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 In the present manuscript, a mathematical model of steady and incompressible Casson 

fluid in a non-uniform tube having many stenoses in the presence of a force field is 

analyzed. Using mild stenosis approximation and appropriate boundary conditions, 

analytical expressions for velocity, pressure drop, impedance, and wall share stress have 

been computed due to their importance in the rheology of blood. The Casson fluid is 

used to depict the behavior of blood flow. The effects of different physical constraints 

on resistance to the flow and wall shear stress of the fluid are examined. The study 

ascertains that resistance to the flow and wall shear stress is maximum at duck of 

stenosis. It is also explored that an increase in the size of the stenosis in the artery affects 

the normal flow of the blood through vessels in the heart, body, and brain and this may 

lead to major cardiac disease problems like stroke, heart attack, etc. 
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1. INTRODUCTION 

 

The term stenosis indicates the narrowing of the artery 

because of the development of the arteriosclerotic deposition 

or different sorts of anomalous tissue development. As the 

development ventures into the lumen of the artery, blood flow 

is impeded. The impediment may harm the inner cells of the 

wall and may prompt further development of the stenosis. In 

this way, there is a coupling between the development of 

stenosis and the flow of blood in the artery since it influences 

the other. The advancement of stenosis in an artery can have 

genuine outcomes and can disturb the typical working of the 

circulatory system. Specifically, it might prompt: increased 

resistance to flow with the possible serious decrease in blood 

flow, increased risk of complete occlusion, abnormal cell 

development in the region of the stenosis, which builds the 

intensity of the stenosis, and tissue harm prompting post 

stenosis dilatation. 

The examination of blood flow through vessels with 

stenosis is one of the principal territories of research since 

more than 30% of all deaths because by circularity issues and 

these circularity issues can have results, for example, pain in 

the chest and decreasing bloodstream to the brain. 

Cardiovascular breakdown, which builds the risk of death. The 

main reason for circularity disorders is stenosis. The stenotic 

artery, which diminishes the bloodstream, is a typical 

cardiovascular disorder. Stenosis can alter the normal 

functioning of the heart system. It also increases the 

impedance to blood flows, resulting in increased blood 

pressure and tissue damage leading to subsequent stenotic 

dilation. Stenosis was first studied by Young [1]. Azuma and 

Fukushima [2] investigated the disturbances of blood flow 

through stenotic blood vessels. Axisymmetric and 

nonsymmetric models having different diameter ratios of 

constriction were used in the experiments. MacDonald [3] 

revealed the technique for steady flow through the mild 

axisymmetric arterial stenoses model. The steady flow of an 

incompressible fluid through an axisymmetric converging-

diverging tube has been studied both theoretically (Part I) and 

experimentally (Part II) by Forrester and Young [4]. They 

established the mathematical model for mild stenosis and an 

approximate solution for flow through a converging-diverging 

tube is obtained. Shukla et al. [5] studied the effects of stenosis 

on non-Newtonian flow through an artery with mild stenosis. 

Later, numerous researchers have considered the flow features 

of blood in a tube with mild constriction by taking blood as 

Newtonian or non- Newtonian fluids in diverse situations [5-

9]. 

The examination of the non-Newtonian nature of blood flow 

has been of most significance to scientists lately because of 

their application in exploring the conduct of blood on small 

arteries. Most of the works done in the literature are carried 

out by taking Newtonian fluid, micropolar, Herschel-Bulkley, 

and Jeffrey models. This approach neglects to clarify the 

physiological conduct of the bloodstream in supply routes 

because of the presence of yield stress. Even though Herschel-

Bulkley flow contains yield stress constraint, it is found that at 

low shear rates Casson model fits the blood flow better than 

that of Herschel-Bulkley fluid (see Blair [10]). Chaturani and 

Samy [11] explored the applications to the blood flow through 

the pulsatile flow of Casson’s fluid with stenosed arteries. Bali 

and Awasthi [12] studied the impacts of magnetic field on 

Casson fluid model for various stenosed artery. In this way, 

various researchers did the investigation of Casson fluid under 

different physiological situations in recent times [13, 14].  

It is known that many ducts in physiological systems are not 

horizontal but have some inclination to the axis. Maruti Prasad 

and Radhakrishnamacharya [15] explored the blood flow 

through an artery having multiple stenoses with a non-uniform 

cross-section. The effects of an axially symmetric mild 
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stenosis on the flow of blood when blood is represented by a 

couple stress fluid model have been studied by Srivastava [16]. 

Ponalagusamy [17] studied the mathematical model for a 

steady flow of blood through tapered stenosed arteries with a 

peripheral plasma layer near the wall. The model consists of a 

core region of suspension of all the erythrocytes assumed to be 

a couple stress fluid and a peripheral layer of plasma as a 

Newtonian fluid. Varma and Parihar [18] and Sharma et al. 

[19] studied the impact of an external magnetic field applied 

consistently in a multistage stenosis artery in the central region 

and presumed that the impact of the yield stress and stenosis 

is to decrease the shear stress of the wall and the speed of the 

flow within the sight of the magnetic field. Lately, numerous 

specialists have considered the attributes of blood flow 

through the artery within the sight of stenosis [20-35].  

In the literature review, it is observed that many 

investigators have worked on the blood flow through stenosed 

arteries with various fluids and geometries. However, no 

investigation has demonstrated the effects of multi-stage 

stenoses and a Casson fluid with mild stenosis condition. With 

the above inspiration, an attempt has been made to examine 

the effects of multi-stage stenosis on an incompressible 

Casson fluid through a non-uniform inclined tube in the 

presence of a force field. The investigation is done analytically. 

The outcomes of the present study are analyzed through graphs. 

The physical and mathematical models are described in detail 

in section 2. Thereafter, section 3 is for the discussion of the 

obtained outcomes.  

 

 

2. FORMULATION OF THE PROBLEM AND ITS 

SOLUTION 

 

The term stenosis indicates the narrowing of the artery 

because of the development of the arteriosclerotic deposition 

or different sorts of anomalous tissue development. As the 

development Consider the flow of an incompressible Casson 

fluid through an inclined axisymmetric tube of the non-

uniform cross-section with multiple stenoses. The cylindrical 

polar coordinate system (z, r) is chosen so that the z-axis 

coincides with the centreline of the tube. The stenosis is 

supposed to be mild and develop in an axially symmetric 

manner. The geometry of the wall is as shown in Figure 1.  

 

 
 

Figure 1. Schematic diagram of the tube with stenosis 

 

The equation relating the geometry of the wall is (Maruti 

Prasad and Radhakrishnamacharya [15]). 

 

ℎ(𝑧) =

{
 
 
 
 

 
 
 
 

𝑅0 : 0 ≤ 𝑧 ≤ 𝑑1

𝑅0 −
𝛿1

2
(1 + 𝑐𝑜𝑠

2𝜋

𝐿1
〈𝑧 − 𝑑1 −

𝐿1

2
〉) : 𝑑1 ≤ 𝑧 ≤ 𝑑1 + 𝐿1

𝑅0 : 𝑑1 + 𝐿1 ≤ 𝑧 ≤ 𝐵1 −
𝐿2

2

𝑅0 −
𝛿1

2
(1 + 𝑐𝑜𝑠

2𝜋

𝐿2
〈𝑧 − 𝐵1〉) : 𝐵1 −

𝐿2

2
  ≤ 𝑧 ≤ 𝐵1

𝑅∗(𝑧) −
𝛿2

2
(1 + 𝑐𝑜𝑠

2𝜋

𝐿2
〈𝑧 − 𝐵1〉) : 𝐵1 ≤ 𝑧 ≤ 𝐵1 +

𝐿2

2

𝑅∗(𝑧) : 𝐵1 +
𝐿2

2
 ≤ 𝑧 ≤ 𝐵,

  (1) 

where, 𝐵- the length of the channel, 𝐿1,  𝐿2 −the lengths, and 

𝛿1, 𝛿2 −the maximum heights of the primary and secondary 

stenosis respectively. 

Referring to ref. [15], the limitations for mild stenosis are 

taken into account as: 

 

min(𝑅0, 𝑅𝑜𝑢𝑡) ≫ 𝛿1, 𝛿2, and 𝐿1,  𝐿2 ≫ 𝛿1, 𝛿2,  
 where, 𝑅(𝑧) = 𝑅𝑜𝑢𝑡     at   𝑧 = 𝐵.  

 

The governing equation of the flow for the present issue is 

given as: 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟 𝜏𝑟 𝑧) = −

1

𝜇

𝜕𝑝

𝜕𝑧
+ 𝜌𝑔𝑠𝑖𝑛𝛼 − 𝑀′𝜇0

𝜕𝐻′

𝜕𝑧
,  (2) 

 

where, 
 

√𝜏𝑟 𝑧 = {√
𝜇√−

𝜕𝑢

𝜕𝑟
+ √𝜏0 : 𝜏 ≥  𝜏0

0 : 𝜏 ≤  𝜏0.

  (3) 

Here, 𝜇0 −the magnetic permeability, 𝑀′ −magnetization, 

𝐻′ − magnetic field intensity, 𝜏𝑟𝑧 - the shear stress, 𝜇 −blood 

viscosity, 𝜏0 −yield stress, (𝑟, 𝑧) −  respectively radial and 

axial coordinates. 

Considering the forces in the plug region, it yields as: 

 

2𝜋𝑟0𝐵 𝜏0 = 𝑃 𝜋 𝑟0 
2 𝐵  ∴  𝜏0 =

𝑃 𝑟0

2
,  

where, 𝑃 =
𝜕𝑝

𝜕𝑧
  

(4) 

 

The conditions of the boundary are specified as: 

 

𝜏𝑟𝑧 is finite        at   𝑟 = 0 (5) 

 

𝑢 = 0     at          𝑟 = ℎ (6) 

 

Taking the restriction for mild stenosis and solving (2) 

under the boundary conditions (5) and (6), the velocity is yield 

as: 
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𝑢 =
(𝑃+𝑓+𝐾)

2𝜇
[
4

3
𝑟0

1

2 (𝑟
3

2 − ℎ
3

2) −
1

2
(𝑟2 − ℎ2) −

𝑟0(𝑟 − ℎ)]  

(7) 

 

Substituting 𝑟 = 𝑟0 in the above equation, we get the plug 

velocity as: 

 

𝑢𝑝 =
(𝑃+𝑓+𝐾)

2𝜇
[−

1

6
𝑟0
2  −

4

3
𝑟0

1

2 ℎ
3

2 +
1

2
ℎ2 + ℎ 𝑟0]  (8) 

 

where, 𝑓 =
𝑠𝑖𝑛𝛼

𝐹
, 𝐾 =

𝜇0 𝑀𝐻0

𝜌 𝑈0
2 , 𝐹 =

𝜇  𝑢
1
2

𝜌 𝑔 𝑅0

3
2

. 

The flux 𝑄 of the fluid is given as: 

 

𝑄 = 2∫ 𝑢𝑝 𝑟 𝑑𝑟 + 2∫ 𝑢 𝑟 𝑑𝑟
ℎ

𝑟0

𝑟0
0

  (9) 

 

∴ 𝑄 =
(𝑃+𝑓+𝐾)

𝜇
[−

1

168
𝑟0
4  −

2

7
𝑟0

1

2 ℎ
7

2 +
1

8
ℎ4 +

1

6
ℎ3𝑟0]  (10) 

 

The non-dimensional quantities are specified as:  

 

𝑟′ =
𝑟

𝑅0
,  𝑟0

′ =
𝑟0

𝑅0
, 𝛿1

′ =
𝛿1

𝑅0
, 𝛿2

′ =
𝛿2

𝑅0
, 𝐻 =

ℎ

𝑅0
,  

 𝑧′ =
𝑧

𝐵
, 𝐿1
′ =

𝐿1

𝐵
, 𝐿2
′ =

𝐿2

𝐵
, 𝐵1

′ =
𝐵1

𝐵
,  

𝐻′ =
𝑀

𝐻0
, 𝑢 =

𝑢′

𝑈0
, 𝑑1

′ =
𝑑1

𝐵
, 𝑑2

′ =
𝑑2

𝐵
,  

𝑄′ =
𝑄

𝑈0𝑅0
2 , 𝑅

∗(𝑧′) =
𝑅∗(𝑧)

𝑅0
, 𝑝′ =

𝑝
𝜇 𝑈0 𝐵

𝑅0
2

,  

𝑟0
′ =

𝑟0

𝑅0
, 𝑟′ =

𝑟

𝑅0
.  

(11) 

 

From Eq. (10), Eq. (11) yields as:  

 

𝑄 = (𝑃 + 𝑓 + 𝐾) [−
1

168
𝑟0
4  −

2

7
𝑟0

1

2 𝐻
7

2 +
1

8
𝐻4 +

1

6
𝐻3𝑟0]  

(12) 

 

Eq. (12) can be expressed as: 

 
𝜕𝑝

𝜕𝑧
= −

𝑄

[−
1

168
𝑟0
4 −

2

7
𝑟0

1
2 𝐻

7
2+

1

8
𝐻4+

1

6
𝐻3𝑟0]

+ 𝑓 + 𝐾  
(13) 

 

The primitive of the Eq. (13) gives the pressure difference 

∆𝑝 along the total length of the channel as: 
 

∆𝑝 = ∫
𝜕𝑝

𝜕𝑧
𝑑𝑧 =

1

0

 

∫

{
 
 

 
 

−𝑄

[
−

1

168
𝑟0
4 −

2

7
𝑟0

1
2 𝐻

7
2

+
1

8
𝐻4+

1

6
𝐻3𝑟0

]

+ 𝑓 + 𝐾

}
 
 

 
 

 𝑑𝑧
1

0
  

(14) 

 

The resistance to flow is defined as: 
 

𝜆 =
∆𝑝

𝑄
  (15) 

 

From Eq. (14) and (15), we get, 

𝜆 =
1

𝑄
∫ {

−𝑄

[−
1

168
𝑟0
4 −

2

7
𝑟0

1
2 𝐻

7
2+

1

8
𝐻4+

1

6
𝐻3𝑟0]

+ 𝑓 + 𝐾}  𝑑𝑧
1

0
  (16) 

 

In the absence of stenosis (𝐻 = 1), the pressure drop is 

obtained as: 

 

(∆𝑝)𝑛 = ∫ {
−𝑄

[−
1

168
𝑟0
4 −

2

7
𝑟0

1
2+

1

8
+
1

6
𝑟0]

+ 𝑓 + 𝐾}  𝑑𝑧
1

0
  (17) 

 

In the absence of stenosis, resistance to the flow is defined 

as: 

 

𝜆𝑛 =
(∆𝑝)𝑛
𝑄

 (18) 

 

From Eq. (17) and (18), we acquire, 

 

𝜆𝑛 =
1

𝑄
∫ {

−𝑄

[−
1

168
𝑟0
4 −

2

7
𝑟0

1
2+

1

8
+
1

6
𝑟0]

+ 𝑓 + 𝐾}  𝑑𝑧
1

0
  (19) 

 

The normalized resistance to the flow is specified as: 

 

𝜆 =
𝜆

𝜆𝑛
  (20) 

 

The shear stress acting on the wall of the channel is given 

by: 
 

𝜏𝑤 = −𝜇
𝜕𝑢

𝜕𝑟
|
𝑟=ℎ

  (21) 

 

Applying dimensional quantities (11) to Eq. (21), it gives:  
 

𝜏𝑤
′ =

𝜏𝑤

[
𝜇𝑈

𝑅0
]
  (22) 

 

Eq. (22) reduces to:  
 

𝜏𝑤
′ = −

𝜕𝑢′

𝜕𝑟′
  (23) 

 

Utilizing Eq. (7) in non-dimensional form and Eq. (13) in 

Eq. (23), we get : 
 

𝜏𝑤 =
−𝑄

2
{

2𝑟0

1
2𝐻

1
2−𝐻−𝑟0

1

168
𝑟0
4+

2

7
𝑟0

1
2 𝐻

7
2−

1

8
𝐻4−

1

6
𝐻3𝑟0

} + 𝑓 + 𝐾  (24) 

 

In the absence of stenosis (𝐻 = 1), the shear stress at the 

wall is computed from Eq. (24) as: 
 

(𝜏𝑤)𝑛 =
−𝑄

2
{

2𝑟0

1
2 −1−𝑟0

1

168
𝑟0  
4 +  

2

7
𝑟0

1
2  −  

1

8
  −  

1

6
𝐻3𝑟0

} + 𝑓 + 𝐾  (25) 

 

The normalized shear stress at the wall is specified as: 
 

𝜏𝑤 =
𝜏𝑤
(𝜏𝑤)𝑛

 (26) 
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3. NUMERICAL DISCUSSION AND RESULTS  

 

The resistance to the flow and wall shear stress are two key 

characteristics in the study of blood flow through a stenosed 

artery. Analytical solutions for flow resistance (𝜆̅) and wall 

shear stress (𝜏�̅�)  are indicated by Eq. (20) and (26). The 

special effects of several constraints on flow resistance (𝜆̅) 
and wall shear stress (𝜏𝑤) are computed numerically by using 

MATHEMATICA and results are presented through graphs. 

Figures 2-25 illustrate the effects of impedance and wall 

shear stress on various constraints with stenosis heights 

(𝛿1, 𝛿2) . It is noticed that impedance (𝜆̅)  ascends and wall 

shear stress (𝜏�̅�) descends with the radial distance of the plug 

region (Figures 2, 4, 14, and 16 when 𝐹 = 0.1 and Figures 3, 

5, 15, and 17 when 𝐹 = 0.3), i.e. the impedance increases and 

shear stress of wall decreases with a non-Newtonian character 

of the Casson liquid. Furthermore, an impedance of the flow 

(𝜆̅) increases with growth in magnetic force field constraint 

(𝑀)  (see Figures 6, 8 when 𝐹 = 0.1  and Figures 7, 9 

when  𝐹 = 0.3 ) and angle of proclivity (𝛼) when 𝐹 = 0.1  
(Figures 10 and 12) and 𝐹 = 0.3 (Figures 11 and 13). These 

results match with the earlier outcomes of Shukla et al. [5], 

Maruti Prasad and Radhakrishnamacharya [15], and Verma 

and Parihar [18]. 

Figures 14-25 illustrate the impacts of wall shear stress (𝜏�̅�) 
with stenosis heights (𝛿1, 𝛿2). It is observed that wall shear 

stress (𝜏�̅�) also increases with magnetic forced field 

constraint (𝑀)  and angle of proclivity (𝛼) (respectively 

Figures 18, 20, 22, and 24 when 𝐹 = 0.1 and Figures 19, 21, 

23, and 25 when 𝐹 = 0.3). These outputs are linked with the 

past outcomes of Young [1], MarutiPrasad, and 

Radhakrishnamacharya [15]. The behavior of impedance and 

wall shear stress on both heights ( 𝛿1, 𝛿2)  of stenosis are 

illustrated in Figures 26-29. It is also seen that 𝜆̅ and 𝜏�̅� acting 

over both heights (𝛿1, 𝛿2) of stenosis. These outputs are linked 

with the past outcomes of Young [1], Shukla et al. [5], Maruti 

Prasad, and Radhakrishnamacharya [15]. 

 

 
Figure 2. Sketch of 𝛿1& 𝑟 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =

0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.1, 𝛼 = 𝜋 6⁄ , 𝑀 = 0.5  
 

 
 

Figure 3. Sketch of 𝛿1& �̅�, 𝑟 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, 𝛼 = 𝜋 6⁄ , 𝑀 = 0.5 

 
 

Figure 4. Sketch of 𝛿2& 𝑟 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.1, 𝛼 = 𝜋 6⁄ , 𝑀 = 0.5 

 

 
 

Figure 5. Sketch of 𝛿2& 𝑟 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, 𝛼 = 𝜋 6⁄ , 𝑀 = 0.5 

 

 
 

Figure 6. Sketch of 𝛿1& 𝑀 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.1, 𝑟 = 0.2, 𝛼 = 𝜋 6⁄  

 

 
 

Figure 7. Sketch of 𝛿1&𝑀 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, 𝑟 = 0.2, 𝛼 = 𝜋 6⁄  

541



 

 
 

Figure 8. Sketch of 𝛿2& 𝑀 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.1, 𝑟 = 0.2, 𝛼 = 𝜋 6⁄  

 
Figure 9. Sketch of 𝛿2& 𝑀 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =

0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, 𝑟 = 0.2, 𝛼 = 𝜋 6⁄  

 
 

Figure 10. Sketch of 𝛿1& 𝛼 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.1, 𝑟 = 0.2, 𝑀 = 0.5 

 

 
 

Figure 11. Sketch of 𝛿1& 𝛼 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, 𝑟 = 0.2, 𝑀 = 0.5 

 

 
 

Figure 12. Sketch of 𝛿2& 𝛼 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.1, 𝑟 = 0.2, 𝑀 = 0.5 

 
 

Figure 13. Sketch of 𝛿2& 𝛼 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, 𝑟 = 0.2, 𝑀 = 0.5 

 
 

Figure 14. Sketch of 𝛿1& 𝑟 on 𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.1,𝑀 = 0.5, 𝛼 = 𝜋 6⁄  

 

 
 

Figure 15. Sketch of 𝛿1& 𝑟 on𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3,𝑀 = 0.5, 𝛼 = 𝜋 6⁄  
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Figure 16. Sketch of 𝛿2& 𝑟 on 𝜏�̅�with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.1, 𝛼 = 𝜋 6⁄ , 𝑀 = 0.5 

 

 
 

Figure 17. Sketch of 𝛿2& 𝑟 on 𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, , 𝛼 = 𝜋 6⁄ , 𝑀 = 0.5 

 
 

Figure 18. Sketch of 𝛿1& 𝑀 on 𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.1, 𝑟 = 0.2, 𝛼 = 𝜋

6⁄  

 

 
 

Figure 19. Sketch of 𝛿1& 𝑀 on 𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, 𝑟 = 0.2, 𝛼 = 𝜋

6⁄  

 
 

Figure 20. Sketch of 𝛿2& 𝑀 on 𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.1, 𝑟 = 0.2, 𝛼 = 𝜋 6⁄  

 

 
 

Figure 21. Sketch of 𝛿2& 𝑀 on 𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, 𝑟 = 0.2, 𝛼 = 𝜋

6⁄  

 

 
 

Figure 22. Sketch of 𝛿1& 𝛼 on 𝜏�̅�with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, , 𝑟 = 0.2, 𝑀 = 0.5 

 

 
 

Figure 23. Sketch of 𝛿1& 𝛼 on 𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, , 𝑟 = 0.2, 𝑀 = 0.5 

543



 

 
 

Figure 24. Sketch of 𝛿2 & 𝛼 on 𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, 𝑟 = 0.2, 𝑀 = 0.5 

 

 
 

Figure 25. Sketch of 𝛿2&𝛼on 𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, , 𝑟 = 0.2, 𝑀 = 0.5 

 

 
 

Figure 26. Sketch of 𝛿1 & 𝛿2 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, 𝑟 = 0.2,𝑀 =

0.5, 𝛼 = 𝜋 6⁄  

 
 

Figure 27. Sketch of 𝛿2 & 𝛿1 on 𝜆̅ with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, , 𝑟 = 0.2,𝑀 =

0.5, 𝛼 = 𝜋 6⁄  

 
 

Figure 28. Sketch of 𝛿1& 𝛿2 on 𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, , 𝑟 = 0.2,𝑀 =

0.5, 𝛼 = 𝜋 6⁄  

 
 

Figure 29. Sketch of 𝛿2& 𝛿1 on 𝜏�̅� with 𝑑1 = 0.2, 𝑑2 =
0.6, 𝐿1 = 𝐿2 = 0.2, 𝑞 = 0.1, 𝐹 = 0.3, , 𝑟 = 0.2,𝑀 = 0.5,

𝛼 = 𝜋 6⁄   

 

 

4. CONCLUDING REMARKS  

 

In the present study, we have theoretically discussed the 

steady and incompressible Casson fluid flow through an 

inclined non-uniform tube with multiple stenoses under the 

influence of the force field. The concluding remarks are: 

• The impedance of the flow (𝜆̅)  increases and the wall 

shear stress (𝜏�̅�) decreases as an increase in the radial 

distance of the plug flow region (𝑟). 
• An increase in the non-Newtonian character of the Casson 

fluid the impedance of the flow  (𝜆̅)  ascends and wall 

shear stress (𝜏�̅�) descends. 

• The impedance of the flow (𝜆̅) increases with growth in 

magnetic force field constraint (𝑀)  and angle of 

proclivity (𝛼).    
• The wall shear stress (𝜏�̅�) also increases with magnetic 

forced field constraint (𝑀) and angle of proclivity (𝛼). 
• An increase in heights (𝛿1, 𝛿2) of the stenosis decelerates 

the wall shear stress and resistance to the flow. 
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NOMENCLATURE 

𝐵 Length of the channel 

𝐿1 Length of primary stenosis 

𝐿2 Length of secondary stenosis 

𝛿1 Maximum height of primary stenosis 

𝛿2 Maximum height of secondary stenosis 

𝑟 Radial coordinate 

𝛼 Angle of proclivity 

𝜆̅ Resistance to the flow 

𝜇0 Magnetic permeability 

𝐻′ magnetic field intensity 

𝜏𝑟 𝑧 shear stress 

𝜇 blood viscosity 

𝜏0 yield stress 

𝑧 Axial coordinate 

𝑝 Pressure across the region 

𝜏�̅� Wall shear stress 
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