASS 3 0.03 0.71 1.53 4.52 25.5 80.7

CLASS 4 0.02 0.83 1.42 7.56 16.3 61.9

Figure 3. Average CPU time of CP Optimizer for 𝑟𝑗 ∈
[0, 100]

Figure 4. Average CPU time of CP Optimizer for 𝑟𝑗 ∈
[0. 𝑛 ∗ 10]

595

Considering the results per problem class, we can see from

Table 2 and from Figures 3 and 4 that average CPU time of CP

Optimizer increases with the problem size. But it is, on

average, similar from one problem class to another. This is to

say that the performance of CP Optimizer for obtaining an

optimal solution for the HFS with dedicated machines is not

very sensitive to data variations and their influences on

machine workloads.

These results may be explained by two factors:

- The first factor is that the number of variables in MIP

model increases more quickly than in CP model.

- The second factor consists in constraint propagation along

with domain filtering, which are fundamental in constraint

programming strategy. Indeed, the propagation phase can

reduce the size of the search space and avoid exploring an

exponential size space. In the initial constraint propagation

stage, the CP engine uses domain filtering techniques to

eliminate infeasible values from the domains of variables. A

filtering algorithm is applied to make the CP model arc

consistent. This means, for any value of a given variable in a

constraint, there exists at least a value for the other variables

to satisfy this constraint. All constraints must be filtered, and

filtering is repeated until no domain is changed. This reduces

considerably the search space.

Consequently, as an advantage, CP model allows various

constraints to be taken into consideration, because the solver

takes parcels out of the search space. Contrariwise, the MIP

model does not let many complicated constraints which are

found in real life to be integrated without convoluting the

model since it becomes difficult to build, generalize and solve.

However, constraint programming remains a tree-based

searching method. On some large problem sizes, this tree

traversal becomes very combinatorial and penalizing in terms

of execution time.

7. CONCLUSION

In this paper, we have dealt with the two-stage hybrid flow

shop with dedicated machines and releases dates. The

objective is to minimize the makespan. Such a problem is NP-

hard.

To obtain an optimal solution, we have proposed two

mathematical models for the problem, namely a mixed integer-

programming model and a constraint programming model. A

set of computational experiments was conducted to evaluate

the performance of the developed models. The results showed

that constraint programming dominates the other formulation

(mixed-integer programming) in finding optimal solutions. In

fact, with constraint programming model, we can obtain an

optimal solution for large problem sizes, which can reach 450

jobs, within reasonable computational time (≤ 3 𝑚𝑖𝑛𝑢𝑡𝑒𝑠).

On the other hand, we find that mixed integer programming

can solve only small sizes (≤ 9 jobs) within more than 192

minutes (when the number of jobs is 9).

Going forward, we intend to assess the performance of these

two models on more realistic situations such as multiple stages

with dedicated machines. Moreover, we are interested to

compare the developed models using various

parameterizations of search methods in CP Optimizer.

REFERENCES

[1] Ouled Bedhief, A., Dridi, N. (2019). Minimizing

makespan in a three-stage hybrid flow shop with

dedicated machines. International Journal of Industrial

Engineering Computations, 10(2): 161-176.

http://dx.doi.org/10.5267/j.ijiec.2018.10.001

[2] Riane, F., Artiba, A., Elmaghraby, S.E. (1998). A hybrid

three-stage flow shop problem: Efficient heuristics to

minimize makespan. European Journal of Operational

Research, 109(2): 321-329.

https://doi.org/10.1016/S0377-2217(98)00060-5

[3] Lin, H.T, Liao, C.J. (2003). A case study in a two-stage

hybrid flow shop with setup time and dedicated machines.

International Journal of Production Economics, 86(2):

133-143. http://dx.doi.org/10.1016/S0925

5273(03)00011-2

[4] Cheng, T.C.E., Lin, B.M.T., Tian, Y. (2009). Scheduling

of a two-stage differentiation flow shop to minimize

weighted sum of machine completion times. Computers

and Operations Research, 36(11): 3031-3040.

[5] Herrmann, J.W., Lee, C.Y. (1992). Three-machine look-

ahead scheduling problems. Research Report No. 92-93,

Department of Industrial Engineering, University of

Florida, FL.

[6] Lin, B.M.T. (1999). The strong NP-hardness of two-

stage flow shop scheduling with a common second-stage

machine. Computers & Operations Research, 26(7): 695-

698. https://doi.org/10.1016/S0305-0548(98)00080-X

[7] Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan,

A.H.G. (1979). Optimization and approximation in

deterministic sequencing and scheduling: A survey.

Annals of Discrete Mathematics, 5: 287-326.

http://dx.doi.org/10.1016/S0167-5060(08)70356-X

[8] Riane, F., Artiba, A., Elmaghraby, S.E. (2002).

Sequencing a hybrid two-stage flow shop with dedicated

machines. International Journal of Production Research,

40(17): 4353-4380.

https://doi.org/10.1080/00207540210159536

[9] Mosheiov, G., Sarig, A. (2010). Minimum weighted

number of tardy jobs on an m-machine flow shop with a

critical machine. European Journal of Operational

Research, 201(2): 404-408.

http://dx.doi.org/10.1016/j.ejor.2009.03.018

[10] Besbes, W., Loukil, T., Teghem, J. (2010). A two-stage

flow shop with parallel dedicated machines. 8th

International Conference of Modeling and Simulation,

MOSIM’10- May 10-12, 2010- Hammamet- Tunisia.

[11] Guinet, A., Solomon, M.M., Kedia, P.K., Dussauchoy, A.

(1996). A computational study of heuristics for two-stage

flexible flowshops. International Journal of Production

Research, 34(5): 1399-1415.

http://dx.doi.org/10.1080/00207549608904972

[12] Hadda, H., Dridi, N., Hajri-Gabouj, S. (2014). Exact

resolution of the two-stage hybrid flow shop with

dedicated machines. Optimization Letters, 8(8): 2329-

2339. http://dx.doi.org/10.1007/s11590-014-0741-y

[13] Chicki, N., Abbas, M., Benmansour, R., Bekrar, A.,

Hanafi, S. (2015). A two-stage flow shop scheduling

problem with transportation considerations. 4OR, A

Quarterly Journal of Operations Research, 13(4): 381-

402.

[14] Nabli, Z., Korbaa, O., Khalfallah, S. (2016).

Mathematical programming formulations for hybrid flow

shop scheduling with parallel machines at the first stage

and two dedicated machines at the second stage. In 2016

IEEE International Conference on Systems, Man, and

596

Cybernetics (SMC). pp. 4389-4393.

http://dx.doi.org/10.1109/SMC.2016.7844921

[15] Oguz, C., Lin, B.M.T., Cheng, T.C.E. (1997). Two-stage

flow shop scheduling problem with a common second-

stage machine. Computers & Operations Research,

24(12): 1169-1174. https://doi.org/10.1016/S0305-

0548(97)00023-3

[16] Johnson, S.M. (1954). Optimal two- and three-stage

production schedules with setup times included. Naval

Research Logistics Quarterly, 1(1): 61-68.

http://dx.doi.org/10.1002/nav.3800010110

[17] Yang, J. (2015). Minimizing total completion time in

two-stage hybrid flow shop with dedicated machines at

the first stage. Computers & Operations Research, 58: 1-

8. http://dx.doi.org/10.1016/j.cor.2014.11.012

[18] Huang, T.C., Lin, B.M.T. (2013). Batch scheduling in

differentiation flow shops for makespan minimization.

International Journal of Production Research, 51(17):

5073-5082.

[19] Nabli, Z., Khalfallah, S., Korbaa, O. (2018). A two-stage

hybrid flow shop problem with dedicated machine and

release date. Procedia Computer Science, 126: 214-223.

https://doi.org/10.1016/j.procs.2018.07.235

[20] Harbaoui, H., Khalfallah, S. (2020). Tabu-search

optimization approach for no-wait hybrid flow-shop

scheduling with dedicated machines. Procedia Computer

Science, 176: 706-712.

https://doi.org/10.1016/j.procs.2020.09.043

[21] Harbaoui, H., Bellenguez-Morineau, O., Khalfallah, S.

(2016). Scheduling a two-stage hybrid flow shop with

dedicated machines, time lags and sequence-dependent

family setup times. In 2016 IEEE International

Conference on Systems, Man, and Cybernetics (SMC),

pp. 002990-002995.

https://doi.org/10.1109/SMC.2016.7844695

[22] Dridi, N., Hadda, H., Hajri-Gabouj, S. (2009). Méthode

heuristique pour le problème de flow shop hybride avec

machines dédiées. RAIRO Operations Research, 43(4):

421-436. http://dx.doi.org/10.1051/ro/2009024

[23] Wang, S., Liu, M. (2013). A heuristic method for two-

stage hybrid flow shop with dedicated machines.

Computer & Operations Research, 40(1): 438-450.

http://dx.doi.org/10.1016/j.cor.2012.07.015

[24] Ouled Bedhief, A., Dridi, N. (2020). A genetic algorithm

for three-stage hybrid flow shop scheduling problem

with dedicated machines. Journal Européen des

Systèmes Automatisés, 53(3): 357-368.

https://doi.org/10.18280/jesa.530306

[25] Baptiste, P., Le Pape, C., Nuijten, W. (2001). Constraint-

based scheduling: applying constraint programming to

scheduling problems. Springer Science & Business

Media.

[26] El Khayat, G., Langevin, A., Riopel, D. (2006).

Integrated production and material handling scheduling

using mathematical programming and constraint

programming. European Journal of Operational Research,

175(3): 1818-1832.

https://doi.org/10.1016/j.ejor.2005.02.077

[27] Harjunkoski, I., Grossmann, I.E. (2002). Decomposition

techniques for multistage scheduling problems using

mixed-integer and constraint programming methods.

Computers & Chemical Engineering, 26(11): 1533-1552.

http://dx.doi.org/10.1016/S0098-1354(02)00100-X

[28] Wang, T., Meskens, N., Duvivier, D. (2012). A

comparison of mixed-integer programming and

constraint programming models for scheduling problem

in operating theatres. In 2012 International Conference

on Information Systems, Logistics and Supply Chain.

[29] Topaloglu, S., Ozkarahan, I. (2011). A constraint

programming-based solution approach for medical

resident scheduling problems. Computers & Operations

Research, 38(1): 246-255.

http://dx.doi.org/10.1016/j.cor.2010.04.018

597

