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The goal of this work is to propose a latest design of a rotor speed and rotor flux modulus 

control approach for an induction machine using a Backstepping corrector with an integral 

action. The advantage of the Backstepping Strategy is the ability to manage a nonlinear 

system. The Lyapunov theory has been used to ensure the system stability. To improve the 

controller robustness proprieties the integral action is used, despite the system 

uncertainties and the existence of external disturbances. The unavailable rotor flux is 

recovered by estimation of the rotor flux of the machine based on the integration of the 

stator voltage expressions. The simulation results illustrate the effectiveness of the 

proposed control scheme under load disturbances, rotor resistance variation and low and 

high speed. 
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1. INTRODUCTION

Compared to other electric machine types, the induction 

motor plays a crucial role in many industrial applications 

because of its excellent reliability, great robustness, less 

maintenance, robustness and low cost [1-3]. However, the 

control problem is more complex for induction motors, due to 

their multivariable and strongly nonlinear dynamics [4]. Also, 

physical parameter uncertainties, such as the variation of the 

rotor resistance with temperature, affect significantly the 

dynamics of the system, whereas the load torque strictly 

depends on the load type. In the majority of industrial 

applications, it is required to be able to control the speed of 

induction motor drives. Using linear system theory for 

controlling the induction machine can present limitations, 

especially in transient regimes [5]. On the other hand, using 

the PI controller induces many problems such as high 

overshoot, oscillation of speed and torque due to sudden load 

changes and external disturbances. This poor ability to manage 

the uncertainty of the system constitutes a major drawback 

which can lead to a degradation of the system performance. 

A literature review shows that nonlinear pre-compensation 

can be used as a powerful method for controlling the induction 

machine based on the linearization technique [6, 7]. 

Nevertheless, the nonlinear part of the system must be 

neglected [5]. The first control techniques used for variable 

speeds are based on classical scalar control allows to ensure 

only basic performances [8]. In different applications, it is 

important to integrate new sophisticated controls as Field 

Oriented Control (FOC). This command, which was initiated 

in 1972, consists to make the behavior of the induction motor 

analogous to that of the DC motor [9, 10]. Its principle is based 

on the model of the asynchronous machine in a rotating 

reference frame and makes it possible to independently control 

the flux and the torque in a manner similar to the DC machine. 

In the literature, two types of vector control are possible: the 

first is called direct vector control, which requires the 

estimation of the position of the vector rotor flux (modulus and 

phase). However, the next type is named indirect vector 

control, which is characterized only by the estimation of the 

rotor flux [10]. Nonetheless the drawbacks of this technique 

essentially reside in the sensitivity to motor parametric 

variations and external load disturbances, especially according 

to the rotor resistance variation [11]. Knowing the calculation 

of the flux orientation angle is based on this resistance.  

A small variation in this resistance can cause an error in the 

orientation of the rotating frame. In addition, the consequences 

can influent on the decoupling [10]. 

To overcome these problems, various nonlinear command 

techniques have been examined. Among these nonlinear 

control techniques that ensure high performance and global 

decoupling between the outputs to control whatever the path 

profile imposed for the machine; we can cite the technique of 

input-output feedback linearization presented by Hill [12]. 

This technique focuses on the differential geometry principle 

to convert a non-linear system into a linear system using a 

linearization state feedback with input-output decoupling. 

From there, we can apply the theory of linear systems [13, 14]. 

The study presented in Refs. [15] and [16] shows that 

passivity based control method is incapable to eliminate the 

non-linearity terms. However, it allows guarantying the 

stability of system, taking into account a damping part of the 

global energy of the system. Also, this method ensures the 

robustness control under the parameter uncertainties. 

Nevertheless, this method has some drawbacks [17, 18]. 

1) The necessary and sufficient conditions used to linearize

the system can't be permanently ensured during the time; 

2) Existence of singular points;

3) Complexity of the controller and heavy computing of the

load. 

The sliding mode control represents another technique for 

controlling the systems. In fact, it has high robustness 

proprieties and its design is easy. The main disadvantage of 

this technique is the chattering phenomenon. Due to high 
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oscillations of frequency this phenomenon is appeared. The 

consequence of the chattering phenomenon is the dynamic 

instability of systems [6, 19].  

Recently, the technique of Backstepping command has been 

extensively discussed and designed for the nonlinear control 

of nonlinear systems [11, 20, 21]. This technique is initiated 

by Fateh and Abdellatif [20]. In transient and steady state 

regimes, this technique accords good performances. It’s 

considered more robust under the variations in parameter and 

presence of load torque perturbations. But it is relatively well 

in steady state regime. Indeed, the classical Backstepping 

control technique focuses on a proportional derivative, which 

provides a static error [20]. The conception of this method is 

realized by using Lyapunov stability tools. The modification 

of Backstepping approach of control by adding integral action 

is an interesting solution to improve the robustness of 

Backstepping control and eliminate residual errors [20]. 

The importance of the integral backstepping strategy in the 

control of induction motors by making a judicious choice of 

the Lyapunov function lies in the stability of the whole system 

[21]. The main advantages of this strategy of control are: 

robustness under parametric variation constraints and good 

tracking references [20].  

In the present paper, the Backstepping approach control, 

robustness of speed-flux and torque (𝜉1 =
1

𝑗
𝑇𝑒)  controllers 

have been improved by integrating new integral terms. The 

addition of the integral action makes it possible to significantly 

reduce the effect of the variation in resistance of the rotor as 

well as the disturbance due to the load torque and therefore 

eliminates the error in steady state. 

The organization of this manuscript is given as follows: In 

section two the nonlinear induction motor model is presented. 

In section three, design of integral Back-stepping speed and 

flux controllers are developed. Estimator of rotor flux is 

presented in the section four. Finally, simulation results and 

interpretations are discussed. 
 

 

2. IM NON-LINEAR MODELLING 

 

To lower the multiplicity of the IM model, an equivalent 

representation of two phases has been used. This 

representation considers linearity assumptions of the magnetic 

circuit and neglects iron losses. The design of this model class 

is developed under the fixed (α, β) stator reference frame, by 

the following non-linear functions with the stator current, rotor 

flux and rotor speed as selected state variables of the motor. 

Under these conditions, the non-linear model of the IM can be 

formulated as follow [5]: 
 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 (1) 
 

𝑦 = ℎ(𝑥) (2) 
 

With, 
 

𝑓(𝑥) =

[
 
 
 
 
 
 
 
 
 
 −𝛾𝑖𝑠𝛼 +

𝐾

𝑇𝑟

𝜑𝑟𝛼 + 𝑝𝜔𝜑𝑟𝛽

−𝛾𝑖𝑠𝛽 − 𝑝𝜔𝐾𝜑𝑟𝛼 +
𝐾

𝑇𝑟

𝜑𝑟𝛽

𝑀

𝑇𝑟

𝑖𝑠𝛼 −
1

𝑇𝑟

𝜑𝑟𝛼 + 𝑝𝜔𝜑𝑟𝛽

𝑀

𝑇𝑟

𝑖𝑠𝛽 − 𝑝𝜔𝜑𝑟𝛼 −
1

𝑇𝑟

𝜑𝑟𝛽

𝑝𝑀

𝑗𝐿𝑟

(𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼) −
𝑓

𝑗
𝛺 −

𝑇𝑙

𝑗 ]
 
 
 
 
 
 
 
 
 
 

 (3) 

𝑔(𝑥) =

[
 
 
 

1

𝜎𝐿𝑠

     0     0     0

0     
1

𝜎𝐿𝑠

     0     0
]
 
 
 
𝑇

 (4) 

 

ℎ(𝑥) = [
1     0     0     0
0     1     0     0

] (5) 
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where, 

➢ The indicators s and r are defined respectively for the 

stator and the rotor components. 

➢ α and β symbols indicate respectively the direct and 

quadrature of the fixed stator reference frame components. 

➢  𝑥 = [𝑖𝑠𝛼 , 𝑖𝑠𝛽  , 𝜑𝑟𝛼  , 𝜑𝑟𝛽 , 𝛺]𝑇 represents the state vector; 

𝑢 = [𝑢𝑠𝛼 , 𝑢𝑠𝛽]𝑇 shows the input vector of control. 

➢ R is the resistance, L is the inductance, M is the mutual 

inductance. Ts and Tr are the stator and the rotor time 

constant respectively. 

➢ 𝛺  is the rotor speed, f is the friction coefficient, j 

represents the moment of inertia coefficient, p is the 

number of pair poles, and finally Tl is the load torque.  

 

 

3. DESIGN OF FLUX AND SPEED BACKSTEPPING 

CONTROLLER 

 

3.1 Control objective 

 

The goal of control is to design the virtual control 

(appropriate functions), to simplify a complex nonlinear 

control problem. The simplification has been done by dividing 

the control design into several steps. Each step deal with a 

single input-output design problem, and considered as a 

reference for the next step. To ensure global system stability 

and tracking objectives, the ELF is used step by step [21]. 

 

3.2 Step one  

 

In this step, it is important to identify the target trajectories 

that the system must follow them. Also, to guarantee best 

tracking precision, the controllers must be designed. 

The desired trajectories of rotor speed and rotor flux 

modulus are defined by Ω𝑑  𝑎𝑛𝑑 𝜑𝑑
2 .  

The speed tracking error 𝑒1 and the flux modulus tracking 

error 𝑒3 can be controlled using the auxiliary variables 𝜉1
𝑑 and 

𝜉2
𝑑 respectively. 

We define tracking errors as: 

 

𝑒1 = 𝛺𝑑 − 𝛺 (6) 

 

𝑒3 = 𝜓𝑑 − 𝜓𝑟 (7) 

 

With 𝜓𝑟 = 𝜑𝑟𝛼
2  + 𝜑𝑟𝛽

2 . 

Their dynamics equations are given by: 

 

�̇�1 = �̇�𝑑 − [
𝑝𝑀

𝑗𝐿𝑟

(𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼) −
𝑇𝑙

𝑗
−

𝑓

𝑗
𝛺] (8) 
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�̇�3 = 𝜓𝑑 − [
2𝑀

𝑇𝑟

(𝜑𝑟𝛼𝑖𝑠𝛼 + 𝜑𝑟𝛽𝑖𝑠𝛽)] +
2

𝑇𝑟

𝜓𝑟  (9) 

 

The virtual control expressions are given as follow:  

 

𝜉1 = [
𝑝𝑀

𝑗𝐿𝑟

(𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼)] (10) 

 

𝜉2 = [
2𝑀

𝑇𝑟

(𝜑𝑟𝛼𝑖𝑠𝛼 + 𝜑𝑟𝛽𝑖𝑠𝛽)] (11) 

 

Eqns. (8) and (9) can be formulated by the following 

expressions: 

 

�̇�1 = �̇�𝑑 − 𝜉1 +
𝑇𝑙

𝑗
+

𝑓

𝑗
𝛺 (12) 

 

�̇�3 = �̇�𝑑 − 𝜉2 +
2

𝑇𝑟

𝜑𝑟
2 (13) 

 

Checking of the tracking error dynamics stability is based 

on the following CLF: 

 

𝑣1 =
1

2
[𝑒1

2 + 𝑒3
2] (14) 

 

The mathematical expression given in (15) shows a 

derivative of (14) in a function of time.  

 

�̇�1 = 𝑒1�̇�1+𝑒3�̇�3 (15) 

 

The derivative error tracking has been chosen as follows. 

 

�̇�1 = −𝑘1𝑒1 (16) 

 

�̇�3 = −𝑘3𝑒3 (17) 

 

The negative sign of (16) and (17) means that Lyapunov 

function is negative defined.  

So, under these conditions, the virtual control extracted 

from expressions (12) and (13) can be written as follow:  

 

𝜉1
∗ = 𝑘1𝑒1 + �̇�𝑑 +

𝑇𝑙

𝑗
+

𝑓

𝑗
𝛺 (18) 

 

𝜉2
∗ = 𝑘3𝑒3 + �̇�𝑑 +

2

𝑇𝑟

(𝜓𝑑 − 𝑒3) (19) 

 

where, coefficients 𝑘1  and 𝑘3  represent the positive design 

gains that define the dynamic of closed loop. 

The derivative of the LF according to time is clearly 

negative definite. Then the tracking error 𝑒1 and 𝑒3 can reach 

a permanent regime. 

Since the variables 𝜉1  and 𝜉2  are not a control inputs and 

only two variables of the system with its own dynamics. We 

will utilize it to insert the integral action, so the virtual controls 

𝜉1
∗ and 𝜉2

∗ are used to guarantee the stability of the speed and 

modulus flux loops. The dynamics of the tracking errors are 

given by:  

 

𝜉1
𝑑 = 𝜉1

∗ + 𝜆1𝜒1 (20) 

 

𝜉2
𝑑 = 𝜉2

∗ + 𝜆2𝜒2 (21) 

With 𝜆1 and 𝜆2  are positive constants and 𝜒𝑖 =

∫ 𝑒𝑖(𝜏)𝑑𝜏      𝑖 = 1,2
𝑡

0
 are the integral actions brought in 

accordance with the following error. By introducing there in 

the virtual control, we insure the convergence of the error 

towards zero in steady state. 

 

3.3 Step two 

 

The control objective becomes: oblige the auxiliary variable  

𝜉1 to track 𝜉1
𝑑 while 𝜉2 must track 𝜉2

𝑑. 

Last references have been chosen to guarantee a steady 

dynamic of velocity and flux modulus tracking error. 

Considering errors between them is important for virtual 

controls. The control objective becomes: force the auxiliary 

variable 𝜉1 to track 𝜉1
𝑑 while 𝜉2 must track 𝜉2

𝑑. 

To this end, let us define the following errors: 

 

𝑒2 = 𝜉1
𝑑 − 𝜉1 = 𝜉1

∗ + 𝜆1𝜒1 − 𝜉1 (22) 

 

𝑒4 = 𝜉2
𝑑 − 𝜉2 = 𝜉2

∗ + 𝜆2𝜒2 − 𝜉2 (23) 

 

The time derivative of (22) and (23) gives: 

 

�̇�2 = 𝜉1̇
𝑑 − 𝜉1̇ = 𝜉1

∗ + 𝜆1𝑒1 − 𝜉1̇ (24) 

 

�̇�4 = 𝜉2̇
𝑑 − 𝜉2̇ = 𝜉2̇

∗ + 𝜆2𝑒3 − 𝜉2̇ (25) 

 

New formulation of equations (24) and (25) in function of 

new terms 𝑒2 and 𝑒4 are given as follow:  

 

�̇�1 = −𝑘1𝑒1 + 𝑒2 (26) 

 

�̇�3 = −𝑘3𝑒3 + 𝑒4 (27) 

 

From (24) and (25), new formulations of error dynamics 

have been obtained.  

 

�̇�2 = 𝜉3 − [
𝑝𝐾

𝑗
(𝜑𝑟𝛼𝑢𝑠𝛽 − 𝜑𝑟𝛽𝑢𝑠𝛼)] (28) 

 

�̇�4 = 𝜉4 − [2𝐾𝑅𝑟(𝜑𝑟𝛼𝑢𝑠𝛼 + 𝜑𝑟𝛽𝑢𝑠𝛽)] (29) 

 

where, 

𝜉3 = 𝜉1̇
𝑑 +

𝑝𝑀

𝑗𝐿𝑟

[(𝛾 +
1

𝑇𝑟

) (𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼)]

+
𝑝𝑀

𝑗𝐿𝑟

[𝑝Ω[(𝜑𝑟𝛼𝑖𝑠𝛼 + 𝜑𝑟𝛽𝑖𝑠𝛽) + 𝐾𝜑𝑟
2]] 

𝜉4 = 𝜉2̇
𝑑 +

2𝑀

𝑇𝑟

[(𝛾 +
1

𝑇𝑟

) (𝜑𝑟𝛼𝑖𝑠𝛼 + 𝜑𝑟𝛽𝑖𝑠𝛽) −
𝐾

𝑇𝑟

𝜑𝑟
2]

−
2𝑀

𝑇𝑟

[𝑝Ω(𝜑𝑟𝛼𝑖𝑠𝛽 − 𝜑𝑟𝛽𝑖𝑠𝛼)

+
𝑀

𝑇𝑟

(𝑖𝑠𝛼
2 + 𝑖𝑠𝛽

2 )] 

 

Expressions (28) and (29) show that the control term is 

included in the error dynamics formulations. So, the 

development of the augmented Lyapunov function is evident. 

Relation (30) shows this function.  

 

𝑣2 =
1

2
[𝑒1

2 + 𝑒2
2 + 𝑒3

2 + 𝑒4
2] (30) 
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Calculating the derivative of equation (30) we obtain: 

 

�̇�2 = −𝑘1𝑒1
2 + 𝑒1𝑒2 − 𝑘3𝑒3

2 + 𝑒3𝑒4 − 𝑘2𝑒2
2

− 𝑘4𝑒4
2+𝑒2 (𝑘2𝑒2 + 𝑒1 + 𝜉3

+
𝑝𝐾

𝑗
(𝜑𝑟𝛼𝑢𝑠𝛽

− 𝜑𝑟𝛽𝑢𝑠𝛼))+𝑒4(𝑘4𝑒4 + 𝑒3 + 𝜉4

− 2𝐾𝑅𝑟[2𝐾𝑅𝑟(𝜑𝑟𝛼𝑢𝑠𝛼

+ 𝜑𝑟𝛽𝑢𝑠𝛽)]) 

(31) 

 

where 𝑘2 and 𝑘4 are the positive constant that determine the 

dynamic of closed loop. 

To ensure the CLF derivative semi-negative definite, it is 

important to find the following expression: 

 

�̇�2 = −𝑘1𝑒1
2 − 𝑘3𝑒3

2 − 𝑘2𝑒2
2 − 𝑘4𝑒4

2 ≤ 0 (32) 

 

The voltage control has been chosen as follow:  

 

𝑘2𝑒2 + 𝑒1 + 𝜉3 +
𝑝𝐾

𝑗
(𝜑𝑟𝛼𝑢𝑠𝛽 − 𝜑𝑟𝛽𝑢𝑠𝛼) = 0 (33) 

 

𝑘4𝑒4 + 𝑒3 + 𝜉4 − 2𝐾𝑅𝑟(𝜑𝑟𝛼𝑢𝑠𝛼 + 𝜑𝑟𝛽𝑢𝑠𝛽) = 0 (34) 

 

So, the obtained control expressions are given as follow:  

 

𝑢𝑠𝛼 =
1

𝜓𝑟

[
(𝜉4 + 𝑒3 + 𝑘4𝑒4)

2𝐾𝑅𝑟

𝜑𝑟𝛼

−
𝑗

𝑝𝐾
[𝜉3 + 𝑒1 + 𝑘2𝑒2]𝜑𝑟𝛽] 

(35) 

 

𝑢𝑠𝛽 =
1

𝜓𝑟

[
(𝜉4 + 𝑒3 + 𝑘4𝑒4)

2𝐾𝑅𝑟

𝜑𝑟𝛽

+
𝑗

𝑝𝐾
[𝜉3 + 𝑒1 + 𝑘2𝑒2]𝜑𝑟𝛼] 

(36) 

 

3.4 Rotor flux estimator 

 

So that the rotor flux is estimated, many methods founded 

on open loop observers can be used. To show the effectiveness 

of the proposed control approach, the rotor flux estimator has 

been used. The estimator using the stator voltage expressions 

in the stationary frame (𝛼, 𝛽) has been used. The estimator 

developed can be extracted from the following equations [22]: 

 

�̇̂�𝑟𝛼 =
𝐿𝑟

𝑀
𝑢𝑠𝛼 −

𝐿𝑟

𝑀
(𝑅𝑠 + 𝜎𝐿𝑠

𝑑

𝑑𝑡
) 𝑖𝑠𝛼  (37) 

 

�̇̂�𝑟𝛽 =
𝐿𝑟

𝑀
𝑢𝑠𝛽 −

𝐿𝑟

𝑀
(𝑅𝑠 + 𝜎𝐿𝑠

𝑑

𝑑𝑡
) 𝑖𝑠𝛽 (38) 

 

�̂�𝑟 = �̂�𝑟𝛼
2  + �̂�𝑟𝛽

2  (39) 

 

where, (𝜑𝑟𝛼 , 𝜑𝑟𝛽)  are the estimated rotor flux components 

and (𝑖𝑠𝛼 , 𝑖𝑠𝛽)  are the stator measured stator current 

components. 

4. SIMULATION RESULTS AND COMMENTS 

 

To illustrate the advantages of the proposed integral 

Backstepping, an induction machine with its proper 

characteristics is considered as presented in Table 1. 

The simulation block diagram of the Backstepping control 

combined with an integral action approach of the induction 

motor model is given in Figure 1. In this work the simulation 

tests were carried out using Matlab software. 

Two steps are necessary to carry out the simulation of the 

proposed scheme. 

 

➢ Estimating the rotor flux based on the inputs 

(voltages) and outputs (currents). 

➢ Use of the estimated flux to calculate the control. 

 

Table 1. Induction motor characteristics 

 
Nomination Definition Numerical Values 

Pa Nominal Power 1.5 KW 

F Operating frequency 50 HZ 

P Pair pole number 2 

U Supply 220 V 

𝑅𝑠  Stator resistance 4.850 𝛺 

𝑅𝑟  Rotor resistance 3.805 𝛺 

𝐿𝑠  Stator inductance 0.274 H 

𝐿𝑟  Rotor inductance 0.274 H 

𝑀 Mutual inductance 0.258 H 

𝜔 Rotor angular velocity 297.25 rd/s 

J Inertia coefficient 0.0031 Kg2/s 

𝑓 Friction coefficient 0.00114 N.s/rd 

𝑇𝑙 Load Torque 5 N.m 

 

 
 

Figure 1. Simulated bloc diagram of the proposed control 

 

In the simulation section, the obtained results and 

discussions are given. Simulation results given by Figure 2 to 

Figure 6 demonstrate variations of the measured state variable 

of the motor and, reference signal in function of load variation. 

Between [4 sec-6 sec], the load is introduced by a value of 

𝑇𝑙 = 5𝑁.𝑚, and rotor resistance 𝑅𝑟 = 1.5 ∗ 𝑅𝑟 introduced at 

8.5 sec. 

This simulation is realized by considering a reference speed 

as given in Figure 2. This reference is changed from 0 rd/s to 

20 rd/s, to 180 rd/s then reversed to -120 rd/s, then reverted to 

0 rd/s, then 20 rd/s at t=0.4 sec, 3 sec, 5 sec, 7 sec and 7.4 sec, 

respectively. Moreover, the motor is loaded suddenly between 

[4 sec-6 sec]. From this variation profile; we can notice that 

the measured speed converges perfectly towards its reference. 
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Figure 2. Reference and measured evolution of Rotor speed according to 𝑇𝑙  𝑎𝑛𝑑 𝑅𝑟 variations 

 

 
 

Figure 3. Reference and measured of the rotor flux norm under 𝑇𝑙  𝑎𝑛𝑑 𝑅𝑟 variations 

 

 
 

Figure 4. Variation of load and measured electromechanical torque 
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Figure 5. Measured (𝛼 − 𝛽) stator currents 

 

 
 

Figure 6. (𝛼 − 𝛽) stator voltage control inputs 

 

Figure 3 illustrates that measured rotor flux norm follows 

the imposed flux with some disruption (peaks) when the speed 

change, the load and electromechanically torque of the motor 

are portrayed in Figure 4. A better tracking with negligible 

steady state error and a quick convergence, Figures 5-6 show 

respectively the measured stator currents and stator voltage 

components. Also, the simulation tests demonstrates that a 

remarkable decoupling impact of flux and torque components 

under rotor velocity, torque of load and rotor resistance 

variations, but the curves of rotor flux modulus, stator currents, 

torque and stator voltage present a peak when the speed 

change. This peak appeared because the specific action of the 

PWM inverter. 

 

 

5. CONCLUSION 

 

A new control scheme has been proposed in this manuscript. 

The proposed technique based on Backstepping control 

strategy with integration of integral action. The presented 

control combined with estimator have been tested via 

simulation under different operating conditions of the motor, 

specifically under conditions of load and speed variations, at 

low and high speed with a dynamic variation in rotor 

resistance of the motor.  

The obtained results demonstrate that the proposed 

approach of control has high performances and ensures a 

perfect decoupling between the torque and flux. In fact, the 

machine operates permanently under these performances. 

Furthermore, by considering online parameter estimation the 

proposed approach can be improved. 

 Moreover, the obtained simulation results explain that the 

developed approach able to improve the performance of 

trajectory tracking under different conditions. In the case of 

nonlinear control, the use of estimator considered efficient tool 

to estimate the states of unmeasurable variables (rotor flux). 

As perspectives for future works, experimental tests are 

envisaged.  
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