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 A numerical investigation of magneto-hydrodynamic mixed convection in a square lid-driven 

cavity filled with gyrotactic micro-organisms is examined. Different magnetic field 

inclinations are considered and the left wall of the lid-driven cavity is moving up with a 

constant speed in the vertical direction. The left and right vertical walls of the cavity are 

assumed to be adiabatic. The top horizontal wall of the cavity is assumed to be kept at features 

of the solution. Lower temperature, while the bottom horizontal wall is kept in a higher 

temperature. The developed equations of the mathematical model are put in their 

dimensionless forms and then solved numerically subject to appropriate boundary conditions 

by the control finite volume method. Comparisons with previously published works are 

presented and found to be in excellent agreement. The problem was studied by varying the 

Richardson number (Ri=0.01-2.0), Rayleigh number (Ra=102 -105), magnetic field inclination 

angle (  = 0o-350o), Hartman number (Ha=0–50), and bio-convection Rayleigh number 

(Rb=10-40). A parametric study is performed and a set of graphical results is presented and 

discussed to demonstrate interesting. 
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1. INTRODUCTION 

 

Mixed convection flow is accomplished in diverse transport 

processes and thermal engineering applications including 

lubrication technologies, cooling of electronic equipment, 

high-performance building isolation, multi-shield structures 

utilized for nuclear reactors, food processing, ovens, solar 

power collectors, glass manufacture, drying technologies, 

chemical processing devices and others [1-2]. A concise 

review of literature exhibits that the analysis of mixed 

convection heat transfer in cavities has attracted noticeable 

attention in the past few decades [3-9]. Also, there has been 

boosted interest in examining buoyancy motivated flow by 

heat transfer from various geometries saturated porous media. 

This concern stems from different engineering and 

geophysical applications like as thermal insulation, 

geothermal tanks, improved oil recovery, drying of porous 

solids, cooling of nuclear reactors, packed bed catalytic 

reactors and underground energy transport. References of 

overall literature studies concerning the object of porous 

media can be had in most recent books by [10-13]. 

Bioconvection is an interest biological swimming 

mechanism resulting from complex interactions between 

phenomena at several physical scales. The procedure is driven 

by the trend of self-propelled micro-organisms that are 

intensive than the suspension fluid [14-15]. The swimming of 

each individual micro-organism is a mesoscale physical 

phenomenon. Micro-organisms characteristically swim in the 

upwards trend, leading to an uneasy, upper-heavy density 

stratification, which under specific stipulations may result in 

hydrodynamic instability. Bioconvection has been shown to 

offer the potential to improve mass transport and induce 

combining, especially in microvolumes, and enhance the 

stability of fluids. Kuznetsov [16] and several other authors 

have examined different kinds of bioconvection flows. He 

performed a continuum model for thermos-bioconvection of 

oxytactic bacteria in a porous media to study the impacts of 

microorganisms’ up swimming and heating from below on the 

stability of bioconvection in a horizontal layer. Bég et al. [17] 

considered the problem of natural convection magneto-

micropolar biopolymer flow over a horizontal circular cylinder. 

Alloui et al. [18] analyzed the influence of heating/cooling 

from bottom on the stability of a suspension of motile 

gravitactic microorganisms in a shallow fluid layer. Alloui et 

al. [19] have also examined the impact of heating/cooling from 

below on the evolution of gravitactic bioconvection in a square 

cavity. Kuznetsov [20] established a theory for bio-thermal 

convection in a suspension that contains two species of 

microorganisms demonstrating various taxes, gyrotactic and 

oxytactic microorganisms. Kuznetsov et al. [21] presented a 

theoretical investigation of a falling bioconvection plume in a 

chamber filled with a fluid saturated porous medium. 
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Kuznetsov [22] discussed the influence of below heating on 

the stability of a suspension of motile gyrotactic 

microorganisms in a fluid layer of finite depth. He observed 

that a suspension of gyrotactic microorganisms in a horizontal 

fluid layer heated from below is less stable than the same 

suspension under isothermal conditions. Other investigation 

on thermos-bioconvection can be found in refs. [23-26]. 

The main goal of this investigation is to examine the 

inclined magneto-hydrodynamic mixed convection in a porous 

square lid-driven cavity filled with a gyrotactic micro-

organisms employing finite volume method. The outcomes are 

exhibited with flow configurations, isotherms, concentration 

contours as well as the average Nusselt and Sherwood 

numbers for different cases. The outcomes of this study are 

well validated and have favorable comparisons with 

previously published data. The applications of such type of 

these problems can be established in highly active fuel cells 

where thermophilic microorganisms, like as Bacillus 

licheniformis and Bacillus thermoglucosidasius are applied. 

Also, it is pertinent in applications like motile thermophilic 

microorganisms that live in warm springs. 

 

 

2. GEOMETRY AND MATHEMATICAL MODEL 

 

Consider a steady two-dimensional mixed convection flow 

inside a porous square lid-driven cavity of length H filled with 

gyrotactic microorganism, as shown in Figure 1. The 

coordinates x and y are chosen such that x measures the 

distance along the bottom horizontal wall, while y measures 

the distance along the left vertical wall, respectively. The left 

and right walls are assumed to be adiabatic. The left wall is 

moving up with constant speed in vertical direction V0. In 

order to induce the buoyancy effect, the top side horizontal 

wall of the cavity is kept at a lower constant temperature Tc, 

while the bottom horizontal wall is kept in a higher 

temperature Th, where Th>Tc. It is also assumed that the 

induced magnetic field produced by the motion of an 

electrically conducting nanofluid is negligible compared to the 

applied magnetic field. The gravitational acceleration acts 

downward. The direction uniform magnetic field with a 

constant magnitude B0 is applied in the angle  with the 

horizontal direction. It is further assumed that both the fluid 

phase and nanoparticles are in thermal equilibrium. Except for 

the density the properties of nanoparticles and fluid are taken 

to be constant. Moreover, many bacterial species swim up the 

oxygen gradients, and this behavior is called oxytaxis. 

Oxytactic bacteria require oxygen for their metabolism and 

swim up the oxygen gradients. They require a minimum 

oxygen concentration Cmin to be active. The nanoparticle 

suspension is assumed to be stable. It is also assumed, as in 

Kuznetsov [21], that the presence of nanoparticles has no 

effect on the direction of microorganisms swimming or on 

their swimming velocity. Bio-convection-induced flow is 

expected to occur only in a dilute suspension of nanoparticles. 

If this is not the case, then a large concentration of 

nanoparticles would result in a large suspension viscosity, 

which would suppress bio-convection. The thermo-physical 

properties of the fluid are assumed constant except for the 

density variation, which is determined based on the 

Boussinesq approximation. Under the above assumptions and 

following Hillesdon and Pedley [15], the governing equations 

embodying the conservation of the total mass, momentum, 

thermal energy, concentration, and micro-organisms can be 

written as; the flow, heat and mass transfer, see Kuznetsov 

[22]. 
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The boundary conditions are: 

 

On the left wall: 𝑥 = 0, 𝑣 = 𝑉0, 𝑢 = 0,
𝜕𝑇

𝜕𝑥
= 0,

𝜕𝐶

𝜕𝑥
= 0,

𝜕𝑛

𝜕𝑥
= 0 

On the right wall: 𝑥 = 1, 𝑣 = 0, 𝑢 = 0,
𝜕𝑇

𝜕𝑥
= 0, 𝐶 =

𝐶0
𝑛𝑏𝑊𝑐

∆𝐶

𝜕𝐶

𝜕𝑥
− 𝐷𝑛

𝜕𝑛

𝜕𝑥
= 0, 

On the bottom wall: 𝑦 = 0, 𝑣 = 0, 𝑢 = 0, 𝑇 = 𝑇ℎ, 𝐶 =
𝐶0, 𝑛 = 𝑛0, 

On the top wall: 𝑦 = 0, 𝑣 = 0, 𝑢 = 0, 𝑇 = 𝑇𝑐 , 𝐶 = 𝐶𝑚𝑖𝑛 , 𝑛 =
𝑛0,                                           (7) 
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where x  and y  are the Cartesian Co-ordinates measured in 

the horizontal and vertical directions, respectively; u and v are 

the velocity components along the x  and y -axes; T, C are the 

temperature and concentration; K is the permeability of the 

porous medium;   is the dynamic viscosity of the suspension  

(the suspension includes fluid plus microorganisms);   is the 

average volume of a microorganisms; cell f   = −  is the 

density difference between cells and fluid; f  is the density of 

the fluid; n is the number density of motile microorganisms; 

  is the volume expansion coefficient of water at constant 

pressure; g is the gravity; α is the effective thermal diffusivity 

of the porous medium; pC is the specific heat at constant 

pressure, DC is the diffusivity of oxygen; Dn is the diffusivity 
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of the microorganisms; n−  describes the consumption of the 

microorganisms;
minC  is the minimum oxygen concentration 

that microorganisms need in order to be active; b is the 

chemotaxis constant, WC is the maximum cell swimming 

speed (the product bWC is assumed to be constant ). 

Introducing the following dimensionless set: 
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Figure 1. Schematic diagram of the problem under 

consideration 

 

into Eqns. (2)-(6) yields the following dimensionless 

equations: 

 

( )

2 2

2 2

2
2

1

Re

                         sin cos sin
Re Re

U U P U U
U V

X Y X X Y

U Ha
V U

Da

     
+ = − + + 

     

− +   − 

                                                                                 (9) 

 

( )

( )

2 2

2 2

2
2

1

Re

                          sin cos cos
Re Re

V V P V V
U V

X Y Y X Y

V Ha
U V

Da

Ri RbN

     
+ = − + + 

     

− +  − 

+ −

                                                                               (10) 

 

21

Pr Re
U V

X Y

 


 
+ = 

 
                  (11) 

 

2 11

Re Re
U V N

X Y Sc Sc

 


 
+ =  −

 
          (12) 

 

2

2

1

Re

                   
Re

N N
N Sc U V

X Y

Pe N N
N

X X Y Y



 


  
 = + 

  

    
+  + + 

    

      (13) 

where 
3

0

2
, , ,Pr ,C

f n c

n bWgK TH
Ra Rb Pe Sc

T D D

   

  


= = = = =


, 

0 /Ha B H  = ,
2

K
Da

H
= , 0Re

V H


= , 

2

0

1

c

n H

D C


 =


, 

2Re

Gr
Ri =  are the Rayleigh number, bioconvection Rayleigh 

number, bioconvection Peclet number, Prandtl number, 

Schmidt number, Hartmann number, Darcy number, Reynolds 

number, ratio of the rate of oxygen consumption to the rate of 

oxygen diffusion, and Richardson number, respectively.    

The dimensionless boundary conditions are  

 

On the left wall: 𝑋 = 0, 𝑉 = 1, 𝑈 = 0,
𝜕𝜃

𝜕𝑋
= 0,

𝜕𝜙

𝜕𝑋
= 0,

𝜕𝑁

𝜕𝑋
= 0 

On the right wall: 𝑋 = 1, 𝑈 = 0, 𝑉 = 0,
𝜕𝜃

𝜕𝑋
= 0, 𝜙 =

1, 𝑃𝑒 𝑁
𝜕𝜙

𝜕𝑋
−

𝜕𝑁

𝜕𝑋
= 0, 

On the bottom wall: 𝑌 = 0, 𝑉 = 0, 𝑈 = 0, 𝜃 = 1, 𝜙 = 1, 𝑁 =
1, 

On the top wall: 𝑌 = 0, 𝑉 = 0, 𝑈 = 0, 𝜃 = 0, 𝜙 = 0, 𝑁 = 1,   
(14) 

 

The local Nusselt and Sherwood numbers at the heated wall 

are defined 
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The average Nusselt and Sherwood numbers are, also, 

defined as follows; 
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3. NUMERICAL METHOD AND VALIDATION 

 

Equations (9)-(13) with the boundary conditions (14) have 

been solved numerically using the collocated finite volume 

method. The first upwind and central difference approaches 

have been used to approximate the convective and diffusive 

terms, respectively. The resulting discretized equations have 

been solved iteratively, through alternate direction implicit 

ADI, using the SIMPLE algorithm [27]. The velocity 

correction has been made using the Rhie and Chow 

interpolation. For convergence, under-relaxation technique 

has been employed. To check the convergence, the mass 

residue of each control volume has been calculated and the 

maximum value has been used to check the convergence. The 

convergence criterion was set as 10-5. In order to verify the 

accuracy of the present method, the obtained results in special 

cases are compared with the results obtained by Iwatsu et al. 

[1] and Khanafer & Chamkha [3] in terms of the mean Nusselt 

number at the top wall, for different values of Re. As we can 

see form Table 1, the results are found in a good agreement 

with these results. These favorable comparisons lend 

confidence in the numerical results to be reported 

subsequently. 

Figure 2 displays a comparison between the temperature 

contour presented in this work with those of Iwatsu et al. [1] 

and Khanafer & Chamkha [1] and. The result shows a very 
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good agreement between this work and the previously 

published work. 
 

Table 1. Comparisons of the mean Nusselt number at the top 

wall, for different values of Re at Pr=0.71, Ra=102 
 

Re Iwatsu et al. 

[1] 

Khanafer & 

Chamkha [3] 

Present 

study 

100 1.94 2.01 1.93 

400 3.84 3.91 3.91 

1000 6.33 6.33 6.31 

 

 
(a) Present study 

 
(b) Iwatsu et al. [1] 

 
(c) Khanafer & Chamkha [3] 

 

Figure 2. Comparison of the present study (a) with results of 

Iwatsu et al. [1] (b) and Khanafer & Chamkha [3] (c) for 

 𝑅𝑒 = 1000, 𝑃𝑟 = 0.71, 𝑅𝑎 = 102 and 𝐻𝑎 = 𝑅𝑏 = 0 

 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 Effect of the Richardson number on streamlines, 

isotherms, concentrations and isolines of micro- rotation 

 

The streamlines (first column) , isotherms (second column) , 

concentrations (third column) and isolines of micro- rotation 

(fourth column) in the square cavity filled with a gyrotactic 

micro-organisms are shown in Figure 3 when the Richardson 

number varies from 0.01 to 2 and [  = 0o , Ra=104, Rb=1, 

1=1, Sc=1, Pr=6.2, Da=10-3 and 1 = ]. 

 

4.1.1 The forced convection effect (Ri=0.01 and 0.5)  

Figure 3a and Figure 3b illustrate the streamlines, isotherms, 

iso-concentrations and isolines of micro-rotation when the 

forced convection effect is dominated [i.e., Ri=0.01 and 0.5] 

as shown in the first and second rows of these figures 

respectively.  

In this case, the shear force due to the moving lid-driven left 

sidewall has a greater effect than the buoyancy force which is 

generated due to the temperature difference between the top 

and bottom walls. It can be clearly seen that when the left 

sidewall moves towards the upward direction, the large 

rotating single vortices begin to move upward and occupy the 

most size of the cavity. This is because the convection currents 

begin from the hot bottom wall and move towards the top cold 

wall due to both buoyancy and shear forces. Also, it can be 

seen that the absolute values of the stream function begin to 

decrease as the Richardson number increases. Isotherms are 

clustered near of the hot bottom wall of the cavity due to the 

severe temperature gradients in the vertical direction which 

gives an indication that the convection heat transfer becomes 

more significant compared to the conduction one. Thus for 

very low Richardson numbers is (i.e., Reynolds number is 

high), isotherm contours have a clear disturbance so the 

convection heat transfer is dominant. With respect to the iso-

concentration contours, it can be seen that they are clustered 

adjacent the hot bottom and cold top walls of the cavity. 

Similar behavior to isotherm contours can be seen where the 

concentration contours refer that the heat diffuses inside the 

porous cavity by the concentration gradients between the 

bottom and the top walls. Moreover, it can be seen from the 

results that the concentrations adjacent the hot bottom wall are 

greater than their values at the cold top one and satisfies 

indirectly the validity of the problem boundary conditions. 

With respect to the isolines of microrotation, it can be seen 

from the results of Figure 3a and Figure 3b that as the 

Richardson number increases from [Ri=0.01 to 0.5], the 

strength of the microrotation decreases in the core of the cavity. 

A reverse behavior can be noticed adjacent the hot bottom wall. 

 

4.1.2 The mixed convection effect (Ri=1.0)  

Figure 3c shows the streamlines, isotherms, iso-

concentrations and isolines of micro-rotation for balanced 

forced and natural convections (i.e., Ri=1). In this case, the 

shear force is equivalent to the buoyancy force. It can be seen 

from results that the behavior of the flow field is 

approximately similar to that observed at [Ri=0.5]. The only 

difference is that the rotating vortices begin to further extended 

towards the bottom wall and their eye are elongated compared 

with the corresponding vortices at [Ri=0.5]. Regarding 

isotherms and iso-concentrations, a similar pattern to that 

found in [Ri=0.5] occurs, except that both of them are more 

distributed inside the cavity especially beside the top 

horizontal wall. The same behavior can be noticed also with 

respect to the isolines of microrotation. The only difference 

which is that the strength of microrotation are increased at 

[Ri=1] compared to their corresponding values at [Ri=0.5]. 

 

4.1.3 The natural convection effect (Ri=2.0)  

Figure 3d presents the streamlines, isotherms, iso-
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concentrations and isolines of micro-rotation when the natural 

convection effect is greater than the forced convection effect 

(i.e., Ri=2.0). In this case, the buoyancy force has a strong 

effect compared with the shear force. Also, it can be noticed 

that the effect of the left side lid-driven wall becomes weak 

and the buoyancy force tries to push the rotating vortices 

towards the bottom wall. Moreover, the circulation intensity 

increases slightly due to the decrease in the shear force and the 

increase in the buoyancy force when the Richardson number 

increases from 1.0 to 2.0. The increase in Richardson number 

decreases the effect of the left side lid-driven wall and causes 

to increase the circulation intensity. The maximum absolute 

value of the circulation intensity for this case is about (0.022). 

For isotherms and iso-concentrations, it is observed that they 

are distributed irregularly inside the cavity as curved lines; in 

this case the convection heat transfer is more dominant. This 

result is due to the high temperature and concentration 

gradients for such the Richardson numbers which causes the 

enhancement of the rates of heat and mass transfer. In addition, 

when the Richardson number is high, the thermal and solutal 

buoyancy forces effect due to the natural convection increases 

and the transferred heat and mass increase also which leads to 

increase the rate of heat and mass transfer inside the cavity. It 

can be seen from the results of Figure 3d that for [Ri=2], the 

strength of the microrotation decreases again in the core of the 

cavity, while it increases adjacent the hot bottom wall 

compared to [Ri=1] case. 

 

4.2 Effect of the Richardson number on the local Nusselt 

number 

 

Figure 4 shows the profiles of the local Nusselt number 

along the heated wall in the square cavity filled with a 

gyrotactic micro-organisms for various Richardson numbers 

[Ri=0.01 to 2] and [  = 0o, Ra=104, 1=1, Da=10-3 Rb=1, 

Sc=1, Pr=6.2 and 1 = ].

      N  

a. Ri = 0.01 

    
b. Ri = 0.5 

    
c. Ri = 1.0 

    
d. Ri = 2.0 

    
 

Figure 3. Streamlines, isotherms, iso-concentrations and isolines of micro- rotation for
40 , 10 , 1, 1, 1,Pr 6.2Ra Rb Sc  = = = = = = , 1=1, Da=10-3
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It can be observed that the values of the local Nusselt 

number decreases as the Richardson number increases. So, the 

maximum value of the local Nusselt number corresponds to 

the smallest value of the Richardson number [Ri=0.01] (i.e., in 

the forced convection-dominant ranges) and vice versa. The 

reason of this behavior is due to the greatest effect of the lid-

driven wall for low Richardson numbers [i.e., Ri=0.01]. 

Therefore, the velocity of the left side lid-driven wall increases 

significantly and leads to increase the forced convection effect 

on the local Nusselt number results. From the other side, it is 

noticed that the values of the (NuY) reach their maximum at 

[Y=1] and begin to decrease as the values of (Y) decrease. This 

is again due to the strong effect of the lid-driven velocity at 

[Y=1] as mentioned above.  

 

4.3 Effect of Richardson number on the local Sherwood 

number 

 

Figure 5 displays the local Sherwood number profiles along 

the heated wall for various Richardson numbers [Ri=0.01 to 2] 

and [= 0o, Ra=104, Rb=1, Sc=1, 1=1, Da=10-3, Pr=6.2 and

1 = ]. It can be noticed that the values of the local Sherwood 

number decrease as the Richardson number increases. So, the 

maximum value of the local Sherwood number is at [Ri=0.01] 

while, the minimum one is at [Ri=2.0]. From the other hand, 

(ShY) reaches its maximum values at [Y=1] and begin to drop 

gradually as the values of (Y) decrease. Moreover, it can be 

observed from Figure 4, that all values of the local Sherwood 

number reach to the same value at [Y=0].  

 

4.4 Effect of the Richardson number on the velocity 

profiles 

 

Figure 6 displays the profiles of the vertical velocity 

component (V) at the horizontal mid – section (Y=0.5) for 

various Richardson numbers [Ri=0.01 to 2] and [ = 0o, 

Ra=104, Rb=1, Sc=1, Pr=6.2 and 1 = ]. It can be seen from 

this figure that the vertical velocity component increases with 

the increase of the Richardson number. This behavior of (V) 

can be noticed at the left lid-driven sidewall [X=0], while a 

reverse one can be noticed at the right sidewall [i.e., X=1]. 

 

4.5 Effect of the Rayleigh number on streamlines, 

isotherms, iso-concentrations and isolines of micro-

rotation 

 

Streamlines (first column), isotherms (second column), iso-

concentrations (third column) and iso-lines of micro-rotation 

(fourth column) are shown in Figure 7 when the Rayleigh 

number varies from [Ra=102 to 105] and [= 0o , Ha=10, 

Rb=10, Sc=1, Pr=6.2, Ri=0.05, 1=1, Da=10-3 and =1]. The 

flow field is represented by a symmetrical vortex inside the 

square cavity.  

The flow circulation inside it begins when the hot fluid rises 

adjacent to the hot bottom wall as a result of the buoyancy 

force, then moves along the adiabatic left sidewall until it 

reaches the cold top wall, after that it moves along the 

adiabatic right sidewall before it comes back again to the hot 

bottom wall. When the Rayleigh number is low (i.e., Ra=102 

and 103), the re-circulating vortices inside the square cavity are 

symmetrical to each other due to the weak effect of the 

buoyancy force. Therefore, the behavior of streamlines and the 

flow field does not change significantly when the Rayleigh 

number is low. In this case, the natural convection contribution 

in the heat transfer mechanism is slight. As the Rayleigh 

number increases (i.e., Ra=104 and 105), the buoyancy force 

becomes stronger and the flow circulation inside the square 

cavity increases. Also, it can be noticed at [Ra=105] that the 

center of the re-circulating vortices begins to move in the right 

upper corner of the cavity and becomes more irregular in 

comparison with the corresponding vortices when the 

Rayleigh number is low. In this case, the buoyancy force is 

more dominant than viscous force. 

For isotherms and iso-concentration contours, when the 

Rayleigh number is low (i.e., Ra=102 and 103), they are 

symmetrical and parallel to the cold top wall, indicating that 

most of the heat is transferred by the conduction and the 

double-diffusive heat transfer is poor. As the Rayleigh number 

increases (i.e., Ra=104 and 105 ), both the isotherms and iso-

concentrations begin to spread out in the cavity and they 

change from the parallel shape to the irregular one indicating 

that the convection is the dominating heat transfer mechanism 

in the cavity and in this case the double-diffusive heat transfer 

is effective. 

 

 
 

Figure 4. Profiles of the local Nusselt number along the 

heated wall for various Richardson numbers at [= 0o, 

Ra=104, Rb=1, Sc=1, Pr=6.2, 1=1, Da=10-3 and 1 = ] 

 

 
 

Figure 5. Profiles of the local Sherwood number along the 

heated wall for various Richardson numbers at
 
[= 0o, 

Ra=104, Rb=1, Sc=1, Pr=6.2, 1=1, Da=10-3 and 1 = ] 
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Figure 6. Vertical  velocity component profiles at  the 

horizontal mid – section (Y=0.5) for various Richardson 

numbers and
 
[= 0o, Ra=104, Rb=1, Sc=1, Pr=6.2, 1=1, 

Da=10-3 and 1 = ] 

 

Moreover, both the isotherms and iso-concentrations are 

crowded around the hot bottom wall. Now, in the next 

paragraph the effect of the Rayleigh number on the isolines of 

micro-rotation is discussed. It can be found from the results 

that the Rayleigh number has an important effect on these 

contours. When the Rayleigh number is low (i.e., Ra=102 and 

103), the contours near the bottom wall are uniform, 

symmetrical and the magnitudes of the rotations begin to 

decrease as the Rayleigh number increases. From another side, 

the iso-lines of micro- rotation in the center of the cavity and 

near the top wall are greatly affected by the increase in the 

Rayleigh number from [Ra=102] to [Ra=103]. While, the 

values of the rotation begin to increase as the Rayleigh number 

increases. As the Rayleigh number increases (i.e., Ra=104 and 

105), the isolines of micro-rotation refer that they begin to 

strongly clustered near the bottom wall and their values are 

still decreasing with the increase in the Rayleigh number. Also, 

a very clear confusion can be seen in the structure of isolines 

of micro- rotation in the cavity center and near the top wall and 

their values increase with the increase in the Rayleigh number. 

Therefore, it can be concluded that the isolines of micro- 

rotation are greatly influenced by the Rayleigh number 

especially in the center and the top wall of the cavity. 

 

4.6 Effect of the Rayleigh number on the local Nusselt and 

Sherwood numbers 

 

Figures. 8 and 9 display respectively the local Nusselt and 

Sherwood numbers profiles along the heated wall in the square 

cavity filled with a gyrotactic micro-organisms for various 

Rayleigh numbers [Ra=102 to 105] and [ = 0o, Ha=10, 

Rb=10, Sc=1, Pr=6.2, Ri=0.05, 1=1, Da=10-3 and 1 = ]. It 

can be seen that values of the local Nusselt and Sherwood 

numbers increase as the Rayleigh number increases. So, the 

maximum value of both of them corresponds to the greatest 

value of the Rayleigh number [Ra=105] (i.e., when the natural 

convection is dominant), while the minimum value of them 

corresponds to the smallest value of the Rayleigh number 

[Ra=102] (i.e., when the conduction is dominant). The reason 

of this behavior is due to the greatest effects of the thermal and 

solutal buoyancy forces when the Rayleigh number is high [i.e., 

Ra=105]. Again, the maximum values of (Nu Y) and (Sh Y) are 

noticed at [Y=1]. Also, the difference between the behaviors 

of both local Nusselt and Sherwood numbers is that in the local 

Nusselt number the profiles does not meet in the same point, 

while in the second one all the profiles are meet in the same 

point at [Y=0].  

 

4.7 Effect of the Rayleigh number on the velocity profiles 

 

Figure 10 explains the profiles of the vertical velocity 

component (V) at  the horizontal mid – section (Y=0.5) in the 

square cavity filled with a gyrotactic micro-organisms for 

various Rayleigh numbers [Ra=102 to 105] and [ = 0o, 

Ha=10, Rb=10, Sc=1, Pr=6.2, Ri=0.05, 1=1, Da=10-3 and 

1 = ]. It can be seen from this figure that the vertical 

velocity component at [X=0] increases with the increase of the 

Rayleigh number. After that, it begins to decrease especially 

at [X=0.5] and finally reaches its zero value at [X=1]. 

 

4.8 Effects of the Richardson and Hartmann numbers on 

the average Nusselt and Sherwood numbers 

 

The average Nusselt and Sherwood numbers profiles in the 

square cavity filled with a gyrotactic micro-organisms for 

various Richardson numbers [Ri=0.01 to 1 ] and Hartmann 

numbers [Ha=0 to 50 ] at 
 
[= 0o, Ra=104, Rb=10, Sc=1, 

Pr=6.2, 1=1, Da=10-3 and 1 = ] are explained in Figures 11 

and 12 respectively. 

It can be observed that the values of the average Nusselt 

number increase as the Richardson number decreases and 

decrease as the Hartmann number increases. This is due to the 

dominant effect of the lid-driven left sidewall when the 

Richardson number is very low [i.e., Ri=0.01] which leads to 

increase the share of the forced convection in the heat transfer 

process and leads subsequently to improve the average Nusselt 

number results. From the opposite side, when the Hartmann 

number increases the average Nusselt number decreases. This 

is due to the increase of the magnetic force effect when the 

Hartmann number increases. Also, the maximum value of the 

average Nusselt numbers occurs when the Hartmann number 

is zero (i.e., the magnetic field is absent). Therefore, the high 

average Nusselt numbers correspond to the low Hartmann 

number and vice versa. This is because the effect of the 

magnetic field becomes negligible when the Hartmann number 

is zero. Therefore, the flow circulation and the temperature 

gradient increase and for this reason the average Nusselt 

number increases. An opposite behavior can be found when 

the Hartmann number increases. With respect to the effect of 

both Richardson and Hartmann numbers on the average 

Sherwood number, it can be noticed from Figure 12 that the 

values increase as the Richardson number increases and 

exhibit different behaviors as the Hartmann number increases. 

For more explanations, they increase rapidly at [Ri=0.01] and 

slowly at [Ri=0.05 and 0.5] and exhibit a wavy behavior at 

[Ri=1]. 

 

4.9 Effects of the Rayleigh and Hartmann numbers on the 

average Nusselt and Sherwood numbers 

 

The average Nusselt and Sherwood numbers profiles in the 

square cavity filled with nanofluid for various Rayleigh 

numbers [Ra=102 to 105] and Hartmann numbers [Ha=0 to 50] 

at [= 0o, Ri=0.05, Rb=10, Sc=1, Pr=6.2, 1=1, Da=10-3 and 

1 = ] are explained in Figures 13 and 14 respectively. It is 

0.0 0.2 0.4 0.6 0.8 1.0

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

 

 

V
 (

Y
=

0
.5

)

X

 Ri=0.01

 Ri=0.05

 Ri=0.5

 Ri=1.0

 Ri=2.0

439



 

clearly seen that the average Nusselt number values (Figure 

13) increase as the Rayleigh number increases and decrease as 

the Hartmann number increases. From this figure, it is noticed 

that they increase strongly when the Rayleigh number 

increases, especially when the Hartmann number is zero 

(Ha=0). This is due to the increase in the convection currents 

intensity which causes a clear improvement in the average 

Nusselt number. However, for very low Rayleigh number 

(Ra=102), the average Nusselt number is almost invariant with 

the increase of (Ha). This is because the buoyancy force is 

weak, so the convection heat transfer is very slight and the 

conduction is dominated. It appears clearly from Figure 13 that 

the average Nusselt number decreases when Hartmann number 

increases. Since, the magnetic force is the dominant force and 

controls the flow inside the square cavity which leads to drop 

the average Nusselt number. With respect to the behavior of 

the average Sherwood number (Figure 14), it is clearly 

observed that it increases as the Rayleigh number increases 

from [Ra=102 to 104]. While, it decreases at [Ra=105]. This is 

because of high increasing in the solutal buoyancy force in this 

range of the Rayleigh number which causes a clear 

enhancement in the mass transfer inside the cavity and 

increases the average Sherwood number. But, at [Ra=105] a 

drop in the solutal buoyancy force occurs which leads to 

decrease the average Sherwood number
 
at this value. Now to 

discuss the effect of the Hartmann number on the average 

Sherwood number profiles. 

It is noticed that they decreased as the Hartmann number 

increases and this occurs for low range of the Rayleigh number 

[Ra=102 and 103]. An opposite behavior is seen for high 

Rayleigh number [Ra=104 and 105].  

The average Nusselt and Sherwood numbers profiles in the 

square cavity filled with a gyrotactic micro-organisms for 

various Richardson numbers [Ri = 0.01 to 1] and magnetic 

field inclination angle [=  0o to 350o] at
 
[Ha=10, Ri=0.05, 

Ra=104, Sc=1, Pr=6.2, 1=1, Da=10-3 and 1 = ] are shown in 

Figures 15 and 16 respectively. It can be seen that the average 

Nusselt number increases as the Richardson number decreases. 

No significant variation is observed when the magnetic field 

inclination angle increases. For the average Sherwood number, 

it increases as the Richardson number decreases. Again, no 

sensible variation was seen when the magnetic field 

inclination angle increases and the Richardson number varied 

from [Ri=0.05 to 1]. But a wavy variation was seen for very 

low Richardson number [i.e., Ri=0.01]. 

 

4.10 Effects of the bio-convection Rayleigh and Hartmann 

numbers on the average Nusselt and Sherwood numbers 

 

The average Nusselt and Sherwood numbers profiles in the 

square cavity filled with a gyrotactic micro-organisms for 

various bio-convection Rayleigh numbers [Rb=10 to 40] and 

Hartmann numbers [Ha=0 to 50] at [= 0o, Ri=0.05, Ra=104, 

Sc=1, Pr=6.2, 1=1, Da=10-3 and 1 = ] are explained in 

Figures 17 and 18 respectively. 
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d. Ra = 105

 

     

Figure 7. Streamlines, isotherms , iso-concentrations  and isolines of micro- rotation for [= 0o, Ha=10, Rb=10, Sc=1, Pr=6.2, 

Ri=0.05, 1=1, Da=10-3 and 1 = ] 

 

 
 

Figure 8. Profiles of the local Nusselt number along the 

heated wall for various Rayleigh numbers at
 
[= 0o, 

Ha=10, Rb=10, Sc=1, Pr=6.2, Ri=0.05, 1=1, Da=10-3 and 

1 = ] 

 

 

 

Figure 9. Profiles of the local Sherwood number along the 

heated wall for various Rayleigh numbers at [= 0o, 

Ha=10, Rb=10, Sc=1, Pr=6.2, Ri=0.05, 1=1, Da=10-3 and 

1 = ] 

 

 

Figure 10. Vertical velocity component profiles at the 

horizontal mid – section (Y=0.5) for various Rayleigh 

numbers and
 
[= 0o , Ha=10, Rb=10, Sc=1, Pr=6.2, 

Ri=0.05, 1=1, Da=10-3 and 1 = ] 

 

 
 

Figure 11. Profiles of the average Nusselt number for 

various Richardson and Hartmann numbers at
 
[= 0o, 

Ra=104, Rb=10, Sc=1, Pr=6.2, 1=1, Da=10-3 and 1 = ]
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Figure 12. Profiles of the average Sherwood number for 

various Richardson and Hartmann numbers at [= 0o, 

Ra=104, Rb=10, Sc=1, Pr=6.2, 1=1, Da=10-3 and 1 = ] 

 

  

Figure 13. Profiles of the average Nusselt number for 

various Rayleigh and Hartmann numbers at [= 0o, 

Ri=0.05, Rb=10, Sc=1, Pr=6.2, 1=1, Da=10-3 and 1 = ] 

 

  

Figure 14. Profiles of the average Sherwood number for 

various  Rayleigh and Hartmann numbers at [= 0o, 

Ri=0.05, Rb=10, Sc=1, Pr=6.2, 1=1, Da=10-3 and 1 = ]
 

4.11 Effects of the Richardson number and the magnetic 

field inclination angle on the average Nusselt and 

Sherwood numbers 

 

  

Figure 15. Profiles of the average Nusselt number for 

various Richardson number and magnetic field inclination 

angle at
 
[Ha=10, Ri=0.05, Ra=104, Sc=1, Pr=6.2, 1=1, 

Da=10-3 and 1 = ] 

 

  

Figure 16. Profiles of the average Sherwood number for 

various Richardson number and magnetic field inclination 

angle at
 
[Ha=10, Ri=0.05, Ra=104, Sc=1, Pr=6.2, 1=1, 

Da=10-3 and 1 = ] 

 

It is shown that the average Nusselt number values (Figure 

17) increase as the bio-convection Rayleigh number decreases. 

Also, they decrease as the Hartmann number increases. The 

maximum value of the average Nusselt number can be noticed 

when the Hartmann number is zero. The lower heat transfer 

occurs for highest Hartmann number [Ha=50]. The reason of 

this behavior is due to the severe effect of the magnetic field 

for high Hartmann number which leads to drop the average 

Nusselt number values. From the opposite side, for (Ha=0) the 

magnetic field is absent and for this reason it leads to jump the 

average Nusselt number values. With respect to the results of 

the average Sherwood number (Figure 18), it is observed that 

it increases as the bio-convection Rayleigh number increases 

from [Rb=10 to 40]. Therefore, it can be concluded that the 

increase in (Rb) values leads to enhance the mass transfer in 
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the cavity which is represented by the average Sherwood 

number. From another side, it can be seen that the average 

Sherwood number increases as the Hartmann number 

increases. This interesting result refers that the magnetic field 

has a positive effect on the average Sherwood number in 

contrast to the results seen of the average Nusselt number. 

However, some values of the average Nusselt and Sherwood 

numbers with the parameters which are discussed in the 

previous sections at [Sc=1, Pr=6.2 and 1 = ] are illustrated 

in Table 2.    

 

  
Figure 17. Profiles of the average Nusselt number for 

various bio-convection Rayleigh and Hartmann numbers at 
 

[= 0o, Ri=0.05, Ra=104, Sc=1, Pr=6.2, 1=1, Da=10-3 and 

1 = ] 

 

  

Figure 18. Profiles of the average Sherwood number for 

various bio-convection Rayleigh and Hartmann numbers at 
 

[= 0o, Ri = 0.05, Ra=104 , Sc=1, Pr=6.2, 1=1, Da=10-3 

and 1 = ]
 

 

4.12 Effect of bio-convection Rayleigh number on the 

velocity profiles 

 

Figure 19 displays the profiles of the vertical velocity 

component (V) at  the horizontal mid – section (Y=0.5) in the 

square cavity filled with nanofluid for various bio-convection 

Rayleigh numbers [Rb=10 to 40] and [ = 0o, Ri=0.05, 

Ra=104, Ha=10, Sc=1, Pr=6.2, 1=1, Da=10-3 and 1 = ]. It 

can be seen from this figure that the vertical velocity 

component at [X=0] increases with the reduction of the bio-

convection Rayleigh number. While, a reverse behavior was 

seen at [X=0.5] until it reaches its zero value at [X=1]. 

 

Table 2. Values of the average Nusselt and Sherwood 

numbers for 1, 1,Pr 6.2Sc = = = , 1=1, Da=10-3 
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Figure 19. Vertical velocity component profiles at the 

horizontal mid – section (Y=0.5) for  various bio-convection 

Rayleigh numbers  and
 
[= 0o, Ri=0.05, Ra=104, Ha=10, 

Sc=1, Pr=6.2, 1=1, Da=10-3 and 1 = ] 

 

 

5. CONCLUSION 

 

The main results of this study can be summarized as: 

- For [Ri=0.01 and 0.5], the absolute values of the stream 

function begin to decrease as the Richardson number increases 

and the convection heat transfer is dominant. Also, iso-

concentrations adjacent the hot bottom wall, are greater than 

their values at the cold top one. Moreover, as the Richardson 

number increases, the strength of the microrotation decreases 

in the core of the cavity. A reverse behavior is noticed adjacent 

the hot bottom wall. 

- No significant variations can be seen on the flow, thermal 

and solutal fields at [Ri = 1].  

- For [Ri=2.0], the natural convection effect increases and 

the transferred heat and mass energies by them increase also 

which leads to increase the rate of heat and mass transfer inside 

the cavity. Also, the strength of the microrotation decreases in 
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the core of the cavity. While, it increases adjacent the hot 

bottom wall. 

-The local Nusselt and Sherwood numbers along the heated 

wall decrease as the Richardson number increases
 
and increase 

as the Rayleigh number increases.
 

-Vertical velocity component at (Y=0.5) increases with the 

increase of (Ri) at the left lid-driven sidewall [X=0], while a 

reverse one can be noticed at the right one [X=1]. 

-Vertical velocity component at (Y=0.5) increases with the 

increase of (Ra) at [X=0]. After that, it begins to decrease 

especially at [X=0.5] and finally reaches its zero value at 

[X=1]. 

-The average Nusselt number increases as the Richardson 

number decreases.  

-The average Sherwood number increases as the Richardson 

number increases.
 
While, they exhibit different behaviors as 

the Hartmann number increases. 

-The average Nusselt number increases with Rayleigh 

number and decrease with Hartmann increase. For the average 

Sherwood number, it increases as the Rayleigh number 

increases from [Ra=102 to 104] but, it decreases at [Ra=105]. 

While, it decreases as the Hartmann number increases for 

[Ra=102 and 103] and increases for [Ra=104 and 105]. 

-No significant variation was seen in the average Nusselt 

number when the magnetic field inclination angle increases. 

Also, no sensible variation in the average Sherwood number 

was seen when this angle increases and [Ri=0.05 to 1]. But a 

wavy variation was observed at [Ri=0.01]. 

-When the bio-convection Rayleigh number increases the 

average Nusselt number decreases while the average 

Sherwood number increases. 

-Vertical velocity component at (Y=0.5) increases with 

decrease of (Rb) at [X=0]. While, a reverse behavior was seen 

at [X=0.5] until it reaches its zero value at [X=1]. 

-When the Rayleigh number increases, the flow circulation 

and the convection effect increase significantly. Also, the 

double-diffusive heat transfer becomes more effective.  

- Isolines of micro-rotation are greatly influenced by the 

Rayleigh number especially in the center and the top wall of 

the cavity. 
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