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A mathematical model of reaction-diffusion problem with Michaelis-Menten kinetics 

in catalyst particles of arbitrary shape is investigated. Analytical expressions of the 

concentration of substrates are derived as functions of the Thiele modulus, the modified 

Sherwood number, and the Michaelis constant. A Taylor series approach and the 

Akbari-Ganji's method are utilized to determine the substrate concentration and the 

effectiveness factor. The effects of the shape factor on the concentration profiles and 

the effectiveness factor are discussed. In addition to their simple implementations, the 

proposed analytical approaches are reliable and highly accurate, as it will be shown 

when compared with numerical simulations. 
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1. INTRODUCTION

Nonlinear differential equations in general and reaction-

diffusion equations, in particular, arise as mathematical 

models of various phenomena sciences and engineering, 

where solutions of theoretical and experimental problems are 

often steady-state reaction-diffusion equations with nonlinear 

chemical kinetics. Of these problems, we mention as examples 

mathematical models in immobilized enzymes [1, 2], 

microbial cells [3-5], respiring tissue [6], and artificial kidney 

system [7]. Various analytical and numerical approaches have 

been utilized to find approximate solutions to these models. 

For example, Tosaka and Miyake [8] analyzed a mathematical 

model for oxygen diffusion in a spherical cell using an integral 

equation method. Maalmi et al. [9] presented the mathematical 

expressions for the steady-state reaction rate and the 

associated reactant concentration profiles using semi-

analytical and numerical methods. Indira and Rajendran 

studied a mathematical model based on polyphenol oxidase 

catechol as a prototype enzymatic electro system [10]. Do and 

Greenfield used a finite integral transformation approach to 

solve a nonlinear kinetics problem in a general solid shape [11]. 

Bucolo and Tripathi studied the governing equations for the 

exchange of substrate between vascular and extravascular 

compartments on a steady-state condition [12]. Napper and 

Schubert investigated a mathematical Michaelis-Menten 

kinetics model of oxygen delivery to heart tissue [13]. 

Rajendran et al. used a homotopy perturbation approach for 

deriving an analytical expression of mediated 

bioelectrocatalysis concentration [14]. 

It is almost impossible to find exact solutions to nonlinear 

differential equations. Therefore, many numerical and 

analytical methods have been developed to find approximate 

solutions of nonlinear models that arise in real applications in 

almost all branches of sciences and engineering [15].  

Although there are many effective numerical methods to 

solve nonlinear equations, finding approximate analytical 

solutions remains an ultimate goal to obtain a profound 

understanding of the effect of different parameters on the 

governing system. In addition, some serious drawbacks come 

along with numerical solutions, such as achieving numerical 

stabilities and the difficulty of adjusting parameters to match 

the numerical data [16]. Of the most used analytical methods, 

we mention the homotopy perturbation method [17, 18], 

homotopy analysis method [19], variational iteration method 

[20], Akbari-Ganji’s method [21], Green’s function method 

[22], Adomian decomposition method [23], and Taylor series 

method [24].  

In addition to being largely accessible to researchers with a 

moderate mathematical background, recent applications of the 

Taylor series method (TSM) and Akbari-Ganji's method 

(AGM) have proved to be efficient and highly accurate for 

solving nonlinear models arise in various fields of sciences and 

engineering. For example, TSM has been employed in solving 

fractal Bratu equation [24], Lane–Emden equation [25], 

nonlinear reaction-diffusion equation in the electroactive 

polymer film [26], nonlinear equation in mass transfer [27], 

nonlinear concentration equation in electroanalytical 

chemistry [28], nonlinear reaction-diffusion problem in 

electrostatic interaction [29] and a nonlinear Poisson–

Boltzmann equations [30]. The Akbari‐Ganji's method (AGM) 

has also been utilized for deriving semi‐analytic solutions of 

nonlinear models. For example, Berkan [21] used AGM to 

study the steady three-dimensional problem of condensation 

film on an inclined rotating. Nirmala et al. [31] derived the 

steady-state substrate and product concentrations for non-

Michaelis-Menten kinetics in an amperometric biosensor 

using the hyperbolic function method, which is a particular 

case of the Akbari-Ganji method. Manimegalai et al. [32] used 

AGM to obtain approximate analytical solutions for the 

nonlinear equations that describe diffusion-limited reaction 

within the film. Dharmalingam et al. [33] solved nonlinear 
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reaction-diffusion equations that determine the substrate 

concentration in the electroactive polymer film using AGM. 

More applications of the AGM method can be found in ref. 

[34-36]. 

In the present work, we employ both the Taylor series and 

Akbari-Ganji's methods to investigate a nonlinear diffusion 

model of oxygen in general geometry. The aim is to obtain 

simple closed-form approximate expressions of substrate 

concentration and effectiveness factor using for all Thiele 

modulus values, Michaelis constant, and modified Sherwood 

numbers in a solid of general shape. 

 

 

2. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

 

A cell generally consists of a surface membrane and 

protoplasm. In the protoplasm, some organelles 

compartmentalize enzymes. The sequential metabolic 

reactions catalyzed by these enzymes provide the necessary 

energy for the cells. Therefore, the oxygen, which serves as 

the substrate for the metabolic reactions, plays an essential role 

in modulating these reactions. The oxygen tension gradient in 

a cell even governs the distribution of different organelles. The 

oxygen consumption rate in cells and tissues is a complex 

function of oxygen tension. 

The purpose of the present work is to predict the oxygen 

tension in a slap, cylindrical and spherical cell using an oxygen 

uptake kinetics of the Michaelis-Menten type. This kinetics is 

rigorous because it predicts reasonably well the observed 

oxygen uptake rates. In addition, an unsteady state oxygen 

diffusion model is considered here, and transients of oxygen 

tension may give a better understanding of the oxygen 

diffusion characteristics. 

The particle shape is assumed to have a strong symmetry to 

make the composition at any point in space as a function of a 

single spatial variable (e.g., slab, cylinder, and spherical 

enzyme support). Following Lin et al. [5], the diffusion of 

oxygen in general geometry is expressed as follows: 

 

𝐷 (
𝑑2𝑆

𝑑𝑋2
+

𝑛

𝑋

𝑑𝑆

𝑑𝑋
) −

𝑉𝑚𝑆

𝑆 + 𝑘𝑚

= 0 (1) 

 

𝑋 = 0;
𝑑𝑆

𝑑𝑋
= 0 (2) 

 

𝑋 = 𝑑;𝐷
𝑑𝑆

𝑑𝑋
= ℎ(𝑆0 − 𝑆) (3) 

 

where, S is the concentration of oxygen, D is the diffusion 

coefficients of oxygen, Vm is the maximum reaction rate, km is 

the Michaelis constant, respectively. The variable d represents 

the radius of the cell. S0 is the concentration of oxygen outside 

the cell membrane n is a shape factor. By introducing the 

following dimensionless variables 

 

𝐴 =
𝑆

𝑆0

, 𝑥 =
𝑋

𝑑
, 𝑆ℎ =

ℎ𝑑

𝐷
,𝐾𝑚 =

𝑘𝑚

𝑆0

, 

𝛼 = (
𝑉𝑚𝑑2

𝐷𝑆0

) 

(4) 

 

Eq. (1) can be expressed in the form  
 

𝑑2𝐴(𝑥)

𝑑𝑥2 +
𝑛

𝑥

𝑑𝐴(𝑥)

𝑑𝑥
−

𝛼𝐴(𝑥)

𝐾𝑚 + 𝐴(𝑥)
= 0 (5) 

 

The boundary conditions are 

 

𝑥 = 0,
𝑑𝐴

𝑑𝑥
= 0 (Symmetry condition), (6) 

 

𝑥 = 1,
𝑑𝐴

𝑑𝑥
= 𝑆ℎ(1 − 𝐴) (Mixed boundary condition), (7) 

 

where, A is the dimensionless concentration of oxygen, Sh is 

the modified Sherwood number, and x is the radial coordinate. 

The variable n characterizes the immobilized catalyst shape 

with n=0, 1, 2 for the slab, cylindrical and spherical particle, 

respectively. The geometry factor can be generalized to other 

non-standard catalysts particles [37, 38]. The shape parameter 

of the arbitrary geometry can be computed from the equation 

n=(LSa/V)-1, where L is the characteristic length for the chosen 

geometry, Sa is the surface area of the catalyst particle, and V 

is its volume. Non-integer values for geometries other than 

regular ones can also be used [39]. The effectiveness factor is 

given by 

 

𝐸𝑓 =
(1 + 𝐾𝑚)

𝛼
[
𝑑𝐴

𝑑𝑥
]
𝑥=1

. (8) 

 

From Eq. (4), it is evident that with large values of Thiele 

modulus α, the rate term dominates, and the reaction is fast 

while slow diffusion limits the overall rate. Smaller values of 

the Thiele modulus represent slow reactions with rapid 

diffusion. 

Michaelis-Menten constant Km reflects the enzyme's affinity 

for its substrate. The smaller the value of Km, the more strongly 

the enzyme binds the substrate. If the Km value is known, it 

becomes possible to predict the cell needs (enzymes or 

substrate) to speed up the enzymatic reaction. The Km value 

approximately measures the concentration of the substrate in 

the cell where a reaction is occurring. 

 

 

3. CONCENTRATION OF SUBSTRATE USING THE 

TAYLOR SERIE METHOD (TSM) 

 

This section uses TSM to solve the nonlinear boundary 

value problem (5)-(7). As discussed in the introduction, the 

TSM yields a semi-analytical solution in the form of a rapidly 

convergent series without a need for linearization.  

The analytical expression for the concentration using the 

TSM is given by  

 

𝐴(𝑥) = ∑
𝑥𝑖

𝑖!

∞

𝑖=0

𝑑𝑖𝐴

𝑑𝑥𝑖
|
𝑥=0

 

           = 𝐴(0) +
𝑥

1!

𝑑𝐴

𝑑𝑥
|
𝑥=0

+
𝑥2

2!

𝑑2𝐴

𝑑𝑥2|
𝑥=0

+
𝑥3

3!

𝑑3𝐴

𝑑𝑥3|
𝑥=0

+ 

(9) 

 

The successive derivatives of the function A(x) (see 

Appendix A) are computed at 0 and denoted by A1(0), A2(0), 

A3(0), etc. Therefore, 

 

𝐴(𝑥) = 𝐴(0) + 𝐴1(0)𝑥2 + 𝐴2(0)𝑥4 + 𝐴3(0)𝑥6, (10) 

 

where, 
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𝐴1(0) =
𝛼𝐴(0)

(𝑛 + 1)(𝐾𝑚 + 𝐴(0))

1

2!
, 

𝐴2(0) =
3𝛼2𝐴(0)

(𝑛+1)(𝑛+3)(𝐾𝑚+𝐴(0))3
1

4!
,  

𝐴3(0) =
15𝛼3𝐴(0)𝐾𝑚[(𝑛 + 1)𝐾𝑚 − 2𝐴(0)(𝑛 + 3)]

6! (𝑛 + 1)2(𝑛 + 3)(𝑛 + 5)(𝐾𝑚 + 𝐴(0))5
   

(11) 

 

From boundary condition (7), we get  

 
𝑆ℎ𝐴(0) − 𝑆ℎ + 𝐴1(0)(2 + 𝑆ℎ) + 𝐴2(0)(4 + 𝑆ℎ) + 𝐴3(0) 
(6 + 𝑆ℎ) = 0    

(12) 

 

The unknown quantity 𝐴(0) can be obtained by solving Eq. 

(12). For example, for the values Sh=1, Km=0.5, n=0, and α=1, 

we obtain:  

 

𝐴(0)6 + 3𝐴(0)5 + 3𝐴(0)4 + 1.10417𝐴(0)3 − 0.1125𝐴(0)2

− 0.159028𝐴(0) − 0.03125 = 0, 
 

which leads to A(0)=0.47119, and hence the substrate 

concentration, given by Eq. (10), becomes 

 

𝐴(𝑥) = 0.339599 + 0.2022388069𝑥2 + 0.1195389474𝑥4

− 0.0008691325663𝑥6. 
 

Using Eq. (8), the effectiveness factor is reduced to 

 

𝐸𝑓 =
(1 + 𝐾𝑚)

𝛼
(2𝐴1(0) + 4𝐴2(0) + 6𝐴3(0)), (13) 

 

where, 𝐴1(0), 𝐴2(0), and 𝐴3(0) are given in Eq. (11). 

Using the dimensionless variables in Eq. (4), the 

effectiveness factor is computed from Eq. (13),  

where 

𝐾𝑚 =
𝑘𝑚

𝑆0
, 

𝐴1(0) =

1
2

(
𝑉𝑚𝑑2

𝐷𝑆0
) 𝐴(0)

(𝑛 + 1)(
𝑘𝑚

𝑆0
+ 𝐴(0))

, 

𝐴2(0) =

3
4!

(
𝑉𝑚𝑑2

𝐷𝑆0
)
2

𝐴(0)

(𝑛 + 1)(𝑛 + 3)(
𝑘𝑚

𝑆0
+ 𝐴(0))

3 , 

𝐴3(0) =

15
6!

(
𝑉𝑚𝑑2

𝐷𝑆0
)
3

𝐴(0)
𝑘𝑚

𝑆0
((𝑛 + 1)

𝑘𝑚

𝑆0
− 2𝐴(0)(𝑛 + 3))

(𝑛 + 1)2(𝑛 + 3)(𝑛 + 5)(
𝑘𝑚

𝑆0
+ 𝐴(0))

5 . 

 

 

4. CONCENTRATION SUBSTRATE USING THE 

AKBARI-GANJI'S AND TAYLOR SERIES METHODS 

 

As discussed in the introduction, Akbari-Ganji's method is 

a powerful algebraic approach that produces semi-analytic 

approximate solutions of nonlinear differential equations. The 

method requires no linearization and gives solutions in terms 

of convergent series. The AGM begins by assuming the 

solution to Eq. (5) is in the form of the hyperbolic function: 

 

𝐴(𝑥) = 𝐵1 cosh(𝑚𝑥) + 𝐵2 sinh(𝑚𝑥) (14) 

Substituting boundary conditions (6)-(7) in Eq. (15) gives  

 

𝐵1 =
𝑆ℎ

𝑚 sinh 𝑚 + 𝑆ℎ cosh𝑚
, 𝐵2 = 0 (15) 

 

𝐴(𝑥) = 𝐴(0) cosh(𝑚𝑥) (16) 

 

where, 𝐴(0) = 𝐵1 =
𝑆ℎ

𝑚 sinh 𝑚+𝑆ℎ cosh𝑚
. 

From Eq. (17), we obtain 

 

𝑚 = cosh−1 (
𝐴(1)

𝐴(0)
) . (17) 

 

Therefore, a derived analytical expression of the 

concentration is given by 

 

𝐴(𝑥) = 𝐴(0) cosh [𝑥 cosh−1 [
𝐴(1)

𝐴(0)
]] (18) 

 

and the effectiveness factor is 

 

𝐸𝑓 =
(1 + 𝐾𝑚)𝐴(1)

𝛼
sinh [cosh−1 [

𝐴(1)

𝐴(0)
]] 

=
(1 + 𝐾𝑚)𝐴(1)

𝛼
√

(𝐴(1))
2
− 𝐴(0)2

𝐴(0)2
 

(19) 

 

As pointed out earlier, notice that A(0) can be obtained from 

Eq. (12) for given parameters values. When 𝑛 =
𝐿 𝑆𝑎

𝑉
− 1, both 

the concentration and effectiveness factor of a substrate of 

arbitrary shape can be obtained from Eq. (10).  

 

 

5. PREVIOUS RESULT 

 

Devi et al. [40] used the Adomian decomposition method 

(ADM) to find the following analytical expressions for the 

concentration of substrate and effectiveness factor. 

 

5.1 Slab 

 

The concentration of substrate and the effectiveness factor 

are given by  

 

𝐴(𝑥) = 1 + 𝑙(𝛼) + 𝑚(𝛼)𝑥2 

−2
𝑚(𝛼)𝐾𝑚

(𝐾𝑚 + 1)
[
3𝑙(𝛼)

2
+

5𝑚(𝛼)

12
−

𝑙(𝛼)𝑥2

2
−

𝑚(𝛼)𝑥4

12
] 

(20) 

 

𝐸𝑓 =
(1 + 𝐾𝑚)

𝛼
(2𝑚(𝛼) + 2

𝑚(𝛼)𝐾𝑚

(𝐾𝑚 + 1)
[𝑙(𝛼) +

𝑚(𝛼)

3
]) (21) 

 

5.2 Spherical 

 

The concentration of substrate and the effectvenes factor are 

given by in spherical is 

 

𝐴(𝑥) = 1 +
1

3
[𝑙(𝛼) + 𝑚(𝛼)] 

−2
𝑚(𝛼)𝐾𝑚

𝑆ℎ(𝐾𝑚 + 1)

[
 
 
 
𝑙(𝛼)

9
+

𝑚(𝛼)

15
+

𝑆ℎ𝑙(𝛼)

18
+

𝑆ℎ𝑚(𝛼)

18

+
𝑆ℎ𝑙(𝛼)𝑥2

2
+

𝑆ℎ𝑚(𝛼)𝑥4

12 ]
 
 
 
  

(22) 
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where 

 

𝑙(𝛼) = − [
1

2

𝛼

𝐾𝑚 + 1
+

𝛼

𝑆ℎ(𝐾𝑚 + 1)
] ,𝑚(𝛼)

=
1

2
[

𝛼

𝐾𝑚 + 1
] . 

𝐸𝑓 =
(1 + 𝐾𝑚)

𝛼
(−2

𝑚(𝛼)𝐾𝑚

𝑆ℎ(𝐾𝑚 + 1)
[
𝑆ℎ𝑙(𝛼) +

𝑆ℎ𝑚(𝛼)

3

])   

(23) 

 

It is to be mentioned here that the Adomian decomposition 

method usually fails to provide any meaningful information 

beyond a finite interval [41]. 

 

 

6. ESTIMATION OF PARAMETERS 

 

From Eq. (5), the reaction rate can be written in the form: 

 
1

𝑅
=

𝐾𝑚 + 𝐴

𝛼𝐴
 (24) 

 

that is, 𝑅𝐴 = 𝛼𝐴 − 𝐾𝑚𝑅 , where Km and 𝛼  are unknown 

parameters. Using the method of least squares, the normal 

equation, in a matrix form can be written as 

 

(
∑𝐴𝑖 − ∑𝑅𝑖

∑𝐴𝑖𝑅𝑖 − ∑𝑅𝑖
2
)(

𝛼
𝐾𝑚

) = (
∑ 𝐴𝑖𝑅𝑖

∑ 𝐴𝑖 𝑅𝑖
2
) (25) 

 

By solving the above system, we can obtain Thiele module 

(α) and Michaela’s constant (Km). Eq. (25) may also be written 

in the form 

 
1

𝑅
=

𝐾𝑚

𝛼

1

𝐴
+

1

𝛼
 (26) 

 

By plotting 1/R versus 1/A, we can obtain the slope Km/α 

and the intercept 1/α and hence the kinetic parameters Km 

and 𝛼 can be deduced. 

 

 

7. NUMERICAL SIMULATIONS 

 

The nonlinear differential Eq. (5) subject to boundary 

conditions (6) and (7) is solved numerically by using the 

MATLAB function “pdex4”. Figure 1 shows that the 

analytical TSM solution (Eqs. (10)), AGM solution (Eq. (20)), 

ADM solution [26], and the numerical solution are in strong 

agreement.  

For Figures 1(a)-(d), the following values of A(0) were used 

to generate the dimensionless concentrations: 

Figure 1(a): A(0)= 0.02166, 0.37910, 0.69631, 0.98651, 

Figure 1(b): A(0)=0.11800, 0.38558, 0.67532, 0.99950,  

Figure 1(c): A(0)=0.02609, 0.26651, 0.36167, 0.46493,  

Figure 1(d): A(0)= 0.26651, 0.45986, 0.58199. 

 

Tables 1-2 represent give a closer comparison between 

numerical results and analytical results (Taylor’s series 

method, Akbari-Ganji's method and Adomian decomposition 

method). The average relative errors at discrete points show 

that TSM and AGM are superior to the ADM, which is valid 

only for small values of parameters. 

 

 

 

 
 

Figure 1. Dimensionless concentration substrate A(x) versus 

dimensionless distance 𝑥 for different values of A(0) 
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Tables 3-6 show that the analytical values of the effective 

factor computed by the proposed TSM are equal to the 

numerical values for various kinetic parameters unlike the 

analytical values computed by the ADM where some 

variations are evident. 

 

Table 1. Comparison of numerical solution of the concentration of substrate A(x) with the analytical solutions by TSM, AGM, 

and ADM methods for Km=1, Sh=0.5 and different values of α (Slab, n=0) 
 

α=0.1, A(0)= 0.882322 

x Num TSM Eq. (10) TSM Error (%) AGM Eq. (18) AGM Error (%) ADM Eq.(20) ADM Error (%) 

0.0 0.9851 0.9851 0 0.9851 0.00 0.9851  0.00 

0.2 0.9853 0.9853 0.00 0.9853 0.00 0.9853  0.00 

0.4 0.9859 0.9859 0.00 0.9859 0.00 0.9859  0.00 

0.6 0.9869 0.9869 0.00 0.9869 0.00 0.9869  0.00 

0.8 0.9883 0.9883 0.00 0.9883 0.00 0.9883  0.00 

1.0 0.9901 0.9901 0.00 0.9901 0.00 0.9901  0.00 

Average Error 0.00   0.00    0.00 

      

α=0.2, A(0)= 0.779004  

x Num TSM Eq. (10) TSM Error (%) AGM Eq. (18) AGM Error (%) ADM Eq.(20) ADM Error (%) 

0.0 0.6872 0.6872 0 0.6872 0.00 0.6888 0.23 

0.2 0.6914 0.6913 0.01 0.6913 0.01 0.6929 0.22 

0.4 0.7039 0.7036 0.04 0.7034 0.07 0.7051 0.17 

0.6 0.7248 0.7241 0.10 0.7239 0.12 0.7255 0.10 

0.8 0.7544 0.753 0.19 0.7528 0.21 0.7543 0.01 

1.0 0.7905 0.7905 0.00 0.7905 0.00 0.7917 0.15 

Average Error 0.06   0.07   0.15 

      

α=0.7, A(0)= 0.545345  

x Num TSM Eq. (10) TSM Error (%) AGM Eq. (18) AGM Error (%) ADM Eq.(20) ADM Error (%) 

0.0 0.4889 0.4889 0 0.4889 0.00 0.5101 4.34 

0.2 0.4954 0.4953 0.02 0.4952 0.04 0.5163 4.22 

0.4 0.5153 0.5147 0.12 0.5143 0.19 0.535 3.82 

0.6 0.5487 0.5475 0.22 0.5468 0.35 0.5665 3.24 

0.8 0.5964 0.5942 0.37 0.5935 0.49 0.6113 2.50 

1.0 0.6555 0.6555 0.00 0.6555 0.00 0.6701 2.23 

Average Error 0.12  0.18  3.39 

 

Table 2. Comparison of numerical solution of the concentration of substrate A(x) with the analytical solutions by TSM, AGM, 

and ADM for Km=1, α=0.5 for different values of Sh (Spherical, n=2)  
 

Sh=1, m=0.881506 

x Num 
TSM Eq. 

(10) 

TSM Error 

(%) 
AGM Eq. (18) 

AGM Error 

(%) 
ADM Eq.(22) 

ADM Error 

(%) 

0.0 0.8815 0.8815 0 0.8815 0.00 0.9232 4.73 

0.2 0.8831 0.8831 0.00 0.8831 0.00 0.9233 4.55 

0.4 0.8879 0.8876 0.03 0.8877 0.02 0.9236 4.02 

0.6 0.8959 0.8956 0.03 0.8956 0.03 0.9241 3.15 

0.8 0.9071 0.9066 0.06 0.9066 0.06 0.9547 5.25 

1.0 0.9208 0.9208 0.00 0.9208 0.00 0.9255 0.51 

Average Error 0.02    0.02   3.70 

Sh=2, m=0.919362  

x Num 
TSM Eq. 

(10) 

TSM Error 

(%) 
AGM Eq. (18) 

AGM Error 

(%) 
ADM Eq.(22)  DM Error (%) 

0.0 0.9194 0.9194 0 0.9194 0.00 0.961 4.52 

0.2 0.921 0.921 0.00 0.921 0.00 0.9611 4.35 

0.4 0.9259 0.9258 0.01 0.9258 0.01 0.9613 3.82 

0.6 0.9341 0.9338 0.03 0.9338 0.03 0.9616 2.94 

0.8 0.9455 0.945 0.05 0.945 0.05 0.962 1.75 

1.0 0.9595 0.9595 0.00 0.9595 0.00 0.9625 0.31 

Average Error 0.02    0.02   2.95 

Sh=3, m= 0.932364 

x Num 
TSM Eq. 

(10) 

TSM Error 

(%) 
AGM Eq. (18) 

AGM Error 

(%) 
ADM Eq.(22) 

ADM Error 

(%) 

0.0 0.9324 0.9324 0 0.9324 0.00 0.974 4.46 

0.2 0.934 0.934 0.00 0.934 0.00 0.9741 4.29 

0.4 0.9389 0.9388 0.01 0.9388 0.01 0.9743 3.77 

0.6 0.9472 0.9469 0.03 0.9469 0.03 0.9745 2.88 

0.8 0.9587 0.9582 0.05 0.9582 0.05 0.9749 1.69 

1.0 0.9728 0.9728 0.00 0.9728 0.00 0.9752 0.25 

Average Error 0.02    0.02   2.89 
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Table 3. Comparison between simulation results and analytical results (TSM and ADM) for effective factor with fixed values 

of Km=0.1 and Sh=5 and various values α 

 
𝜶 Num TSM Eq. (13) % TSM Error  ADM Eq. (21) % ADM Error 

0 0.995 0.995 0.00  0.9952 0.02 

0.1 0.9954 0.9954 0.00  0.9956 0.02 

0.2 0.9904 0.9904 0.00  0.9912 0.08 

0.3 0.9848 0.9848 0.00  0.9868 0.20 

0.4 0.9787 0.9787 0.00  0.9824 0.38 

0.5 0.9718 0.9718 0.00  0.978 0.64 

0.6 0.9641 0.9641 0.00  0.9736 0.99 

0.7 0.9553 0.9553 0.00  0.9691 1.44 

0.8 0.9451 0.9451 0.00  0.9647 2.07 

0.9 0.9331 0.9331 0.00  0.9603 2.92 

1 0.9188 0.9188 0.00  0.9559 4.04 

Avg. Error  0.00   1.16 

 

Table 4. Comparison between simulation results and analytical results (TSM and ADM) for effective factor with fixed values 

of Km=50 and Sh=5 and various values α 

 
𝜶 Num TSM Eq. (13) % TSM Error ADM Eq. (21) % ADM Error 

0 0.9995 0.9995 0.00 0.9995 0.00 

0.1 0.999 0.999 0.00 0.999 0.00 

0.2 0.998 0.998 0.00 0.998 0.00 

0.3 0.9969 0.9969 0.00 0.9969 0.00 

0.4 0.9959 0.9959 0.00 0.9959 0.00 

0.5 0.9948 0.9948 0.00 0.9948 0.00 

0.6 0.9939 0.9939 0.00 0.9939 0.00 

0.7 0.9929 0.9929 0.00 0.9929 0.00 

0.8 0.9919 0.9919 0.00 0.9919 0.00 

0.9 0.9909 0.9909 0.00 0.9909 0.00 

1 0.9899 0.9899 0.00 0.9899 0.00 

Avg. Error  0.00  0.00 

 

Table 5. Comparison between simulation results and analytical results (TSM and ADM) for effective factor with fixed values 

of α=0.1 and Sh=5 and various values Km 

 
Km Num TSM Eq. (13) % TSM Error ADM Eq. (21) % ADM Error 

0 0.995 0.995 0.00 0.995 0.00 

0.1 0.9954 0.9954 0.00 0.9954 0.00 

0.2 0.9923 0.9923 0.00 0.9923 0.00 

0.3 0.9903 0.9903 0.00 0.9903 0.00 

0.4 0.9889 0.9889 0.00 0.9889 0.00 

0.5 0.988 0.988 0.00 0.988 0.00 

0.6 0.9874 0.9874 0.00 0.9874 0.00 

0.7 0.987 0.987 0.00 0.987 0.00 

0.8 0.9868 0.9868 0.00 0.9868 0.00 

0.9 0.9867 0.9867 0.00 0.9867 0.00 

1 0.9867 0.9867 0.00 0.9867 0.00 

Avg. Error  0.00  0.00 

 

Table 6. Comparison between simulation results and analytical results (TSM and ADM) for effective factor with fixed values 

of α=1 and Sh=5 and various values Km 

 
Km Num TSM Eq. (13) % TSM Error ADM Eq. (21) % ADM Error 

0 0.92 0.92 0.00 0.9559 3.90 

0.1 0.9188 0.9188 0.00 0.9359 1.86 

0.2 0.8933 0.8933 0.00 0.9259 3.65 

0.3 0.8799 0.8799 0.00 0.9053 2.89 

0.4 0.8726 0.8726 0.00 0.8912 2.13 

0.5 0.8705 0.8705 0.00 0.8815 1.26 

0.6 0.8685 0.8685 0.00 0.8750 0.75 

0.7 0.8670 0.8670 0.00 0.8708 0.44 

0.8 0.8655 0.8655 0.00 0.8683 0.32 

0.9 0.8640 0.8640 0.00 0.867 0.35 

1 0.8620 0.8620 0.00 0.8667 0.55 

Avg. Error  0.00  1.65 
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8. RESULTS AND DISCUSSION 

 

The nonlinear Eq. (5) is solved using two simple, efficient, 

and reliable approaches: The Taylor series and the Akbari-

Ganji methods. Semi-analytical approximate concentrations 

were obtained for all values of parameters using Taylor series 

(Eq. (10)) and AGM (Eq. (18)). Figures 1 and 2 show that there 

is a strong agreement between the analytical and numerical 

results. From Tables 1 and 2, it is confirmed that the accuracy 

of the proposed methods (TSM and AGM) significantly 

surpasses the accuracy of AGM. 

The obtained concentration depends on the Michaelis 

constant (Km), Thiele module (𝛼), and the modified Sherwood 

number (Sh). The Thiele modulus, which is used for the 

determination of the effectiveness factor, describes the 

relationship between diffusion and reaction as follows:  

 

𝛼 = √
𝑉𝑚𝐿2

2𝐷𝑆0

=
Diffusion Time

Reaction Time
 

 

The Sherwood number Sh, which is also known as the mass 

transfer Nusselt number represents the ratio of convective to 

diffusive mass transfer coefficients, that is   

 

𝑆ℎ =
𝐾𝑚𝐿

𝐷
=

Convective mass transfer coefficient

Diffusion mass transfer coefficient
 

 

where, L is a characteristic length, D is the mass diffusivity, km 

is the mass transfer coefficient. Figure 1 represents the 

substrate’s concentration for various Michaelis-Menten values 

of the constant Km, Thiele modulus α, and Sherwood number 

Sh for planar, cylindrical, and spherical particles. It is inferred 

from Figure 1 that the concentration of the substrate increases 

when Michaelis’s constant (Km) and Sherwood number (Sh) 

increase or the Thiele modulus (α) decreases for all geometries. 

The concentration curves for the spherical, cylindrical, and 

planar particles are plotted in Figure 1(d). It is observed that 

the substrate concentration for a spherical particle is greater 

than that of a planar or a cylindrical particle. 

To measure variations in reaction rates throughout the 

process, a parameter for the effectiveness factor, which is the 

ratio of the pellet's overall reaction rate to the reaction rate at 

the pellet's external surface, is introduced. 

The effectiveness factor is an essential indicator of pore 

diffusion and reactions on pore walls in porous catalytic pellets 

and solid fuel particles. It is established by Thiele [35] that the 

reaction rate in a particle may be expressed by the product of 

its rate under surface conditions and the effectiveness factor.   

Figure 2 demonstrates the effects of Thiele modulus, 

Michaelis constant, modified Sherwood number, and shape 

factors (slap, cylindrical and spherical) on the effectiveness 

factor. When the reaction rate controls the process, the 

effectiveness factor approaches unity. However, the 

effectiveness factor decreases rapidly when Thiele modulus's 

value increases (Figures 2(a)-2(c)) for all other parameters' 

values. 

At high Sherwood number values (𝑆ℎ), the mass transfer 

limitations are the dominating factors in determining the 

substrate conversion. Figure 2(a) shows the effects of 𝑆ℎ  on 

the internal effectiveness factor. The effectiveness factor 

continues to increase slowly as 𝑆ℎ  increases. When 𝑆ℎ , 
however, becomes larger than 1000, the effectiveness factor 

becomes independent of it. 

From Figure 2(b), it is inferred that the effectiveness factor 

is uniform for high Michaelis constant due to the intraparticle 

diffusion. 

 

 

 

 
 

Figure 2. Comparison of analytical expression of effective 

factor with simulation results for various values of Km, α and 

Sh 

 

The effectiveness factor curves for the spherical, cylindrical, 

and slap particles are plotted in Figure 2(c). From these figures, 

it is observed that the effectiveness factor for slap particle is 

more significant than a planar, cylindrical, and spherical 

particle. 

Figures 3(a)-(b) illustrate the influence of shape factor on 

the concentration and effectiveness factor for various 

parameters' values. From these figures, it is inferred that slab 

shape gave better results on the effectiveness factor than those 

of the other shapes. A better diffusion mass transfer in the slab 

shape leads to a better yield. 

The limiting cases for saturated (zero-order) catalytic 
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kinetics and un-saturated (first-order) catalytic kinetics are 

discussed in Appendix B. 

 

 

 
 

Figure 3. Concentration of substrate and effectiveness factor 

versus shape factor 

 

 

9. CONCLUSION 

 

Two approximate semi-analytical methods for solving 

reaction-diffusion problems inside catalyst particles were 

discussed. Analytical expressions for the substrate's 

concentration and the effectiveness factor for all parameters 

are obtained using Taylor series and Akbari-Ganji's methods. 

The effects of Michaelis constant, Thiele module, and 

modified Sherwood number, and the shape factor on the 

concentration profiles were discussed. The sensitivity analysis 

and estimation of the kinetics parameter were also reported. It 

was concluded that a lower shape factor results in a stronger 

effectiveness factor. In terms of mass diffusion transfer, the 

other form is inferior to the slab shape, leading to a lower yield. 

The analytical results derived by the proposed methods 

produced less relative error than the results of the Adomian 

decomposition method when compared to numerical 

simulation results. The proposed approximation approach can 

be applied to several multicomponent reactions in various 

catalyst geometries with adequate precision. 
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NOMENCLATURE 

 

Symbols Name Unit 

S Substrate concentration  mol/cm3 

S0 Bulk-substrate concentration mol/cm3 

km Michaelis – Menten constant mol/cm3 

D Effective diffusivity inside the 

particle  

cm2s-1 

Vm Maximum reaction rate  mol/cm3s 

x Spatial variable  cm 

h Permeability of the membrane at X=d cm/s 

d Radius of the cell cm 

α Dimensionless reaction rate   

X Dimensionless Spatial Variable  

Km Dimensionless Michaelis -Menten 

constant 

 

Sh Modified Sherwood number  

A Dimensionless substrate 

concentration (=S/S0) 

 

n Shape factor (n = 0 for slab, n=1 for 

cylindrical and n = 2 for spherical 

particle, n=(LSa/V)-1 for general 

geometry), L is the characteristic 

length for the chosen geometry, Sa is 

the surface area of the catalyst 

particle, and V is the volume  

 

 

 

APPENDIX A. APPROXIMATE ANALYTICAL 

SOLUTION OF EQ. (5) USING TAYLOR SERIES  

 

The Taylor series solution of Eq. (5) is given in the form 

 

𝐴(𝑥) = 𝐴(0) + 𝐴′(0)
𝑥

1!
+ 𝐴"(0)

𝑥2

2!
+ ⋯ (A1) 

 

From the boundary condition Eq. (6), we have 

 

𝐴′(0) = 0 (A2) 

 

and Eq. (5) can be rewritten as follows: 

 

[𝑥𝐴′′(𝑥) + 𝑛𝐴′(𝑥)](𝐾𝑚 + 𝐴(𝑥)) − 𝑥𝛼𝐴(𝑥) = 0 (A3) 

 

Differentiate the above equation with respect to x we get 

 

[𝑥𝐴′′′(𝑥) + (𝑛 + 1)𝐴′′(𝑥)](𝐾𝑚 + 𝐴(𝑥)) 

= −𝐴′(𝑥)[𝑛𝐴′(𝑥) + 𝑥𝐴′′(𝑥)] + 𝛼𝑥𝐴′(𝑥) + 𝛼𝐴(𝑥) 
(A4) 

 

When x=0, Eq. (A4) results in 
 

[(𝑛 + 1)𝐴′′(0)](𝐾𝑚 + 𝐴(0)) = 𝛼𝐴(0), (A5) 

 

and hence 

𝐴′′(0) =
𝛼𝐴(0)

(𝑛 + 1)(𝐾𝑚 + 𝐴(0))
 (A6) 

 

Differentiating Eq. (A7) with respect to x and substituting 

x=0 gives 

 

(𝑛 + 2)𝐴′′′(0)(𝐾𝑚 + 𝐴(0))
= 2𝛼𝐴′(0) − 𝑛𝐴′(0)𝐴′′(0)
− 2𝐴′(0)[𝑛𝐴′′(0) + 𝐴′′(0) 

 

Using initial condition in Eq. (7) gives 

 

𝐴′′′(0) = 0,  𝐴(5)(0) = 0 (A7) 

 

𝐴(4)(0) =
3𝛼2𝐴(0)

(𝑛 + 1)(𝑛 + 3)(𝐾𝑚 + 𝐴(0))3
 (A8) 

 

𝐴(6)(0)

=
15𝛼3𝐴(0)𝐾𝑚[(𝑛 + 1)𝐾𝑚 − 2𝐴(0)(𝑛 + 3)]

(𝑛 + 1)2(𝑛 + 3)(𝑛 + 5)(𝐾𝑚 + 𝐴(0))5
 

(A9) 

 

Substituting (A2) and (A6-A9) into (A1) gives the explicit 

concentration form. 

Substituting x=1 in the derived concentration and its 

derivative gives  

 

𝐴(1)

= 𝐴(0) +
𝛼𝐴(0)

(𝑛 + 1)(𝐾𝑚 + 𝐴(0))

1

2!

+
3𝛼2𝐴(0)

(𝑛 + 1)(𝑛 + 3)(𝐾𝑚 + 𝐴(0))3

1

4!

+
15𝛼3𝐴(0)𝐾𝑚[(𝑛 + 1)𝐾𝑚 − 2𝐴(0)(𝑛 + 3)]

(𝑛 + 1)2(𝑛 + 3)(𝑛 + 5)(𝐾𝑚 + 𝐴(0))5

1

6!
 

(A10) 

 

𝐴′(1)

= 𝐴(0) +
𝛼𝐴(0)

(𝑛 + 1)(𝐾𝑚 + 𝐴(0))

2

2!

+
12𝛼2𝐴(0)

(𝑛 + 1)(𝑛 + 3)(𝐾𝑚 + 𝐴(0))3

1

4!

+
90𝛼3𝐴(0)𝐾𝑚[(𝑛 + 1)𝐾𝑚 − 2𝐴(0)(𝑛 + 3)]

(𝑛 + 1)2(𝑛 + 3)(𝑛 + 5)(𝐾𝑚 + 𝐴(0))5

1

6!
+ ⋯ 

(A11) 

 

where, A(0) can be obtained from boundary condition (6). 

Now Eqs. (A10) and (A11) can be used in the boundary 

condition 

 

𝐴′(1) = 𝑆ℎ(1 − 𝐴(1)). (A12) 

 

From Eq. (A10), we can obtain the value of 𝐴(0) and hence. 

we can obtain the concentration of substrate for slap, spherical, 

and cylindrical cases by using 𝑛 = 0, 1, and 2, respectively.  

 

 

APPENDIX B. LIMITING CASES 

 

B.1 Saturated (zero order) catalytic kinetics  

 

We initially consider the situation where the substrate 

concentration of oxygen A(x) is much greater than the 

Michaelis constant Km, that is, A(x)>>Km. In such a case, Eq. 
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(5) takes on the simple linear form 

 

𝑥𝐴′′(𝑥) + 𝑛𝐴′(𝑥) − 𝛼𝑥 = 0 (B1) 

 

The boundary conditions are 

 

𝑥 = 0,
𝑑𝐴

𝑑𝑥
= 0 (B2) 

 

𝑥 = 1,
𝑑𝐴

𝑑𝑥
= 𝑆ℎ(1 − 𝐴) (B3) 

 

The solution is readily obtained for the following cases: 

For n=0, Eq. (B1) becomes 

 

𝐴′′(𝑥) − 𝛼 = 0 (B4) 

 

In this case the concentration and the effectiveness factor 

are, respectively, 

 

𝐴(𝑥) =
1

2
(
2𝑆ℎ − 𝛼(2 + 𝑆ℎ)

𝑆ℎ

+ 𝛼𝑥2) (B5) 

 

𝐸𝑓 =
(1 + 𝐾𝑚)

𝛼
[
𝑑𝐴

𝑑𝑥
]
𝑥=1

=
1

𝛼
(𝛼) = 1 (B6) 

 

For 𝑛 = 1, Eq. (B1) becomes 

 

𝑥𝐴′′(𝑥) + 𝐴′(𝑥) − 𝛼𝑥 = 0 (B7) 

 

and in this case, the concentration and the effictiveness 

factor are, respectively, 

 

𝐴(𝑥) =
1

4
(
4𝑆ℎ − 𝛼(2 + 𝑆ℎ)

𝑆ℎ

+ 𝛼𝑥2) (B8) 

  

𝐸𝑓 =
(1 + 𝐾𝑚)

𝛼
[
𝑑𝐴

𝑑𝑥
]
𝑥=1

=
1

𝛼
(
𝛼

2
) =

1

2
 (B9) 

 

For n=2, Eq. (B4) becomes 

 

𝑥𝐴′′(𝑥) + 2𝐴′(𝑥) − 𝛼𝑥 = 0 (B10) 

 

In this case, the concentration and the effictiveness factor 

are, respectively, 

 

𝐴(𝑥) =
1

6
(
6𝑆ℎ − 𝛼(2 + 𝑆ℎ)

𝑆ℎ

+ 𝛼𝑥2) (B11) 

 

𝐸𝑓 =
(1 + 𝐾𝑚)

𝛼
[
𝑑𝐴

𝑑𝑥
]
𝑥=1

=
1

𝛼
(
𝛼

3
) =

1

3
 (B12) 

 

B.2 Unsaturated (first order) catalytic kinetics  

 

Here we consider the case when the substrate concentration 

in the film is less than the Michaelis constant. That is, we 

assume that A(x)<<1. In this case, Eq. (5) can be written as 

follows 

 

𝑥𝐴′′(𝑥) + 𝑛𝐴′(𝑥) −
𝛼𝑥𝐴(𝑥)

𝐾𝑚

= 0 (B13) 

 

Assume a solution of the form 

 

𝐴(𝑥) = 𝐵1cosh (𝑚𝑥) + 𝐵2sinh (𝑚𝑥) (B14) 

 

By using boundary conditions (B2) and (B3), we obtain 

 

𝐵1 =
𝑆ℎ

𝑚 sinh 𝑚 + 𝑆ℎ cosh𝑚
, 𝐵2 = 0 (B15) 

 

and hence,  

 

𝐴(𝑥) =
𝑆ℎ cosh(𝑚𝑥)

𝑚 sinh 𝑚 + 𝑆ℎ cosh𝑚
 (B16) 

 

𝐴′(𝑥) =
𝑚𝑆ℎ sinh(𝑚𝑥)

𝑚 sinh𝑚 + 𝑆ℎ cosh𝑚
 (B17) 

 

𝐴′′(𝑥) =
𝑚2𝑆ℎ cosh(𝑚𝑥)

𝑚 sinh𝑚 + 𝑆ℎ cosh𝑚
 (B18) 

 

If we substitute these into Eq. (B14), we have 

 

𝑚2𝑆ℎ cosh( 𝑚𝑥)

𝑚 sinh 𝑚 + 𝑆ℎ cosh𝑚
+ 

𝑛

𝑥

𝑚𝑆ℎ 𝑠𝑖𝑛ℎ(𝑚𝑥)

𝑚 sinh𝑚 + 𝑆ℎ cosh𝑚

−
𝛼

𝐾𝑚

𝑚2𝑆ℎ cosh(𝑚𝑥)

𝑚 sinh 𝑚 + 𝑆ℎ cosh𝑚
= 0 

(B19) 

 

Using L’Hospital’s rule in Eq. (B21) at 𝑥 = 0 leads to 

 

𝑚2(1 + 𝑛)𝑆ℎ cosh(𝑚𝑥)

𝑚 sinh𝑚 + 𝑆ℎ cosh𝑚

−
𝛼

𝐾𝑚

𝑆ℎ cosh(𝑚𝑥)

𝑚 sinh 𝑚 + 𝑆ℎ cosh𝑚
= 0 

(B20) 

 

𝑚2(1 + 𝑛) −
𝛼

𝐾𝑚

= 0 (B21) 

 

which implies 

 

𝑚 = ±√
𝛼

𝐾𝑚(1 + 𝑛)
 (B22) 

 

Substituting this value in (B16) gives the explicit 

concentration of the substrate. The effictive factor is given by 

 

𝐸𝑓 =
(1 + 𝐾𝑚)

𝛼

𝑚𝑆ℎ sinh(𝑚𝑥)

𝑚 sinh𝑚 + 𝑆ℎ cosh𝑚
 (B23) 
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