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Regressions have been continuously received great attention. However, there are still 

open issues in regression, and two of the issues is regression with multicollinearity and 

outlier. Regularization (Ridge, Lasso, and Elastic Net) techniques implement a means 

to control regression coefficients. The methods can decrease the variance and reduce 

our sample error for tackle multicollinearity. In robust regression, it is a form of 

regression method designed to overcome outliers. Robust regression is an important 

method for analyzing data that are infected with outliers. The data have been interacted 

on the second order interaction. The data contained 435 different independent 

interaction variables. The primary focus of this paper is to analyze and compare the 

impact of three different variable selection techniques regularization regression 

algorithms for the data seaweed drying. After that, it will be analyzed through robust 

regression (Tukey Bi-Square, Hampel, and Huber). As the result, the Lasso-Hampel 

was better than others with the MAE (4.09641), RMSE (5.275992), MAPE (7.9962), 

SSE (182491.2), R-square (0.6514791), and R-square Adjusted (0.649279). The 

method of Lasso-Hampel is able to be relied on investigation of the accuracy in big data 

obtained from regularization and robust regression. 
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1. INTRODUCTION

Regression methods are algorithms of supervised learning, 

which are important both Machine Learning and Statistics 

Learning. The regression methods have been known for a long 

time because they are many new developments. The regression 

methods are extending these algorithms significantly [1]. 

The regression methods are frequently used to calculate an 

algorithm to forecast future responses. They are aims to 

investigate relationship between dependent variable (Y) and 

the independent variables (X) [2]. 

The regression analyses are often applied most sciences. 

The regression methods are ones of the main tasks in Machine 

Learning and Statistics Learning. The regression methods 

have been successfully applied in many fields such as 

agriculture and biology for this case using data seaweed drying. 

Seaweed should get attention from the Malaysia 

Government because it has many advantages including lots of 

nutrients and short growth of only 45 days per cycle. The 

seaweed is widely cultivated in Sabah because of the 

environmental and geographical factors which support it. 

Sabah is very favorable compared to the Malaysian peninsula 

[3]. The seaweed as an agricultural sector plays an important 

role in providing a source of food and protein in Malaysia [4]. 

The abundant supply of seaweed in Malaysia offers 

promising opportunities to produce and extract such as 

fucoidan, alginate, agar, and carrageenan. The seaweed is used 

in various ingredients such as in foods, pharmaceuticals, 

nutraceuticals, medicals, and other industries. 

Seaweed contains beneficial bioactive compounds such as 

carrageenan powder, agar, or alginate. Seaweed is of great 

commercial importance as a stabilizer, thickener, gelling agent, 

and emulsifier. The Malaysia Agro-Policy has developed 

seaweed as high-value and valuable commodity that makes 

seaweed an important industry. Malaysia has great potential to 

become a significant seaweed supplier in the country, provided 

Malaysia has fully developed and utilized existing resources 

[5]. 

Assessment and comparison of the performance of the 

available methods are thus important to select the best method 

with the seaweed drying data and determine when their 

performance is optimal. Here, we evaluate the relative 

performance regularization regressions (Ridge, Lasso, and 

Elastic Net) for selecting variables (to choose the most 

significant variable from their perspective) and will be 

analyzed with robust regression (Bi-Square, Hampel, and 

Huber) models. 

The methods comprise Ridge, Lasso, and Elastic net 

regression [6-17]. 

Regularization regressions (Ridge, Lasso, and Elastic Net) 

are applied as a variable selection to select the most significant 

variables with their perspective. They provide methods for 

controlling the regression coefficient, which is able to decrease 

the variance and decrease the sample error to solve the 
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multicollinearity issue. They are applied in various fields of 

scientific disciplines [18]. 

Improvement in both Statistics Learning and Machine 

Learning method – driven by big data in various disciplines 

scientific – offers opportunities and challenges for agriculture 

data analysis (especially the seaweed drying data). Today, in 

the era of big data, variable selections are a fundamental task 

in the area of both Statistics Learning and Machine Learning. 

In general, the process of variable selection aims to select 

which are important variables. For example, in regression, it is 

very useful to select and maintain variables with predictable 

capabilities. 

The aims of variable selection usually are: 

(i) To improve predictive model capabilities;  

(ii) To avoid multicollinearity problems;  

(iii) To provide a more comprehensive understanding of 

the prediction model by reducing ineffective and unnecessary 

variables [19]. 

Both Statistics Learning and Machine Learning aim to build 

a model that presents the best dataset, these methods involve 

the task of variable selections. In this paper, a dataset 

containing 1924 observations will use to study the effect of 

more 29 different independent variables on the one dependent 

variable. Then the data will be interacted with in the second 

interaction. The data contain the effect of 435 different 

interaction independent variables on the one dependent 

variable. The more detailed tables for each variable interaction 

are attached in the Appendix A. 

In recent years, agricultural data has increased 

exponentially with the adoption of automated data collection 

tools and systems. Data generated from agricultural precision 

tools has been one of the most significant contributions to this 

improvement. Due to the fast growth of data, regularization 

regression (Ridge, Lasso, and Elastic Net) will help to find 

useful and meaningful in big data, especially in agriculture 

[20]. 

In this study, it is to analyse seaweed data with several 

variables including hourly solar radiation, temperature, 

humidity, and moisture content.   

Big data technology in agriculture has increased adoption 

rates in precision agriculture and is expected to become more 

prevalent in the coming years. It is used in the precision 

agricultural in several aspects of crop production, such as 

accuracy, agriculture (weather forecasting, yield monitoring, 

soil conditioning), decision-making tool and in enhancing 

zones of food security. The big data repositories essential 

knowledge which can be applied to the scientific data, or to 

give knowledge on interdisciplinary decisions such as 

economics, politics, or often recently, ‘artificial intelligence of 

farming’ to enhance food security and potency of agriculture 

[21]. 

Regressions continue to get significant appreciation and 

attention. However, in regressions have still open problems 

such as multicollinearity and outlier.  

The first issue in regression is multicollinearity. 

Multicollinearity is two or more independent variables with 

high correlation. It is a common problem which is often 

encountered in regression methods. It will reduce the accuracy 

of parameter evaluation in the regression methods [22]. 

Regularization regressions are applied as a variable 

selection to select the most significant variables with their 

perspective. They provide methods for controlling the 

regression coefficient, which is able to decrease the variance 

and decrease the sample error to solve the multicollinearity 

issue. They are applied in various fields of scientific 

disciplines [18]. So, regularization regression is a regression 

analysis designed to handle multicollinearity. In this paper, we 

will use three types of regularization regressions such as Lasso, 

Ridge, and Elastic Net. 

The methods comprise Ridge, Lasso, and Elastic net 

regression [6-17]. So, an important property of regularization 

regressions is respect to multicollinearity in the database (big 

data). 

The second issue in regression is outliers. Outliers are 

suspicious because they are much larger or much smaller than 

most of the observations [23, 24]. Outliers are objections that 

differ significantly from the remaining data. The outliers are 

also referred to as anomalies, abnormalities, and discordances 

[25]. The outliers are common in big data and can create severe 

regression problems. They can lead to model misspecification, 

inaccurate analysis results and make all evaluation methods 

meaningless. 

So, an important property of robust regressions is method 

with respect to outliers in big data. Robust regressions are 

required where the estimated values are not much influenced 

by much smaller or much larger observations. So, robust 

regression is a regression method which is designed to address 

outliers. 

Robust regression is an important method for analyzing data 

which are contaminated outliers [24, 26, 27]. Because ordinary 

least square (OLS) can be very sensitive to outliers. Robust 

regressions are applied to detect outliers and provide results 

that are resistant to the presence of outliers. In this paper, we 

will use three types of robust regression M-Estimation such as 

Bi-Square, Hampel, and Huber. 

The methods comprise Tukey Bi-Square, Hampel, and 

Huber regression [28-32]. 

To assess models, we need a model selection. Model 

selection was also made by different researchers, Abdullah et 

al. [33] used eight selection criteria (8SC) to obtain the best 

model among all possible models. Similarly, Javaid et al. used 

in model selection problem [15, 34-36]. 

Several authors have reviewed 8 Selection Criteria (8SC), 

but our study is different from their paper. Javaid et al. have 

made a study of 8 Selection Criteria. They only conducted 

research on small data. They did not present visualization in 

comparing models [15, 36-38].  

The primary focus of this paper is to analyze and compare 

the impact of three different variable selection techniques 

regression regularization algorithms (Lasso, Elastic Net, and 

Ridge) for the data seaweed drying. After that, it will be 

analyzed through robust regression (Tukey Bi-Square, 

Hampel, and Huber) and to compare the impact of three 

different regression algorithms for forecast the efficient model, 

Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), and Mean Absolute Percentage Error (MAPE)., 

comparing three regularization and robust regression 

algorithms – in terms of the best model eight selection criteria 

(8SC). 

 

 

2. MATERIALS AND METHODS 

 

2.1 Regularization regression 

 

2.1.1 Lasso 

Linear regression equations {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  with 𝑁  samples 

and independent variables are 𝑝 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙  and 𝑦𝑖 ∈ ℝ 
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is dependent variable. The aim is to forecast the dependent 

variable from the independent variables. Forecast and find 

independent variables significant play an essential role in 

regression [39]. The equation assumes:  

 

𝑦𝑖 = 𝛽0 +∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 + 𝜀𝑖  (1) 

 

𝛽0 and 𝛽𝑖 are unknown parameters and 𝜀𝑖 is a residual term 

for = 1,… , 𝑝. The Eq. 2 is a requirement to constrain. For 

Lasso regression or ℓ1 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 

 

min
𝛽0,𝛽

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2𝑁
𝑖=1   

subject to ‖𝛽‖1 ≤ 𝑡 
(2) 

 

2.1.2 Ridge 

The ridge constrain is ∑ 𝛽𝑗
2 ≤ 𝑡

𝑝
𝑗=1  for a positive value 𝑡. 

For ridge regression or ℓ2 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 [39]. 

 

min
𝛽0,𝛽

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2𝑁
𝑖=1   

subject to ∑ 𝛽𝐽
2𝑃

𝐽=1 ≤ 𝑡 
(3) 

 

2.1.3 Elastic net regression 

Lasso and ridge regression could be stated with 𝐿𝑞 . Both 

q=1 and q=2 are corresponding to lasso and ridge respectively. 

Eq. (4) can be solved by calculating of type 𝐿𝑞. 

 

𝑎𝑟𝑔min
𝛽
{𝒀𝑻𝒀 − 2𝛽𝑻𝑿𝑻𝒀 + 𝛽𝑻𝑿𝑻𝑿𝛽}  

𝑠ubject to ∑ |𝛽𝑗|
𝑞𝑘

𝑗=1 ≤ 𝑡 
(4) 

 

Researchers recommend taking 1 < 𝑞 < 2 , to choose a 

compromise between lasso and ridge [40]. The elastic net 

regression evolves combining between Lasso and Ridge [41]. 

The elastic net formulation was defined by Zou and Hastie [16] 

as: 

 

∑ ((1 − 𝛼)𝛽𝑗
2 + 𝛼|𝛽𝑗|) ≤ 𝑑2𝑘

𝑗=1 ,𝛼 ∈ [0,1] (5) 

 

The elastic net is then used as a penalizing term to obtain 

the elastic net estimate: 

 

�̂�𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝑎𝑟𝑔min
𝛽
{𝒀𝑻𝒀—2𝛽𝑻𝑿𝑻𝒀 +

𝛽𝑻𝑿𝑻𝑿𝛽 + 𝜆∑ ((1 − 𝛼)𝛽𝑗
2 + 𝛼|𝛽𝑗|)

𝑘
𝑗=1 }  

(6) 

 

From the Eq. (7), selecting parameter q is not necessary. We 

require to select an 𝛼 value between 0 < 𝛼 < 1. Ridge and 

Lasso regression could be stated with 𝛼. Both 𝛼 = 0 and 𝛼 =
1 are corresponding to ridge and lasso respectively. The elastic 

net regression evolves combining between Lasso and Ridge. 

The elastic net is a method of regularization regression that 

provides between ridge and lasso [42]. The advantage of the 

elastic net is achieving stability concerning random sampling 

[43]. 

 

2.2 Robust regression 

 

The M-estimation is general method in robust regression. 

The M in M-estimation is “Maximum likelihood”. The aim of 

M-estimation is minimizing error (residual) [44].  

The first function regression method, suppose we have a 

data set of size n such that: 

 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝑒𝑖  

𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 = 𝑦𝑖 − 𝒙𝑖
𝑻𝛽  

𝑒𝑖(𝛽) = 𝑦𝑖 − 𝑥𝑖
𝑇𝛽  

(7) 

 

M-estimator attempt to minimize the sum of a chosen 

function 𝜌(∙) which is acting on the residual. Formally defined, 

M-estimators are given by: 

 

�̂�𝑀 = argmin
𝛽

∑ 𝜌(𝑒𝑖(𝛽))
𝑛
𝑖=1   (8) 

 

The above form with 𝜌  function is the 𝜌 − type M-

estimation. Suppose 𝜎 is known and let the residuals for some 

estimate 𝛽  be 𝑒𝑖 = 𝑦𝑖 − 𝛽
𝑇𝑥𝑖  [45]. Then the regression M-

estimate of 𝛽 is the value that minimizes the objective function: 

 

∑ 𝜌 {
𝑒𝑖(𝛽)

𝜎
}𝑛

𝑖=1   (9) 

 

The 𝜎 should be estimated robustly. M-estimator of scale 

�̃�𝑀 is found by solution of the equation: 

 
1

𝑛
∑ 𝜌 (

𝑒𝑖

𝜎
)𝑛

𝑖=1 =
1

𝑛
∑ 𝜌 (

𝑦𝑖−𝛽
𝑇𝑥𝑖

𝜎
) = 𝑘𝑛

𝑖=1   (10) 

 

When 𝛽  is the 𝑝 × 1  parameter vector, then 𝜓 −  type 

function could be yielding as: 

 

∑ 𝜓(𝑒𝑖)
𝜕𝑒𝑖

𝜕𝛽𝑖
𝑖 , for 𝑗 = 1,2, … , 𝑝  (11) 

 

where the derivative function 𝜓(𝑒) =
𝜕𝜌(𝑒)

𝜕(𝑒)
 is the influence 

function. Then the weight function could be defined as below: 

 

𝑤(𝑒) =
𝜓(𝑒)

𝑒
  (12) 

 

The 𝜓(𝑒)-type function becomes: 

 

∑ 𝑤(𝑒𝑖)𝑒𝑖
𝜕𝑒𝑖

𝜕𝛽𝑖
𝑖 = 0, for 𝑗 = 1,2, … , 𝑝  (13) 

 

And the object becomes to obtain the following iterated re-

weighted least square problem: 

 

𝑚𝑖𝑛∑ 𝑤(𝑒𝑖
(𝑘−1))𝑒𝑖

2
𝑖   (14) 

 

where, 𝑘 indicates the iterate number [46]. 

Further, the M robust regression was applied to address the 

outliers through M–bi square, M–Hampel, and M–Huber. For 

more detail, we applied in Table 1-Formulas for Robust 

Regression M-estimation. 

 

2.3 Validation models 

 

The metric evaluations are needed to evaluate the 

appropriateness of a model. They become very important to 

analyze whether the model is adequate. The metrics including 

Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE), Sum of 

Square Error (SSE), and R-squared. 
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Table 1. Formulas for Robust Regression M-estimation 

 

Methods Objective Function Weight Function 

Bi-Square 𝜌𝐵 = {

𝑘2

6
{1 − [1 − (

𝑒

𝑘
)
2
]
3

}  𝑓𝑜𝑟 |𝑒| ≤ 𝑘

𝑘2

6
 𝑓𝑜𝑟 |𝑒| > 𝑘

  𝑤𝐵 = {
[1 − (

𝑒

𝑘
)
2
]
2

 𝑓𝑜𝑟 |𝑒| ≤ 𝑘

0 𝑓𝑜𝑟|𝑒| > 𝑘

  

Huber 𝜌𝐻𝑢 = {
 
1

2
𝑒2 𝑓𝑜𝑟 |𝑒| ≤ 𝑘

𝑘|𝑒| −
1

2
𝑘2 𝑜𝑟 |𝑒| > 𝑘

  𝑤𝐻𝑢 = {
1 𝑓𝑜𝑟 |𝑒| ≤ 𝑘
𝑘

|𝑒|
 𝑓𝑜𝑟 |𝑒| < 𝑘

  

Hampel 𝜌𝐻𝑎 =

{
 
 

 
 

𝑒2

2
, 0 < |𝑒| < 𝑎

𝑎|𝑒| −
𝑒2

2
, 𝑏 < |𝑒| ≤ 𝑐

−𝑎

2(𝑐 − 𝑏)
(𝑐 − 𝑒)2 +

𝑎

2
(𝑏 + 𝑐 − 𝑎), 𝑏 < |𝑒| ≤ 𝑐

   

 

Table 2. Formulas for validation methods 

 
Validation Formulation Reference 

Mean Absolute Error (MAE) 𝑀𝐴𝐸 = ∑ |
𝑌−�̂�𝑖

�̂�𝑖
|𝑛

𝑖=1   [47] 

Mean Square Error (MSE) 𝑀𝑆𝐸 = ∑ (
𝑌−�̂�𝑖

�̂�𝑖
)
2

𝑛
𝑖=1   [48] 

Mean Absolute Percentage Error (MAPE) 𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑌−�̂�𝑖

�̂�𝑖
|𝑛

𝑖=1   [49] 

Sum of Square Error (SSE) 𝑆𝑆𝐸 = ∑ (𝑌𝑖 − �̂�𝑖)
2𝑛

𝑖=1   [50] 

Sum of Squared Total (SST) 𝑆𝑆𝑇 = ∑ (�̂�𝑖 − �̅�)
2𝑛

𝑖=1   [50] 

R-squared 𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=
𝑆𝑆𝑇 − 𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
 [50] 

 

The metric evaluations are used to measure the accuracy of 

the regression model in forecasting the dependent variable 

within the acceptable rage of accuracies. The formula of the 

metrics is shown in Table 2. 

 

2.4 Selection models 

 

2.4.1 Phase 1 – all possible model 

 

𝑁 =∑𝑗(𝐶𝑗
𝑘)

𝑘

𝑗=1

 

## 2nd Order 

 

where, 𝑁  is the number of all Possible models, k is total 

number of independent variables and 𝑗 = 1,2, … , 𝑘. 

A dataset containing 1924 observations will use to study the 

effect of 29 different independent variables on the one 

dependent variable. Then the data will be interacted with in the 

second interaction. The data contain the effect of 435 different 

interaction independent variables on the one dependent 

variable. For more detail, the second order inteactions as 

depicted in Appendix A. 

 

2.4.2 Phase 2 – selected models 

In this paper, we will analyze regression model amongst 

Lasso, Ridge, and Elastic Net. From these regression model, 

we will take variable importance. We will take subset of top 

highest 30 influential variables from each technique and will 

apply three robust regression algorithms (Bi-Square Tukey, 

Hampel, and Huber). 

 

2.4.3 Phase 3 – the best model 

Regularization such as Lasso, Ridge, and Elastic Net, serve 

as variable important to take top highest 30 influential 

variables. After the subset of the influential variable will be 

followed by robust regression Bi-Square, Hampel, and Hubber 

to determine a regression model. 

The next step was to get the best model after a list of 

selected models was obtained. 8SC were defined for this 

purpose by Zainodin et al. [34]. 8SC formula can be displayed 

as shown in Table 3. By using mentioned formulas in Table 3, 

Akaike information criterion (AIC), RICE, Final Prediction 

Error (FPE), SCHWARZ (SBC), Generalized Cross 

Validation (GCV), Sigma square (SGMASQ), SHIBATA, and 

Hannan-Quinn (HQ) information on the basis of minimum 

value obtained from all mentioned criteria. 
 

Table 3. Formula used for 8SC 
 

No Methods Formulation Reference 

1. AIC (
𝑠𝑠𝑒

𝑛
) 𝑒

2(𝑘+1)

𝑛   [51] 

2. RICE 
(
𝑠𝑠𝑒

𝑛
)

[1−(
2(𝑘+1)

𝑛
)]

  [52] 

3. 
Final prediction error 

(FPE) 
(
(𝑆𝑆𝐸)2

𝑛
)
𝑛+(𝑘+1)

𝑛−(𝑘+1)
  [53] 

4. Schwarz (
𝑠𝑠𝑒

𝑛
) 𝑛

(
𝑘+1

𝑛
)
  [54] 

5. GCV 
(
𝑠𝑠𝑒

𝑛
)

[1−(
𝑘+1

𝑛
)]
2  [55] 

6. SGMASQ 
(
𝑠𝑠𝑒

𝑛
)

[1−(
𝑘+1

𝑛
)]

  [55] 

7. SHIBATA (
𝑠𝑠𝑒

𝑛
) (

𝑛+2(𝑘+1)

𝑛
)  [56] 

8. HQ (
𝑠𝑠𝑒

𝑛
) ln 𝑛

2(𝑘+1)

𝑛   [57] 

 

where, n is total number of observations, k+1 is estimated 

parameters numbers (including constant), and SSE is sum of 

square error. 
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2.4.4 Phase 4 – goodness fit 

The goodness of fit test was performed on the final models 

selected in phase 3 to check the efficiency of the selected 

model. Residual data would be gathered by taking into account 

the difference in real and expected value for the best model in 

Phase 3 used MAE, RMSE, and MAPE. 

 

 

3. RESULTS AND DISCUSSION  

 

3.1 Data 

 

The data was collected from time period of 8.00 am until 

5.00 pm starting on 08/04/2017 to 12/04/2017. That is almost 

four days data. The original data was for each second and then 

it was converted in hour for data analysis. The variables taken 

are data contain hourly solar radiation, temperature, humidity, 

and moisture content. The detailed factor of modelling is 

shown in Table 4. 

In this paper, a dataset containing 1924 observations will be 

used to study the effect of more 29 different independent 

variables on the one dependent variable. Significance of 

interaction terms had also been observed in this study. So, 

T1*T2 represents the interaction between T1 and T2. Another 

example H1*PY represents the interaction between H1 and PY. 

The data contain the effect of 435 different interaction 

independent variables on the one dependent variable. The 

more detailed tables for each variable interaction are attached 

in the Appendix A. 

We require to select an α value between 0<α<1. Ridge and 

Lasso regression could be stated with α. Both α=0 and α=1 are 

corresponding to ridge and lasso respectively. The elastic net 

regression evolves combining between Lasso and Ridge. 

The elastic net regression, this method evolves in the case 

of combining Lasso and Ridge. We require to choose an 𝛼 

value between 0 < 𝛼 < 1 because the elastic net regression 

formulation is 𝜆∑ ((1 − 𝛼)𝛽𝑗
2 + 𝛼|𝛽𝑗|) ≤ 𝑑2𝑘

𝑗=1 , 𝛼 ∈ [0,1].  

 

Table 4. Factors of modelling 

 
Symbols Factors Definitions 

Y Dependent Moisture 

H1 Independent Relative Humidity Ambient 

H5 Independent Relative Humidity Chamber 

PY Independent Solar Radiation 

T1 Independent Temperature (℃) ambient 

T2, T3, T4 Independent Temperature (℃) before enter solar collector 

T5 Independent Temperature (℃)in front of down v-Groove (Solar Collector) 

T6, T8 Independent Temperature (℃) in front of up v-Groove (Solar Collector) 

T7, T14, T15, T16, T21, T22 Independent Temperature (℃) Solar Collector 

T8, T9, T10, T11, T12 Independent Temperature (℃) behind inside chamber 

T13, T17, T18, T19, T23 Independent Temperature (℃) Infront of (Inside Chamber) 

T20, T23, T24, T25, T28 Independent Temperature (℃) from solar collector to chamber 

 

Table 5. Results alpha criteria for elastic net 

 

No alpha 
Mean Square Error-

Minimum 

Lambda 

Minimum 

1 0 47.2 0.925 

2 0.1 27.2 0.00925 

3 0.2 26.5 0.00462 

4 0.3 25.8 0.00308 

5 0.4 25.5 0.00231 

6 0.5 24.9 0.00185 

7 0.6 25.2 0.00154 

8 0.7 24.8 0.00132 

9 0.8 24.4 0.00116 

10 0.9 24.0 0.00103 

11 1 24.2 0.000925 

 

Table 5 shows the estimates on the various value alpha to 

choose the minimum. The minimum value alpha obtained in 

step 9 and 10. We select alpha between 0.8 and 0.9 to 0.85 

(interpolation) and lambda values between 0.00116 and 

0.00103 to 0.001095. It shows that the model that minimized 

Mean Square Error (MSE) used an alpha of 0.85 and lambda 

of 0.001095 with the minimum MSE. From Table 5, we will 

convert to Figure 1. In order to, the selection of alpha value 

shows the minimized of MSE. 

The Figure 1 shows mean square error (MSE) is widely used 

in model evaluations. Variations of MSE with alpha are 

portrayed. The Figure 1 depicts alpha (0.85) for minimum 

MSE (24.1). 

Table 6 shows that the values of α=0, α=0.85, α=1 are 

corresponding to ridge, elastic net, and lasso respectively. The 

elastic net is a method of regularization regression that 

provides between ridge and lasso. 

In this study, different methods for variable selections are 

ridge, elastic net and lasso which were performed. The 

variable selection is the most significant variables with their 

perspective. Variable selections only provide the rank of 

highest important variables, which means that techniques 

didn’t have no rules in selecting the suitable range of variable 

important [58]. Hence, we choose the 30 highest variable 

importance. The variable important is shown in Table 7. 

 

 
 

Figure 1. Minimized MSE for elastic net regression 

 

Table 6. Choosing values alpha (α) 

 
No alpha Methods 

1 0 Ridge 

2 0.85 Elastic Net 

3 1 Lasso 
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Table 7. The 30 highest of variable importance 

 
No Methods Variable Importance 

1 Lasso 
T14, T25, T22, T1*T23, T16, H1, T1*T6, PY, T9*H5, T1*T7, T4*T23, T7*T13, T7*T10, T7*T8, T2*T7, T12*H5, T29, 

T8, H5, T6, T3, T1, T4, T13, T2, T7, T23 

2 
Elastic 

Net 

T14, T22, T25, T1*T23, H1, T1*T6, T9*H5, T17*H5, T7*T13, T2*T23, T4*T23, T1*T7, T1*T2, T6*T8, T7*T8, 

T2*T7, T3*T17, T8*T19, T12*H5, T8, H5, T6, T3, T4, T1, T13, T2, T7, and T23 

3 Ridge 
T1, T9, T6, T2, T17, T5, T23, T22, T14, T21, T28, T27, T11, T3, T1*T6, T1*T2, T7*T9, T1*T9, T26, T8, T19, H5, T15, 

T16, T10, T13, T4, T29, T12, and T7 

 

Table 8. Results for the validation methods 

 
ML Robust Regression MAE MSE MAPE Sum Square of Error R-square R-square Adjusted 

Ridge 

Bi-Square 5.50670320 87.6181 10.7123 167701.12 0.6797253 0.674623 

Hampel 5.46121692 50.451657 10.41787 96564.47 0.8155816 0.812643 

Huber 5.42828203 50.754504 10.29807 97144.12 0.8144746 0.811519 

Elastic Net 

Bi-Square 5.87494596 127.19119 9.188008 243443.92 0.5350719 0.527665 

Hampel 5.494431217 48.762572 10.26748 93331.56 0.8217558 0.818916 

Huber 5.41403189 49.728886 9.966258 95181.09 0.8182236 0.815328 

Lasso 

Bi-Square 5.518140568 83.476643 9.124401 159774.3 0.6948638 0.690002 

Hampel 5.473598081 48.411285 9.17489 92659.21 0.8230399 0.820221 

Huber 5.395837661 49.351041 9.864292 94457.89 0.8196048 0.816731 

 

It shows subset of 30 variable important that are taken by 

each technique. Three regression algorithms are applied for 

this purpose. i.e., Ridge, Elastic Net, and Lasso. They show 

the final result that was obtained by each variable important 

ranking technique. All the variable importance was ranked 

according to their importance score computed by their 

respective techniques. The more detailed tables for the highest 

30 important variables are attached in the Appendix B. In 

Figure B-1 the 30 highest important variables for Ridge 

Regression, while in Figure B-2 the 30 highest important 

variables for Elastic Net Regression, and Figure B-3 the 30 

highest important variables for Lasso Regression, respectively. 

In order to measure the prediction accuracy, predicted 

responses with the actual responses are compared of each 

regression-based model in terms of the validation methods 

described in Table 8. 

Predefined performances measures for Ridge, Elastic Net, 

and Lasso sets of data are given in Table 8. All performance 

measures (MAE, MSE, MAPE, Sum Square of Error, R-

square, and R-square Adjusted) indicate that significantly 

better results were obtained by Lasso-Hampel in comparison 

to others. Considering Mean Absolute Error (MAE) values for 

Lasso-Hampel (5.473598081), MSE (48.411285), MAPE 

(9.17489), Sum Square of Error (92659.21), R-square 

(0.8230399), and R-square Adjusted (0.820221), respectively.  

As can be seen in Table 8, In the context of validation (MAE, 

MSE, MAPE, and Sum Square of Error), the Lasso-Hamper 

also exhibited the lowest error data which provides the most 

relevant data of the result. It can be assumed that the method 

of Lasso-Hamper is able to be relied on investigation of the 

accuracy in big data obtained from regularization and robust 

regression. 

According to Figure 2, the forecast generated by individual 

models show that Lasso – Hampel method leads to more 

accurate forecasts than the other models, because the forecasts 

by Lasso – Hampel method follow the pattern of actual data 

better than the other forecast by models used in this study. 

Based on the accuracy of the MAE, MSE, MAPE, Sum Square 

of Error, R-square, and R-square Adjusted, the obtained result 

is proved by Figure 2. 

 

 
 

Figure 2. Accuracy measure for three regularization regressions and three robust regressions 
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Table 9. Results for 8 Selection Criteria for Ridge, Elastic Net, and Lasso 

 

ML 
Robust 

regression 
AIC GCV HQ RICE SCHWARZ SGMASQ SHIBATA FPE 

RIDGE 

Bi-Square 90.5028 90.5268 93.55051 90.55134 99.02611 89.06059 90.45633 90.50305 

Hampel 52.11269 52.12651 53.8676 52.14064 57.02053 51.28225 52.08593 52.11284 

Huber 52.42551 52.43941 54.19095 52.45363 57.36281 51.59008 52.39859 52.42566 

ELASTIC 

NET 

Bi-Square 131.3787 131.4136 135.8029 131.4492 143.7517 129.2852 131.3113 131.3791 

Hampel 50.36799 50.38135 52.06415 50.39501 55.11152 49.56535 50.34213 50.36814 

Huber 51.36612 51.3797 53.09589 51.39368 56.20365 50.54758 51.33975 51.36627 

LASSO 

Bi-Square 86.22497 86.24784 89.12862 86.27122 94.34541 84.85093 86.18069 86.22521 

Hampel 50.00514 50.01841 51.68908 50.03197 54.7145 49.20828 49.97947 50.00528 

Huber 50.97584 50.98936 52.69246 51.00318 55.77661 50.16351 50.94966 50.97598 

 

All possible models have 9 models such as Regularization 

(Ridge, Lasso, and Elastic Net) and Robust Regression (Tukey 

– Bi Square, Hampel, and Hubber). The minimum value for 

8SC were found for model Lasso-Hampel meaning that subset 

the highest 30 variable important from Lasso and continue 

with Hampel Regression. The results obtained from 8SC are 

observed in Table 9. 

 

 

4. CONCLUSIONS 

 

The results show that Lasso-Hampel model provides the 

best model as compared to other existing methods used in this 

study. The selection of efficient model needs to deal with all 

possible models with the second interaction terms. The 

proposed hybrid (Lasso-Hampel) model is found to be better 

in terms of MAE, MSE, and MAPE value in comparison to 

other existing methods. Therefore, the proposed hybrid model 

Lasso-Hampel can therefore be used for the efficient selection 

of the model including the interaction terms in it. For future 

work, each of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 highest 

variable important were selected. 
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APPENDIX 

 

Appendix A 

 

data.frame(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T1

3,T14,T15,T16,T17,T19,T21,T22,T23,T25,H5,PY,T1*T2,T1

*T3,T1*T4,T1*T5,T1*T6,T1*T7,T1*T8,T1*T9,T1*T10,T1

*T11,T1*T12,T1*T13,T1*T14,T1*T15,T26,T27,T28,T29,H

1,T1*T16,T1*T17,T1*T19,T1*T21,T1*T22,T1*T23,T1*T2

5,T1*T26,T1*T27,T1*T28,T1*T29,T2*T3,T2*T4,T2*T5,T2

*T6,T2*T7,T2*T8,T2*T9,T2*T10,T2*T11,T2*T12,T2*T13,

T2*T14,T2*T15,T2*T16,T2*T17,T3*T5,T3*T6,T1*H1,T1*

H5,T1*PY,T2*T19,T2*T21,T2*T22,T2*T23,T2*T25,T2*T2

6,T2*T27,T2*T28,T2*T29,T2*H1,T2*H5,T2*PY,T3*T4,T3

*T7,T3*T8,T3*T9,T3*T10,T3*T11,T3*T12,T3*T13,T3*T1

4,T3*T15,T3*T16,T3*T17,T3*T19,T3*T21,T3*T22,T3*T2

3,T3*T25,T3*T26,T3*T27,T3*T28,T3*T29,T3*H1,T3*H5,

T3*PY,T4*T5,T4*T6,T4*T7,T4*T8,T4*T9,T4*T10,T4*T11

,T4*T12,T4*T13,T4*T14,T4*T15,T4*T16,T4*T17,T4*T19,

T4*T21,T4*T22,T4*T23,T4*T25,T4*T26,T4*T27,T4*T28,

T4*T29,T4*H1,T4*H5,T4*PY,T5*T6,T5*T7,T5*T8,T5*T9,

T5*T10,T5*T11,T5*T12,T5*T13,T5*T14,T5*T15,T5*T16,

T5*T17,T5*T19,T5*T21,T5*T22,T5*T23,T5*T25,T5*T26,

T5*T27,T5*T28,T5*T29,T5*H1,T5*H5,T5*PY,T6*T7,T6*

T8,T6*T9,T6*T10,T6*T11,T6*T12,T6*T13,T6*T14,T6*T1

5,T6*T16,T6*T17,T6*T19,T6*T21,T6*T22,T6*T23,T6*T2

5,T6*T26,T6*T27,T6*T28,T6*T29,T6*H1,T6*H5,T6*PY,T

7*T8,T7*T9,T7*T10,T7*T11,T7*T12,T7*T13,T7*T14,T7*

T15,T7*T16,T7*T17,T7*T19,T7*T21,T7*T22,T7*T23,T7*

T25,T7*T26,T7*T27,T7*T28,T7*T29,T7*H1,T7*H5,T7*P

Y,T8*T9,T8*T10,T8*T11,T8*T12,T8*T13,T8*T14,T8*T15

,T8*T16,T8*T17,T8*T19,T8*T21,T8*T22,T8*T23,T8*T25,

T8*T26,T8*T27,T8*T28,T8*T29,T8*H1,T8*H5,T8*PY,T9

*T10,T9*T11,T9*T12,T9*T13,T9*T14,T9*T15,T9*T16,T9

*T17,T9*T19,T9*T21,T9*T22,T9*T23,T9*T25,T9*T26,T9

*T27,T9*T28,T9*T29,T9*H1,T9*H5,T9*PY,T10*T11,T10*

T12,T10*T13,T10*T14,T10*T15,T10*T16,T10*T17,T10*T

19,T10*T21,T10*T22,T10*T23,T10*T25,T10*T2,T10*T27,

T10*T28,T10*T29,T10*H1,T10*H5,T10*PY,T11*T12,T11

*T13,T11*T14,T11*T15,T11*T16,T11*T17,T11*T19,T11*

T21,T11*T22,T11*T23,T11*T25,T11*T26,T11*T27,T11*T

28,T11*T29,T11*H1,T11*H5,T11*PY,T12*T13,T12*T14,T

12*T15,T12*T16,T12*T17,T12*T19,T12*T21,T12*T22,T1

2*T23,T12*T25,T12*T26,T12*T27,T12*T28,T12*T29,T12

*H1,T12*H5,T12*PY,T13*T14,T13*T15,T13*T16,T13*T1

7,T13*T19,T13*T21,T13*T22,T13*T23,T13*T25,T13*T26,

T13*T27,T13*T28,T13*T29,T13*H1,T13*H5,T13*PY,T14

*T15,T14*T16,T14*T17,T14*T19,T14*T21,T14*T22,T14*

T23,T14*T25,T14*T26,T14*T27,T14*T28,T14*T29,T14*H

1,T14*H5,T14*PY,T15*T16,T15*T17,T15*T19,T15*T21,T

15*T22,T15*T23,T15*T25,T15*T26,T15*T27,T15*T28,T1

5*T29,T15*H1,T15*H5,T15*PY,T16*T17,T16*T19,T16*T

21,T16*T22,T16*T23,T16*T25,T16*T26,T16*T27,T16*T2

8,T16*T29,T16*H1,T16*H5,T16*PY,T17*T19,T17*T21,T1

7*T22,T17*T23,T17*T25,T17*T26,T17*T27,T17*T28,T17

*T29,T17*H1,T17*H5,T17*PY,T19*T21,T19*T22,T19*T2

3,T19*T25,T19*T26,T19*T27,T19*T28,T19*T29,T19*H1,

T19*H5,T19*PY,T21*T22,T21*T23,T21*T25,T21*T26,T21

*T27,T21*T28,T21*T29,T21*H1,T21*H5,T21*PY,T22*T2

3,T22*T25,T22*T26,T22*T27,T22*T28,T22*T29,T22*H1,

T22*H5,T22*PY,T23*T25,T23*T26,T23*T27,T23*T28,T23

*T29,T23*H1,T23*H5,T23*PY,T25*T26,T25*T27,T25*T2

8,T25*T29,T25*H1,T25*H5,T25*PY,T26*T27,T26*T28,T2

6*T29,T26*H1,T26*H5,T26*PY,T27*T28,T27*T29,T27*H

1,T27*H5,T27*PY,T28*T29,T28*H1,T28*H5,T28*PY,T29

*H1,T29*H5,T29*PY,H1*H5,H1*PY,H5*PY) 

 

Appendix B 

 

 
 

Figure B-1. The 30 highest important variables for Ridge 

Regression 
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Figure B-2. The 30 highest important variables for Elastic 

Net Regression 

 

 
 

Figure B-3. The 30 highest important variables for Lasso 

Regression 
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