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A mathematical model is developed to analysis the effects of gravitational force and 

rotation in a composite multilayered hollow cylinder which contain inner and outer 

piezo-thermoelasticity layers bonded by Linear Elastic Material with Voids (LEMV) is 

performed within the frame of dual-phase-lag model. The equation of displacement 

components, temperature, and electric are obtained using linear theory of elasticity. The 

dispersion equations are derived based on traction free boundary conditions and are 

numerically examined for CdSe material. The enumerated frequency, thermal and 

electrical nature against wave number is presented graphically. Adhesive layer LEMV 

is compared with Carbon Fiber Reinforced Polymer (CFRP) in the presence of gravity 

and rotation. 
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1. INTRODUCTION

Piezoelectric materials are ordinarily utilized for savvy 

structure applications because of their direct and converse 

piezoelectric impacts which enable them to be used as the both 

actuators and sensors. The structure and development of 

piezoelectric whirligigs and other pivoting sensors have 

significant applications in innovation. The investigation of the 

impacts of turn on the proliferation of waves in piezo-

thermoelastic cylinder has been broadly examined in the 

previous two decades. 

The generalized lagging performance in solids beneath 

high-rate heating is derived by precise correlation with the 

hyperbolic two-step model. The ballistic performance of heat 

transport in the electron gas is established to be captured by 

the second-order effect of the phase lag of the heat flux vector. 

In contrast to the parabolic two-step model, the ballistic 

behavior results in a sharp wave front in the history of heat 

propagation. Lord and Shulman [1] at first investigation the 

generalized dynamical hypothesis of thermoelasticity. Singh 

et al. [2] study proliferation of Rayleigh wave in two 

temperature dual phase lag thermoelasticity. Green and 

Lindsay [3] explored different parts of thermoelasticity. 

Othman et al. [4] examined impact of magnetic field on 

generalized piezo-thermoelastic rotating medium with two 

relaxation times. Assessment of the fundamental properties of 

thermomechanics, by Green and Naghdi [5]. Mindlin [6] 

determined the conditions of high recurrence vibrations of 

thermo-piezo-electric plate. Green and Naghdi [7] talked 

about damped heat waves in a elastic solid. Abou-Dina et al. 

[8] figure a model for nonlinear thermo-electroelasticity in

broadened thermo-electroelasticity in expanded

thermoelasticity. Green and Naghdi [9] quickly clarify

thermoelasticity without vitality scattering. Abo-Dahab [10]

examined proliferation of Stoneley waves in

magnetothermoelastic materials with voids and two 

unwinding times. Abd-Alla et al. [11] considered propagation 

of Rayleigh waves in magneto-thermo-versatile half–space of 

a homogeneous orthotropic material under the impact of the 

rotating, starting pressure and gravity field. Soderkvist [12] 

played out a thought for smaller scale machined gyroscopes 

actuators. Achenbach [13] researched wave proliferation in 

elastic solids. Impact of magnetic field on poroelastic bone 

model for inward rebuilding by Abd-Alla and Abo-Dahab [14]. 

Othman and Lotfy [15] talked about the impact of magnetic 

field and rotate of the 2-D issue of a fiber-fortified 

thermoelastic under three hypotheses with impact of gravity. 

Samal and Chattaraj [16] detail another advancement for 

surface wave proliferation in fiber reinforced anisotropic 

elastic layer between fluid immersed permeable half space and 

uniform fluid layer. Elnaggar and Abd-Alla [17] researches 

rayleigh waves in magneto-thermo-microelastic half-space 

under starting pressure. Paul and Raman [18] found wave 

engendering in a pyroelectric cylinder of arbitrary cross 

segment with a round cylindrical cavity. Paul and Nelson [19] 

plan ideas of axisymmetric vibration of piezocomposite 

hollow circular cylinder. Puri and Cowin [20] found plane 

waves in direct elastic materials with voids. The old style 

pressure vessal issues for direct elastic material with voids 

talked about by Cowin and Puri [21]. Ponnusamy [22] 

examined wave proliferation in a piezoelectric solid bar of 

circular cross-section immersed in fluid. Impact of rotation on 

generalized thermo-viscoelastic Rayleigh-Lamb waves by 

Sharma and Othman [23]. Assaf et al. [24] explored vibration 

and acoustic reaction of damped sandwich plates drenched in 

a light or heavy fluid. Tzou [25] discovered the macro to 

microscale heat transfer through the lagging behavior. Hobiny 

and Abbas [26]. generalized thermoelastic interaction in a two-

dimensional porous medium under dual phase lag model. 

Mahesh and Selvamani [27] formulate mathematical model for 
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bending analysis of generalized thermoelastic waves in a 

multilayered cylinder using theory of dual phase lagging.  

The present paper, DPL theory is used to study the influence 

of gravity and rotation on piezo-thermoelastic cylinder. The 

equation of displacement components, temperature and 

electric are obtained using linear theory of elasticity. The 

computed non-dimensional frequency is presented in the form 

of dispersion curves against various physical variables. 

Adhesive layer LEMV is compared with Carbon Fiber 

Reinforced Polymer (CFRP) in presence of gravity and 

rotation. The whole papers layout are given below: 

1. PROBLEM FORMULATION 

2. EQUATION OF MOTION FOR LINEAR ELASTIC 

MATERIALS WITH VOIDS LEMV 

3. BOUNDARY CONDITIONS AND FREQUENCY 

EQUATIONS 

4. NUMERICAL DISCUSSION 

5. CONCLUSIONS 

 

 

2. PROBLEM FORMULATION 

 

We deal with a homogeneous transversely isotropous 

thermally and electrically conducting composite multilayered 

hollow cylinder of limitless length with constant temperature 

𝑇0  in an unvaried state at the beginning. Cylinder rotating 

uniformly with an angular rate a couple of fastened axis in area 

with angular velocity Ω. In cylindrical coordinates (r, θ, z), the 

equations of motion within the absence of body force and as 

well as the outcome and centripetal forces are [27]: 

 

𝑐11(𝑢
𝑙
,𝑟𝑟 + 𝑟

−1𝑢𝑙 ,𝑟 + 𝑟
−2𝑢𝑙) + 𝑐13𝑤

𝑙
,𝑟𝑧

+ 𝑐44(𝑢
𝑙
,𝑧𝑧 + 𝑤

𝑙
,𝑟𝑧)

+ (𝑒15 + 𝑒31)𝜑,𝑟𝑧
𝑙 + 𝜌𝑔𝑤,𝑟

− 𝛽1𝑇
𝑙
,𝑟 + 𝜌( Ω

2𝑢 + 2Ω𝑤,𝑡)

= 𝜌𝑢,𝑡𝑡 

(1a) 

 

(𝑐44 + 𝑐13)(𝑢
𝑙
,𝑟𝑧 + 𝑟

−1𝑢𝑙 ,𝑧) + 𝑐33(𝑤
𝑙
,𝑧𝑧)

+ 𝑐44(𝑤
𝑙
,𝑟𝑟 + 𝑟

−1𝑤𝑙 ,𝑟)

+ 𝑒15(𝜑,𝑟𝑟
𝑙 + 𝑟−1𝜑,𝑟) − 𝜌𝑔𝑢,𝑟

− 𝛽3𝑇
𝑙
,𝑟 + 𝜌( Ω

2𝑤 + 2Ω𝑢,𝑡)

=  𝜌𝑤,𝑡𝑡 

(1b) 

𝑟−1𝑒15(𝑤,𝑟𝑟
𝑙 + 𝑢,𝑟𝑧

𝑙 ) + 𝜀11𝜑,𝑟
𝑙 + 𝑒13𝑢,𝑟𝑧

𝑙

+ 𝑟−1(𝑢,𝑟
𝑙 + 𝑣,𝜃𝑧

𝑙 ) + 𝑒33𝑤,𝑧𝑧
𝑙

+ 𝜀33𝜑,𝑧
𝑙 + 𝑝3𝑇 = 0 

(1c) 

 

𝑘1𝑇,𝑟𝑟 + 𝑘3𝑇,𝑧𝑧 + 𝜏𝜃(𝑘1𝑇,𝑟𝑟 + 𝑘3𝑇,𝑧𝑧),𝑡

= (1 + 𝜏𝑞
𝜕

𝜕𝑡
 ) [𝜌𝐶𝑇𝑇

+ 𝑇0(𝛽1𝑢,𝑟 + 𝛽3𝑤,𝑧 − 𝑝3𝜙,𝑧)] 

(1d) 

 

The solution of Eq. (1) is considered in the form [28]. 

 

𝑢𝑙 = 𝑈𝑙 ,𝑟exp {𝑖(𝑘𝑧 + 𝑝𝑡)} 

𝑤𝑙 = (
𝑖

ℎ
)𝑊𝑙  exp {𝑖(𝑘𝑧 + 𝑝𝑡)} 

𝜑𝑙 = (𝑖𝑐44/𝑎𝑒33)𝐸
𝑙𝑒𝑖(𝑘𝑧+𝑝𝑡) 

𝑇𝑙  = (
𝑐44
𝛽3
) (
𝑇𝑙

ℎ2
)exp {𝑖(𝑘𝑧 + 𝑝𝑡) 

(2) 

 

where, 𝑢𝑙 , 𝑤𝑙 , 𝜑𝑙 , 𝑇𝑙  are displacement potentials, k denotes 

wave number, p denotes angular frequency and 𝑖 = √−1. We 

introduce the non dimensional quantities 𝑥 =
𝑟

𝑎
, 𝜀 = 𝑘𝑎, 𝑐 =

𝜌𝑝, ‘a’ denotes geometrical parameter of the composite hollow 

cylinder.  𝑐1̅1 =
𝑐11

𝑐44⁄ , 𝑐1̅3 =
𝑐13

𝑐44⁄ , 𝑐3̅3 =
𝑐33

𝑐44⁄ , 𝑐6̅6 =

𝑐66
𝑐44⁄ ,�̅� =

𝛽1
𝛽3
⁄ , �̅�𝑖 =

(𝜌𝑐44)
1
2

𝛽3
2𝑇0𝑎Ω

. 

Substituting the Eq. (2) in Eq. (1) we obtain,  

 

[�̅�11
𝑙 ∇2 + 𝜀2 − (𝑐𝑎)2]𝑈𝑙 −  𝜀(1 + 𝑐1̅3

𝑙 )𝑊𝑙+ 𝜀(�̅�15
𝑙 +

�̅�31
𝑙 )𝐸𝑙 − �̅�𝑇𝑙 = 0 

𝜀(1 + 𝑐1̅3
𝑙 )∇2𝑈𝑙+[�̅�44

𝑙 ∇2 + 𝜀2𝑐3̅3
𝑙 − (𝑐𝑎)] 𝑊𝑙  +(�̅�15∇

2 +
𝐴6)𝑐4̅4𝐸

𝑙 + 𝜀𝑇𝑙 = 0 

𝐴3∇
2𝑈𝑙 + [�̅�15∇

2 + 𝜀2]𝑊𝑙 + [−
𝐾33
𝐾
∇2 + 𝐾33

2 𝑙𝜀2] 𝐸𝑙

− 𝑝𝑙𝜀𝑇𝑙 = 0 

𝜄∇2𝑈𝑙 −𝑀𝑊𝑙 +𝑀3𝐸
𝑙 + [

𝐾∇2

𝛽∗𝑎2
(1 + 𝜏𝑡) − 𝑀1 −𝑀2] 𝑇

𝑙

= 0 

 

The above relation reformulated as follows: 

 

(

 
 
 
 

𝑐1̅1
𝑙 ∇2 + 𝐴1 −𝐴2 𝐴3 −𝐴4
𝐴2∇

2 𝑐4̅4
𝑙 ∇2 + 𝐴5 (�̅�15∇

2 + 𝐴6)𝑐4̅4 𝐴7

𝐴3∇
2 �̅�15∇

2 + 𝐴6 −
𝐾33
𝐾
∇2 + 𝐴8 −𝐴9

𝜄∇2 −𝑀 𝑀3
𝐾∇2

𝛽∗𝑎2
(1 + 𝜏𝑡) −𝑀1 −𝑀2)

 
 
 
 

(𝑈𝑙 ,𝑊𝑙 , 𝐸𝑙 , 𝑇𝑙)𝑇 = 0 (3) 

 

where, ∇2=
𝜕2

𝜕𝑥2
+
1

𝑥

𝜕

𝜕𝑥
, 𝐴1 = 𝜀

2 − (𝑐𝑎)2,𝐴2 = 𝜀(1 + 𝑐1̅3
𝑙 ),  

 

𝐴3 = 𝜀(�̅�15
𝑙 + �̅�31

𝑙 ) , 𝐴4 = �̅� , 𝐴5 = 𝜀
2𝑐3̅3
𝑙 − (𝑐𝑎) ,  𝐴6 =

𝜀2,𝐴7 = 𝜀,𝐴8 = 𝐾33
2 𝑙𝜀2,𝑀3 = −

𝑖𝑝3𝛽
∗𝑇0𝑧𝑘𝑝

𝑒33𝑎
2 , 𝑀 =

𝜏𝑞𝑝
2𝑖𝑎

𝑐44
,  

𝑀1 =
𝑘2

𝛽∗
(1 + 𝑖𝑝𝜏𝑡), 𝑀2 =

𝜌𝑙𝑐𝑣𝑖𝑝

𝛽∗
(1 − 𝜏𝑞𝑝),𝐴9 = 𝑝

𝑙𝜀, 

𝜄 =
𝛽∗𝑇0𝑧

𝑐44
. 

 

Eq. (3), reformulated as the following form 

 

(𝐴∇8 + 𝐵∇6 + 𝐶∇4 + 𝐷∇2 + 𝐸)(𝑈𝑙  𝑊𝑙  𝐸𝑙  𝑇𝑙)𝑇 = 0 (4) 

The solution of Eq. (4) is obtained as 

 

𝑈𝑙 =∑[𝐴𝑗𝐽𝑛(𝛼𝑗𝑥) + 𝐵𝑗𝑦𝑛(𝛼𝑗𝑥)],

4

𝑗=1

 

𝑊𝑙 =∑𝑎𝑙𝑗 [𝐴𝑗𝐽𝑛(𝛼𝑗𝑥) + 𝐵𝑗𝑦𝑛(𝛼𝑗𝑥)],

4

𝑗=1

 

𝐸𝑙  = ∑𝑏𝑙𝑗[𝐴𝑗𝐽𝑛(𝛼𝑗𝑥) + 𝐵𝑗𝑦𝑛(𝛼𝑗𝑥)],

4

𝑗=1

 

𝑇𝑙 =∑𝑐𝑙𝑗[𝐴𝑗𝐽𝑛(𝛼𝑗𝑥) + 𝐵𝑗𝑦𝑛(𝛼𝑗𝑥)],

4

𝑗=1

 

(5) 
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Here (𝛼𝑖
𝑙𝑎𝑥) > 0, for (𝑖 = 1,2,3,4)  are the zeros of

algebraic equation  

(𝐴(𝛼𝑙𝑗𝑎)
8
+ 𝐵(𝛼𝑙𝑗𝑎)

6
+ 𝐶(𝛼𝑙𝑗𝑎)

4
+ 𝐷(𝛼𝑙𝑗𝑎)

2
+

𝐸) (𝑈𝑙 ,𝑊𝑙 , 𝐸𝑙 , 𝑇𝑙) = 0
(6) 

The constants 𝑎𝑗
𝑙  , 𝑒𝑗

𝑙  and 𝑐𝑗
𝑙 can be evaluated using the

following relations: 

[�̅�11
𝑙 ∇2 + 𝜀2 − (𝑐𝑎)2] −  𝜀(1 + 𝑐1̅3

𝑙 )𝑎𝑗
𝑙 +  𝜀(�̅�15

𝑙 + �̅�31
𝑙 )𝑒𝑗

𝑙

−�̅�𝑐𝑗
𝑙 = 0

𝜀(1 + 𝑐1̅3
𝑙 )∇2+[�̅�44

𝑙 ∇2 + 𝜀2𝑐3̅3
𝑙 − (𝑐𝑎)]𝑎𝑗

𝑙+(�̅�15∇
2 +

𝐴6)𝑐4̅4𝑏𝑗
𝑙 + 𝜀𝑐𝑗

𝑙 = 0

𝐴3∇
2 + [�̅�15∇

2 + 𝜀2]𝑎𝑗
𝑙 + [−

𝐾33
𝐾
∇2 + 𝐾33

2 𝑙𝜀2] 𝑏𝑗
𝑙 − 𝑝𝑙𝜀𝑐𝑗

𝑙

= 0 

𝜄∇2 −𝑀𝑎𝑗
𝑙 +𝑀3𝑏𝑗

𝑙 + [
𝐾∇2

𝛽∗𝑎2
(1 + 𝜏𝑡) − 𝑀1 −𝑀2] 𝑐𝑗

𝑙 = 0

3. EQUATION OF MOTION FOR LINEAR ELASTIC

MATERIALS WITH VOIDS LEMV

The equations of motion for isotropic LEMV materials are 

given as [27]: 

( 𝜆 + 2𝜇)(𝑢,𝑟𝑟 + 𝑟
−1𝑢,𝑟 − 𝑟

−2𝑢) + 𝜇𝑢,𝑧𝑧
+ (𝜆 + 𝜇)𝑤,𝑧𝑧 + 𝛽𝐸,𝑟 = 𝜌𝑢𝑡𝑡

(𝜆 + 𝜇)(𝑢,𝑟𝑧 + 𝑟
−1𝑢,𝑧) + 𝜇(𝑤,𝑟𝑟 + 𝑟

−1𝑤,𝑟)

+ (𝜆 + 2𝜇)𝑤,𝑧𝑧 + 𝛽𝐸,𝑧 = 𝜌𝑤,𝑡𝑡
−𝛽(𝑢,𝑟 + 𝑟

−1𝑢) − 𝛽𝑤,𝑧 + 𝛼(𝐸,𝑟𝑟 + 𝑟
−1𝐸,𝑟 + 𝜙,𝑧𝑧)

− 𝛿𝑘𝐸,𝑡𝑡 − 𝜔𝐸,𝑡 − 𝜉𝐸 = 0

(7) 

The stress in the LEMV core materials are, 

𝜎,𝑟𝑟 = (𝜆 + 2𝜇)𝑢,𝑟 + 𝜆𝑟
−1𝑢 + 𝜆𝑤,𝑧 + 𝛽𝜙

𝜎𝑟𝑧 = 𝜇(𝑢,𝑡 +𝑤,𝑟)

The solution of for Eq. (7) is taken as 

𝑢 = 𝑈,𝑟𝑒𝑥𝑝𝑖(𝑘𝑧 + 𝑝𝑡)

𝑤 = (
𝑖

ℎ
)𝑊𝑒𝑥𝑝𝑖(𝑘𝑧 + 𝑝𝑡) 

𝐸 = (
1

ℎ2
) 𝐸 𝑒𝑥𝑝𝑖(𝑘𝑧 + 𝑝𝑡) 

(8) 

The above solution in (7) and nondimensionl variables x and 

𝜀, equation can be reduced as  

|

(𝜆 + 2𝜇)∇2 +𝑀1 −𝑀2 𝑀3
𝑀2∇

2 �̅�∇2 +𝑀4 𝑀5
−𝑀3∇

2 𝑀5 𝛼∇2 +𝑀6

| (𝑈,𝑊, 𝐸)

= 0 

(9) 

where, ∇2=
𝜕2

𝜕𝑥2
+
1

𝑥

𝜕

𝜕𝑥
,𝑀1 =

𝜌

𝜌1
(𝑐ℎ)2 − �̅�𝜀2, 𝑀2 = (𝜆̅ + �̅�)𝜀,

𝑀3 = �̅�, 𝑀4 =
𝜌

𝜌1
(𝑐ℎ)2 − (𝜆̅ + �̅�)𝜀2 ,𝑀5 = �̅�𝜀

𝑀6 =
𝜌

𝜌1
(𝑐ℎ)2�̅� − �̅�𝜀2 − 𝑖�̅�(𝑐ℎ) − 𝜉 ̅

The Eq. (9) can be specified as, 

(∇6 + 𝑃∇4 + 𝑄∇2 + 𝑅)(𝑈,𝑊, 𝐸) = 0 (10) 

Thus, the solution of Eq. (10) is as follows, 

𝑈 =∑[𝐴𝑗𝐽0(𝛼𝑗𝑥) + 𝐵𝑗𝑦0(𝛼𝑗𝑥)],

3

𝑗=1

𝑊 =∑𝑎𝑗[𝐴𝑗𝐽0(𝛼𝑗𝑥) + 𝐵𝑗𝑦0(𝛼𝑗𝑥)],

3

𝑗=1

𝐸 =∑𝑏𝑗[𝐴𝑗𝐽0(𝛼𝑗𝑥) + 𝐵𝑗𝑦0(𝛼𝑗𝑥)],

3

𝑗=1

(𝛼𝑗𝑥)
2
 are zeros of the equation when replacing.

∇2= −(𝛼𝑗𝑥)
2
.The arbitrary constant 𝑎𝑗 and 𝑏𝑗 are obtained

from: 

𝑀2∇
2 + (𝜇 ̅∇2 +𝑀4)𝑎𝑗 +𝑀5𝑏𝑗 = 0,

−𝑀3∇
2 +𝑀5𝑎𝑗 + (𝛼∇

2 +𝑀6)𝑏𝑗 = 0

For the governing equation of CFRP core material, we 

assume void volume fraction E=0, and the lame’s constants as 

𝜆 = 𝑐12, 𝜇 =
𝑐11−𝑐12

2
 in the Eq. (7). 

4. BOUNDARY CONDITIONS AND FREQUENCY

EQUATIONS

The frequency equations can be obtained for the following 

boundary condition.  

➢ On the traction free inner and outer surface 𝜎𝑙𝑟𝑟 =
𝜎𝑟𝑧
𝑙 = 𝐸𝑙 = 𝑇𝑙 = 0 with 𝑙 = 1,3

➢ At the interface 𝜎𝑟𝑟
𝑙 = 𝜎𝑟𝑟; 𝜎𝑟𝑧

𝑙 = 𝜎𝑟𝑧; 𝐸
𝑙 = 0; 𝑇𝑙 =

0;𝐷𝑙 = 0.
Substituting the above boundary condition, we obtained as 

a 22×22 determinant equation  

|(𝑌𝑖𝑗)| = 0, (𝑖, 𝑗 = 1,2,3, … .22)

At 𝑥 = 𝑥0 where 𝑗 = 1,2,3,4

𝑌1𝑗 = 2𝑐6̅6(
𝛼𝑗
1

𝑥0
)𝐽1(𝛼

1
𝑗𝑥0)

− [(𝛼1𝑗𝑎)
2
𝑐1̅1 + 𝜁𝑐1̅3𝑎

𝑙
𝑗 + �̅�31𝜁𝑏

𝑙
𝑗

+ �̅�𝑐𝑙𝑗] 𝐽0(𝛼
1
𝑗𝑎𝑥0)

𝑌2𝑗 = (𝜁 + 𝑎𝑗
1 + �̅�15𝑏𝑗

1)(𝛼𝑗
1) 𝐽1(𝛼

1
𝑗𝑥0)

𝑌3𝑗 = 𝑏𝑗
1𝐽0(𝛼

1
𝑗𝑥0)

𝑌4𝑗 =
ℎ𝑗
1

𝑥0
𝐽0(𝛼

1
𝑗𝑥0) − (𝛼𝑗

1) 𝐽1(𝛼
1
𝑗𝑥0) 

And the other nonzero elements 𝑌1,𝑗+4, 𝑌2,𝑗+4, 𝑌3,𝑗+4  and

𝑌4,𝑗+4are obtained by replacing 𝐽0 by 𝐽1and 𝑌0 by 𝑌1.

At 𝑥 = 𝑥1

𝑌5𝑗 = 2𝑐6̅6(
𝛼𝑗
1

𝑥1
)𝐽1(𝛼

1
𝑗𝑥1)

− [(𝛼1𝑗𝑎)
2
𝑐1̅1 + 𝜁𝑐1̅3𝑎

𝑙
𝑗 + �̅�31𝜁𝑏

𝑙
𝑗

+ �̅�𝑐𝑙𝑗] 𝐽0(𝛼
1
𝑗𝑎𝑥1)
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𝑌5,𝑗+8 = −[2�̅� (
𝛼𝑗

𝑥1
) 𝐽1(𝛼𝑥1)

+ {−(𝜆̅ + �̅�)(𝛼𝑗)
2
+ �̅�𝑏𝑗

− 𝜆̅𝜁𝑎𝑗} 𝐽0(𝛼𝑗𝑥1)

𝑌6𝑗 = (𝜁 + 𝑎𝑗
1 + �̅�15𝑏𝑗

1)(𝛼𝑗
1) 𝐽1(𝛼

1
𝑗𝑎𝑥1)

𝑌6,𝑗+8 = −�̅�(𝜁 + 𝑎𝑗)(𝛼𝑗)𝐽1(𝛼𝑗𝑥1)

𝑌7𝑗 = (𝛼𝑗
𝑙)𝐽1(𝛼𝑗

𝑙𝑥1)

𝑌7,𝑗+8 = −(𝛼𝑗)𝐽1(𝛼
𝑙
𝑗𝑥1)

𝑌8𝑗 = 𝑎𝑗
𝑙𝐽0(𝛼𝑗

𝑙𝑥1)

𝑌8,𝑗+8 = −𝑎𝑗
𝑙𝐽0(𝛼𝑗

𝑙𝑥1)

𝑌9𝑗 = 𝑏𝑗
𝑙𝐽0(𝛼𝑗

𝑙𝑥0)

𝑌10𝑗 = 𝑒𝑗(𝛼𝑗)𝐽1(𝛼𝑗
1𝑥1)

𝑌11𝑗 =
𝑐𝑗
𝑙

𝑥1
𝐽0(𝛼𝑗

𝑙𝑥1) − (𝛼𝑗
𝑙)𝐽1(𝛼𝑗

𝑙𝑥1)

And the remaining nonzero element at the interfaces 𝑥 = 𝑥1
can be obtained on replacing 𝐽0 by 𝐽1 and 𝑌0 by 𝑌1 in the above

elements. They are 𝑌𝑖,𝑗+4,𝑌𝑖,𝑗+8,𝑌𝑖,𝑗+11,𝑌𝑖,𝑗+14,(𝑖 = 5,6,7,8) and

𝑌9,𝑗+4,𝑌10,𝑗+4,𝑌11,𝑗+4,  .At the interface  𝑥 = 𝑥2 , nonzero

elements along the following rows 𝑌𝑖𝑗  , (𝑖 = 12,13, … . ,18 and

𝑗 = 8,9, … . ,20) are obtained on replacing 𝑥1  by 𝑥2 and

superscript 1 by 2 in order. Similarly, at the outer surface 𝑥 =
𝑥3 , the nonzero elements 𝑌𝑖𝑗  , (𝑖 = 19,20,21,22  and 𝑗 =

14,15, , … . ,22). 

5. NUMERICAL DISCUSSION

The frequency equation is numerically carried out for the 

material CdSe and their material properties are given below: 

Figure 1. Distribution of non dimensional frequency against 

the wave number with and without of gravity 

𝐶11 = 7.41 × 10
10𝑁𝑚−2,𝐶12 = 4.52 × 10

10𝑁𝑚−2,

𝐶13 = 3.93 × 10
10𝑁𝑚−2, 𝐶33 = 8.36 × 10

10𝑁𝑚−2,

𝐶44 = 1.32 × 10
10𝑁𝑚−2, 𝑇0 = 298 𝐾,𝜌 = 5504 𝑘𝑔 𝑚−3

𝐶𝑇 = 260 𝐽 𝐾𝑔
−1 𝐾−1.𝑒13 = −0.160 𝐶𝑚

−2,

𝑒33 = 0.347 𝐶𝑚
−2, 𝑒15 = −0.138𝐶𝑚

−2,
𝛽1 = 0.621 × 10

6 𝑁𝑘−1𝑚−2 ,
𝛽1 = 0.621 × 10 𝑁𝑘

−1𝑚−2,

𝑃3 = −2.94 × 10
6 𝐶𝑘−1𝑚−2

𝐾1 = 𝐾3 = 9 𝑊𝑚
−1𝐾−1

𝜖11 = 8.26 × 10
−11𝐶2𝑁−1𝑚−2

𝜖11 = 8.26 × 10
−11𝐶2𝑁−1𝑚−2

𝜏𝑞 = 0.9342 × 10
−12𝑠, 𝜏𝑞 = 0.9342 × 10

−12𝑠,

Figure 1 depicts the variety of non dimensional recurrence 

against wave number in the casings of the L–S hypothesis and 

the DPL model. Initially, when the wave number are in a lower 

level automatically the frequencies increase. When the wave 

number increases then the frequencies reduced. The impact of 

gravity is to diminish the supreme estimation of recurrence and 

makes it disappear quicker. 

Figure 2. Distribution of non dimensional frequency against 

the wave number with and without of rotation 

Figure 2 portrays the appropriation of the recurrence against 

wave number in the existences and absents of Rotation. It 

shows that this recurrence part pitifully relies upon revolution. 

The supreme estimation of this recurrence part for L–S is 

expanding, and recurrence esteems are expanding in lower 

estimations of wave number and diminishing the rest of the 

scope of wave number in DPL. 

Figure 3. Distribution of temperature against the wave 

number in the with and without of gravity 

Figure 3 shows that within the sight of gravity the 

estimations of the temperature T in the two models decay bit 

by bit and quickly with the expansion of wave number. 

However, without gravity the estimations of T decay till 

achieving a specific neighborhood with least worth in the point 

which inclined to accomplish a nearby most extreme incentive 

before diminishing to bring down the qualities. 

Figure 4. Distribution of temperature against the wave 

number with and without of rotation 
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Figure 4 represents the conduct of temperature T against the 

wave number. While considering the impact of rotation, it 

remains in negligible position. The nature of temperature in L–

S is monotonic and diminishing to least esteem and it is littler 

than that of an acquired from DPL method in the underlying 

stage and afterward remains to be enormous qualities to the 

wave number. 

Figure 5 depicts the nature of the electric potential 

Component in the presence of both L–S hypothesis and DPL 

model. In the existences and non existence of gravity the 

component gets increasing symmetrically to lowest values of 

wave number and then follows to a constant nature for highest 

range of wave number. The impact of gravity here is negligible. 

Figure 5. Distribution of electric potential against the wave 

number with and without of gravity 

Figure 6. Distribution of electric potential against the wave 

number in the absence and presence of rotation 

Figure 7. Distribution of thermal damping against the wave 

number in the various values of CFRP (N) [g=9.8,Ω = 0.5] 

Figure 6 exhibits the distributions with wave number of the 

electrical potential. In both DPL and L-S theory the electric 

potential remains in a standard position without any changes 

in the presences and absences of rotation. The effect of rotation 

is not significant in this case, and the electric potential 

components gradually increasing for larger values of wave 

number. 

Figures 7 and 8 exhibits the 3D plots of the thermal damping 

in LEMV and CFRP layers for various values of N using DPL 

theory in the presences of gravity and Rotation.  

Figure 8. Distribution of thermal damping against the wave 

number in the various values of LEMV (N) [g=9.8,Ω = 0.5] 

6. CONCLUSIONS

The fundamental motivation behind the current work is to 

explore the impact of gravitation and turning power on a 

piezo-thermoelastic cylinder within DPL model and how they 

make a fundamental job in expanding or diminishing the 

adequacy of the diverse physical amounts. The outcomes 

acquired by applying both of the L–S hypothesis what's more, 

DPL model are extremely near one another aside from in 

deciding one of the segments of the electric dislodging where 

the outcomes contrast and when all is said in done the impact 

of the nearness of gravity is to debilitate the supreme qualities 

of the physical amounts with the exception of on account of 

the equivalent part of the electric relocation. In this manner 

also discussed thermal damping in LEMV/CFRP layers for 

DPL model. This result may be useful of various fields of 

engineering especially in manufacturing engineering 

lightweight materials for heavy strength. 
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NOMENCLATURE 

𝐶𝑖𝑗 Elastic stifness tensor 

𝑇0 Uniform Temperature 

CT Specfic Heat capacity  

𝑒𝑖𝑗 Electric parameter  

u,w The mechanical displacement 
T Absolute temperature 

Greek symbols 

Ω Rotating parameter  

 thermal expansion coefficient,  

 Electric potential 

𝜏𝑞 Phase lag of the heat flux 

𝜏𝜃 Phase lag of temperature gradient 
𝜌 Mass density 
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