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The article considers a numerical method for solving a two-dimensional coupled
dynamic thermoplastic boundary value problem based on deformation theory of
plasticity. Discrete equations are compiled by the finite-difference method in the form
of explicit and implicit schemes. The solution of the explicit schemes is reduced to the
recurrence relations regarding the components of displacement and temperature.
Implicit schemes are efficiently solved using the elimination method for systems with
a three diagonal matrix along the appropriate directions. In this case, the diagonal
predominance of the transition matrices ensures the convergence of implicit difference

schemes. The problem of a thermoplastic rectangle clamped from all sides under the
action of an internal thermal field is solved numerically. The stress-strain state of a
thermoplastic rectangle and the distribution of displacement and temperature over
various sections and points in time have been investigated.

1. INTRODUCTION

At the present stage of development of science and
technology, the study of the stress-strain state of structures and
their elements, in order to determine their strength and
reliability margins, taking into account thermomechanical
elastoplastic deformations, is an urgent task of scientific and
technical applications.

Mathematical models describing the process of heat
propagation were first considered in the works [1-4], in which
it was assumed that total deformation consists of elastic
deformation and thermal expansion

The problems of the theory of thermoplasticity were first
considered in more detail in the works [5-7], and it was
assumed that the total deformation consists of elastic, plastic
and thermal deformations. Further, these studies were
continued in the works [8-16].

The plasticity theories for isotropic and anisotropic
materials and an effective numerical method of plasticity were
considered in [17-19]. The finite-difference methods for
different coupled and uncoupled boundary value problems,

within the framework of thermodynamic laws, were
considered in the works [20-26].
When solving problems of thermoelasticity and

thermoplasticity, usually, the temperature distributions were
determined in advance based on the solution of the heat flow
equation, and when solving boundary value problems of
thermoelasticity and thermoplasticity, the temperature terms
considered in combination with volume forces.

In recent years, scientific researches devoted to the study of
the mutual influence of thermal and mechanical factors on the
occurrence of associated thermo-elastic-plastic deformations
has been growing rapidly. Taking into account the mutual
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influence of thermomechanical forces can be achieved by
considering the heat flow equation in combination with the
thermodynamic equations of coupled thermo-elasto-plastic
solids. Usually, these problems are called coupled problems of
the theory of elasticity and thermoplasticity [6-8, 10]. Here,
the term thermo-elastic-plasticity means boundary value
problems of the theory of thermoelasticity and
thermoplasticity.

The main numerical methods for solving coupled thermo-
elastic-plastic problems are the finite element method, and
finite-differential methods and others [21-25]. Recently, the
boundary element method has been widely used.

In this work, a two-dimensional coupled dynamic problem
of thermoplasticity based on deformation theory of isotropic
bodies is numerically solved. Discrete equations are compiled
by the finite-differential method in the form of explicit and
implicit schemes. The solution of the explicit schemes is
reduced to the recurrence relations with respect to the
components of displacement and temperature. Implicit
schemes are efficiently brought to consistent application of the
elimination method along the appropriate directions.

In section 2, a coupled boundary value problem of
thermoplasticity is formulated, which consists of the equation
of motion, the constitutive relation of the deformation theory
of thermoplasticity, the heat flow equation and the Cauchy
relation with the corresponding thermomechanical initial and
boundary conditions.

The section 3 is devoted to the numerical solution of the
coupled thermoelasticity problem for a constrained rectangle
with a given temperature field inside the region. Finite-
differential equations are compiled, which are solved by an
explicit method and by the elimination method.

In section 4 a coupled thermoplasticity dynamic boundary
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value problem is numerically solved for clamped rectangle
under the temperature field. The influence of the temperature
field on the displacement distribution and, as well as on the
appearance of plastic zones has been investigated.

2. COUPLED THERMOPLASTICITY BOUNDARY
VALUE PROBLEM ON DEFORMATION THEORY

Consider a mathematical model of coupled thermo-elasto-
plastic deformation, which consists of the motion equation [4],

gz;:;j-i-xi:p%, i=13 (1)
Constitutive equation of the deformation theory [1],
u )
with,
o =K(0-3a9), ©)
o, =0,(,.T) 4)
Heat flow equations for isotropic bodies [3],
AT, —CcT—yTé =0 (5)
Cauchy relation [4],
gL [au au, J ©
b2\ ox,  ox
Corresponding initial,
ul., =4, ul, =y, T =T, (7)
Boundary conditions,
ul, =, T, =T, Yo/ =5 @
= P

where, gij- tensor stress, jj- strain tensor, ej, 6- the deviator
and the spherical parts of the deformation tensor, respectively,
o- spherical parts of the stress tensor, o,- stress tensor
intensities, ey-strain tensor intensities, &;; — Kronecker
symbol, u; — displacement, p- density, T- temperature, T, —
initial temperature, 9 =T —T, , ¢, — heat capacity at
constant deformation, 4, u- Lame elastic constants, A, —
coefficient of thermal conductivity, K = 1 + %y, a —thermal

expansion coefficient, X;, S; — bulk forces and surface load,
y = a(31+ 2u).

Dependence o,, = a,,(g,, T) called the strain diagram and
is determined from experiments based on the tension or torsion
of the material for every temperature T. Presenting a
deformation diagram o, = g, (g,) as a piecewise linear
function:
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o, =2ue, +2(u—u)e, —¢) for g, > &, 9)
and, substituting relations (4) and (11) into (2), the defining
relation of the deformation theory can be reduced to the
following form [4]:

A0S, +2us, —y(T -T)o, forg, <¢g,
A0S, +2us, —-y(T —To)é'lJ -

o =
ij

(10)

~2(u—- y')(l—i—“)eh fore > &

u

where, &;; —elastic limit, 4" —tangent module.

3. COUPLED THERMOELASTICITY PROBLEM FOR
RECTANGLE

Let us write Egns. (1)-(6) taking into account the expression
(10) in elasticity case i.e., g, <e; for displacements and
temperature T. These equations in two two-dimensional cases
take the following form:

Zu az 82
A
+( +ﬂ)aay o

o'v
A
(A+2 )ayz

(/1+2,u)
oT X = 6
6tz
o‘u ov
ard
o'v

oT o
PN A
5 5)

ou 6Zv
Oxot ayat

with appropriate initial,

(11)

oT

cot

)0

au
at

(12)

4, =y,

u(x,y,t)‘:O

t=0

(13)

v(x b)), = T(xyt), =T,

21

and boundary conditions:

u(xy.t) , =u, u(
u(xyt)| , =u;, u(x y,t)|y:)2 =0,
v(x,y,t)|7 =v,, Vv(
v(xyit)  =viv(xy, t)| =V,
T(xy.y), = T
Ty, =T ().

(14)
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Having drawn three parallel straight limes in the field ¢t >
0,0<x<0<y<! and replacing the derivatives x =
ihy (i=0,n),y=jh, =0,n),t =kt (k=012,...)
in Eqns. (11)-(14) by finite-differential relations we can find:

(A2 us,, —2u +u;,
A+

k k k k

i1+l i-1,j+1 i+, j-1 i-1,j-1

4hh

+(A+ )
Tk

]

u, =20 +u,
hZ
-2u', +u;

2

T

_Tu—km
2h

1

+u

| ]

2v + v (15)

hz
B u. 1,j+1 u|+11 -1 +U

4hh,
Tk
=—y

(A+2u ) Y

k
i+1,j+1

k
i-1,j-1

+(A+ )

_T

ij-1

.\11 2V + V ij+l
h 2h,
Vi =2v) + v

i

+u

2

T

Tk

1,j Tk
2, (=

i j+l

—2TE 4T

=Tu', +T, )
h;

hlz
ki K
Yl

T

u
Al [

vk+1 _ V

—C

3

K+l
]

k+1

i-1,j _u-ll +u|11
4hz

k1 k1
_V|,1+1 +VI,J71 -0
4h,t

. (16)

k+1

ij i1

Replacing the derivative in the initial conditions (13) by the
finite-difference relations, we obtain:

U =4, v, =4,

ul _ -1
—= or u = -
27 i (X' ' yj) U, ZTWI(X" y1)+ u; (17)
v, -V ) ;
——==y,(X,y,) OF v =2rp,(X,y)+V,;
2t
Eliminating the values u;}, v;j' from Eq. (15) at k =0, we
can find:
—2u’, +u’, u’ —2u’ +u’
UI1 :1 (/1+2 ) '1' + +/l i+ 1‘1+ -.r1+
N 2 p h12 h;
(1 ) Vvou i _an—l i _VVDA 1 +V.0,1 j1 T.fl, - ,,0,,
+(A+ ‘ : : T 3 SI
# 4hh, ™
20, +21y, j
1 L2V U =2V, +V, (18)
ARES (A+2 ) Yo +,u —
A 2 p hz hlz

0
i+1,j41

+(A+ w) ann

2

0 0 [ 0
_ulfl.]+l_u\+l‘Jl+u11]1_7-I-Ijl_lel +
2h

2V, +2ty, ]
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Replacing the mixed derivatives in Eq. (12) or (16) by the
difference relations obtained on the basis of applying the right
relations in coordinates and time at k = 0, we can find that,

TS, —2T° 4T,

2, " -
T, —2T"+T°,
e

h;

i j+
0
+Uu
i1

jn::

Thus, according to the initial (17-18) and boundary (14)
conditions, the values of the sought functions u”, ”, T" are

known on the two initial layers k=0,1 and on the Iateral
boundaries of the considered region. The values of these

T
c

. (19)

i+1,j
2hlr
—V VLV

ij-1 i,j+

2h,z

\Y

i j+1

functions on the remaining layers, i.e., at k = 2,3,... can be
found by the following recurrence relations:
—2u* +u’ -2uf, +u;,
uk+1 _ [(14_2 ) I+1j ;J i-1,j IJ+1 :
P h h
k _ k _ k +Vk Tk _Tk 20
+(ﬂ, + ﬂ) i+, j+ i-1,j+1 i+1,j-1 [ 7 i+1,j i-1,j + ( )
4hh, 2h,
+2u, —u!
k+1 | +1 - 2Vik + ulk -1 |+1 2v + V
V 1 (ﬂ, + 2 ) j 2‘J B i -
p h; h
K1 l_ K1 1_ k1 1+uk1 1 Tkl_Tkl 21
e gy s Y T T (21)
4hh, 2h,
+2v), -V
o, T -To+Th T 2T +T
Tk+1 - /1 ( 3 2 + ) o ) )_
T hj h?
_u uk—l Vk*l _Vk+1 _Vk—l +Vk—1
k | -1, ) i-1,j + ij+l ij-1 i+ ij-1 +T k (22)
T 4th 4h,z Y

which were found solving Eqns. (15-16) regarding the
ufft, v, TS respectively.  The  finite-difference
equations, which may be reduced to the recurrent formulas,
usually are called as explicit schemes and has a restriction on
grid lengths in coordinates and time.

Maybe compiled another type of finite-difference equations
as referred as an implicit scheme without the mentioned
restrictions. For that we should to replace in the first terms of
the finite-difference Eqgns. (15) and (16) the index k by k+1,
ie,

(A+2u) Uiy U7 U, +(A+u) Viass Vossn Mo PV +
h? 4hh,
uf,—2uf +ul T =T o -2uf, +u
a he K 23
(A+2p) Vi T 20V 2+ (A+p) Uiags = ~Uosps + Uy +
hi 4hh,
Vi v v TE-TE AR
A AT 7




T —2T 4T T -2 +T, TP -T)
iﬂ( - Z - + - Z‘ - )_C4; . ==
rll hZ r
Um _Um _ukl +uk1 Vm _Vm _vk1 +Vk1 (24)
_]/Tk i1, i1, i41,j i-1,j i,j ij1 ij bt |
" 4dhr 4h,r

In Eq. (23)1, denoting the coefficients in front of ufflfj,

ui™ and uft'; as a;, b; and c; respectively, and everything

else as f;;, it can be written in the following form:

k+1

au;, +buf +cul = f, (25)
_A+2u _2@+2pw)  p _A+2u _
Where, ai—?, bi—_ h% _‘r—z’ i = h% afij_
k k k-1 k
Tiv1,j~Ti-1,j Ujj 22U
i, S Tz
TS A+

k Kk, k
Ujjpg = 2U 5+ U

k k k k
) Vityj+1Vicyj+1 " Vivrj-1tVicg -1
2
h3

4hyhy

It is known that difference equations of the type (25) are a
system of algebraic equations with a tridiagonal matrix and
can be solved by the elimination method for each value of
k=2,3.... For the convergence of the elimination method, the
condition of diagonal dominance must be satisfied [26] i.e.
|b;| = |a;| + |c;|. In the same way, Eq. (23), can be rewritten
in the following form with respect to v;.

k+l k+1 ko
auvu,m +b|V|,J +C|V|‘171 - fu (26)
_ A+2u _ o 2(A+2p) P _ A+2u _
where, a; = 2 bi__T_‘r—Z' Ci_h_g'fif_
k k k-1 k k k k
T/ TS vl _opk. YA, TUL R VL
J+1 -1 ij ij i+1,j [ D y
Y= m TP u w2 1+

) ugc+1.j+1‘“?—1,j+1‘“i'{+1,j—1+u§(—1,j—1
4hyh, ’
Similarly, the differential Eq. (24) can be reduced to the
form regarding the T/%;.

k+1 k+l kel
ai-l—i+1,J +b|Ti‘j +Ci-|—i—1,j - fiJ (27)
Ao 200 Ce Ao
where a; = e b; = 2 TG =
1 1 T hy
k+1 k+1 k-1 k-1
Uipqj —Uilgj — Uigq,j T UL
fij = VTi]]('
4hT
k+1 k+1 k-1 k-1
Vijv1 — Vijo1 — Vijs1 t Vi
+
4h,T
k k k k
_ T Tijer — 2T+ T
&£ T 0 h% *

According to initial and boundary conditions values of the
nodal functions uj;, vf; and T/ are known on the initial two
layers i.e. at k=0 and k=1 from Eqgns. (17), (18) and (19)
respectively, and on the remaining layers may be find solving
the Eqgns. (25), (26) and (27) by the elimination method [26].

Particular attention to the study of the solid state under a
temperature field is given. Therefore, as an example, a
rectangle clamped on all sides under the action of a
temperature field with zero initial and boundary conditions is
considered. In this case, the discrete analogs of the initial and
boundary conditions have the form:
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ul —u?

u; = 0,—~—Y . J =,
1 0
— Vv
v =0,——"=0,
TX; Ty;
TS =Ty + Ty sin <f) sin (%1)

ug; = 0,uy,; = 0,ufy = 0,ufy, =0,
v =0,v5 ;= 0,v5 = 0,vfy, =0,
T, = 0,Ty,; = 0,Tf = 0,Tf =0.

The following values were used as initial constants: A =
0.78 * 105kg/sm?, u=0.7«10%%g/sm?  a = 0.05 *
1075, p =0.86 x 10* kg/m3, 1, = 0.06, ¢, = 3.4 % 10*]/
(kg *K), Ty = 15°C, h, = 0.1, h, = 0.1, 7= 0.01, ¢; = 1,
Tl1 = le = 10.
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Figure 1. Function distribution graph u(x,y,t) (explicit
scheme) at t=0.9 along the axis OX at & =0.001

0.7
v

explicit scheme
— = —implicit schema
0.6 g TS

05 / N

04 0.5 06 07 08 09 x 1

Figure 2. Displacement changes v(x,y,t) along the axis OX at
the nodal point (y=0.6, t=0.9)

Numerical results obtained by explicit and implicit schemes
were determined by recurrence relations and the elimination
method, respectively. Numerical results for the component of
displacement and temperature obtained by two methods for
comparison are shown in Tables 1-4 and Figures 1-2.
Comparing the corresponding tables for displacement u(x,y,t)
and temperature T(x,y,t), and figures, one can make sure that
the numerical results obtained by the two methods at t=0.9 are
very close. The joint solution of the equations of
thermoelasticity and thermal conductivity makes it possible to
more adequately describe the process of linear and nonlinear
deformation of solids under the influence of mechanical and
thermal influences.



Table 1. Values of the function u(x,y,t) (explicit scheme) at t=0.9

x=0 x=0.1 x=0.2 x=0.3 x=04 x=05 x=0.6 x=0.7 x=0.8 x=0.9 x=1
y=0 0 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0
y=0.1 0 -0.0499 -0.0185 -0.0082 -0.0040 0 0.0040 0.0082 0.0185 0.0499 0
y=0.2 0 -0.0606 -0.0270 -0.0142 -0.0071 0 0.0071 0.0142 0.0270 0.0606 0
y=03 0 -0.0686 -0.0340 -0.0192 -0.0098 0 0.0098 0.0192 0.0340 0.0686 O
y=04 0 -0.0731 -0.0384 -0.0225 -0.0115 0 0.0115 0.0225 0.0384 0.0731 O
y=05 0 -0.0747 -0.0399 -0.0236 -0.0121 0 0.0121 0.0236 0.0399 0.0747 O
y=06 0 -0.0731 -0.0384 -0.0225 -0.0115 0 0.0115 0.0225 0.0384 0.0731 O
y=0.7 0 -0.0686 -0.0340 -0.0192 -0.0098 0 0.0098 0.0192 0.0340 0.0686 0
y=0.8 0 -0.0606 -0.0270 -0.0142 -0.0071 0 0.0071 0.0142 0.0270 0.0606 0
y=0.9 0 -0.0499 -0.0185 -0.0082 -0.0040 0 0.0040 0.0082 0.0185 0.0499 0
y=1 0 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0
Table 2. Values of the function u(x,y,t) (implicit scheme) at t=0.9
x=0 x=0.1 x=0.2 x=0.3 x=04 x=05 x=06 x=0.7 x=0.8 x=09 x=1
y=0 0 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0
y=0.1 0 -0.0447 -0.0192 -0.0087 -0.0041 0 0.0041 0.0087 0.0192 0.0447 O
y=0.2 0 -0.0546 -0.0277 -0.0147 -0.0072 0 0.0072 0.0147 0.0277 0.0546 O
y=03 0 -0.0619 -0.0345 -0.0197 -0.0098 0 0.0098 0.0197 0.0345 0.0619 O
y=04 0 -0.0661 -0.0388 -0.0229 -0.0115 0 0.0115 0.0229 0.0388 0.0661 O
y=05 0 -0.0675 -0.0403 -0.0240 -0.0121 0 0.0121 0.0240 0.0403 0.0675 O
y=06 0 -0.0661 -0.0388 -0.0229 -0.0115 0 0.0115 0.0229 0.0388 0.0661 O
y=0.7 0 -0.0619 -0.0345 -0.0197 -0.0098 0 0.0098 0.0197 0.0345 0.0619 O
y=0.8 0 -0.0546 -0.0277 -0.0147 -0.0072 0 0.0072 0.0147 0.0277 0.0546 O
y=09 0 -0.0447 -0.0192 -0.0087 -0.0041 0 0.0041 0.0087 0.0192 0.0447 O
y=1 0 0.0000  0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 O
Table 3. Values of the function T(x,y,t) (explicit scheme) at t=0.9
x=0 x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1
y=0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 O
y=0.1 O 12,9459 155948 16.8111 17.5024 17.7311 0.0040 0.0082 0.0185 0.0499 O
y=02 0 155948 19.3707 21.4371 22.6623 23.0720 0.0071 0.0142 0.0270 0.0606 O
y=03 0 16.8111 21.4371 24.2105 25.8822 26.4439 0.0098 0.0192 0.0340 0.0686 O
y=0.4 0 17.5024 22.6623 25.8822 27.8386 28.4974 0.0115 0.0225 0.0384 0.0731 0
y=0.5 0 17.7311 23.0720 26.4439 28.4974 29.1893 0.0121 0.0236 0.0399 0.0747 0
y=06 O 175024 22.6623 25.8822 27.8386 28.4974 0.0115 0.0225 0.0384 0.0731 O
y=0.7 0 16.8111 214371 242105 25.8822 26.4439 0.0098 0.0192 0.0340 0.0686 0
y=0.8 0 155948 19.3707 21.4371 22.6623 23.0720 0.0071 0.0142 0.0270 0.0606 0
y=0.9 0 12,9459 155948 16.8111 17.5024 17.7311 0.0040 0.0082 0.0185 0.0499 0
y=1 0 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
Table 4. Values of the function T(x,y,t) (implicit scheme) at t=0.9
x=0 x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=09 x=1
y=0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
y=0.1 0 13.0272 15.6158 16.8037 17.4873 17.7154 17.4873 16.8037 15.6158 13.0272 0
y=0.2 0 15.6797 19.5042 215686 22.8088 23.2282 22.8088 21.5686 19.5042 15.6797 0
y=0.3 0 16.8549 21.5559 243177 26.0055 26.5790 26.0055 24.3177 21.5559 16.8549 0
y=04 0 175352 22.7935 26.0028 27.9792 28.6524 27.9792 260028 22.7935 17.5352 0
y=0.5 0 17.7626 23.2124 26.5758 28.6518 29.3593 28.6518 26.5758 23.2124 17.7626 0
y=0.6 0 175352 22.7935 26.0028 27.9792 28.6524 27.9792 260028 22.7935 17.5352 0
y=0.7 0 16.8549 21.5559 243177 26.0055 26.5790 26.0055 24.3177 215559 16.8549 O
y=08 0 15.6797 19.5042 215686 22.8088 23.2282 22.8088 21.5686 19.5042 15.6797 O
y=0.9 0 13.0272 15.6158 16.8037 17.4873 17.7154 17.4873 16.8037 15.6158 13.0272 0
y=1 0 0.0000 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
4. NUMERICAL SOLUTION OF TWO-DIMENSIONAL (142 )aZu Uit ov
COUPLED THERMOPLASTICITY PROBLEMS o ) oxay
QU . du
The coupled boundary value problem of thermoplasticity /‘3yz T T TP
(1-8) taking into account the Eqgns. (9)-(10) may be written v &u
. . * A+2u)—+(A+uw)
regarding the displacements and temperature for &, = &, oy’ oxoy
which in two-dimensional case has the form: v ar . oV
tuoTTr ot X =p
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(28)



T &oT) _oT ou o
A —+—|-C ——)T| —+ =0 (29)
oy ot oxat - oyat

with corresponding initial,

ou
=g, —

y (o), =4,
e (30)
=y, T(x Y.t =T,

t=0

u(x, y,t)t?0
ov

and boundary conditions,

v(X, y,t)LO:vo, v(X, t) =V,
1 31
vy =V v(xyt |y =V, (1)
T(x,y,t)| =T.(t), Tyt =T.(1),
T(x,y,t)yzO:TJ(t), T(x,y,t)y:) =T,(t)
where
. 40y 1 v & e &
X == =9 - p)a-
L =( 3¢ 30xdy ayz)('u ) g) o
. 40 1 d% 82 e,
X;=(-29Y 297 1-%
2 (38y2 3 oxdy )(ﬂ ) Su)

Considering in the areat > 0,0 <x <[,0 <y < three
families of parallel lines x = ih, (i = 0,n) ,y = jh, (j =
0,n) , t=ke(k=0,1,2,...) and, replacing the derivatives in Eqns.
(28)-(31) by finite-differential relations, we can find that:

U, — 207 U, Vinrs = Vi ~Viws T Vi

(ﬂ, + 2#) ) I’]lz‘l - + (ﬂ/ + ﬂ) ) ‘l4h1h A ) +
U\km _2uik1 +u|k1 1 Tuku _leu X ulkjl_zuvkl +u'k;1

H— ‘ ——7— —t A =p— ‘ ‘

he 2h, =
(ﬂ +2 ) Vwk.m - 2VK + V:(H + (ﬂ + ) uukq.m - U‘:‘H - uukn.ﬂ + ulk—l‘j—l + (33)

SO g anh,
R, T T M
H he /4 2h, =P 7
K K
A(Tllj_Tu +T|1,+ Ij+1_2T +T|11)
0 2 2
h; h;
kit K
I
T
ut — Uiﬂ —uv ulil (34)
_7/-|— K i1, i1, i1, i-1,j
" 4hz
ki1 kil = =
4 Vi,j+1 _Vi,j—l _Vi.j+1 +Vi‘j—1 -0
4h,r

and, having solved the differential equations regarding the
uft, v, TS respectively, by analogy to the previous

section we can flnd
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—2u;, +u, us, —2u U,
L+ S

ut [(i+2,u)
p

hf h;
(ﬂ, ) v.: je1 7V‘k71 jo1 7V|k+1 i1 + th i1 T:u 71—\}11 X
+(A+ ‘ ‘ ‘ — X |+
H 4hh, Y 2h 1
+2u\k‘i _u:ll
L2V U Ve =2V VL
v (/1 + 2;1) - S - =
) h; h;
+(/1 +ﬂ) ulk\l‘]\l _ulkfl‘j-l _u\k\LH +u\kﬁ1‘r1 _}/T:u _T,‘kH X e
4hh, 2h, ’
+2v) -V
i i
w T T: -Tu +T. T' —2T" +T"
T 1+ = /10( s z‘] —+t— z‘ )
‘ C hl hZ
uk]] _uk‘l _uk;l +uk]1 V:(*:_V v +V
_}/TK J L ) + o +TK
! 4ht 4hr !

(35)

(36)

(37)

According to initial (30) and boundary (31) conditions

values of the nodal functions u”,

vf; and T are known on

the initial two layers k = 0 and k = 1. Then taking into account
the finite-difference analogues of initial conditions (30) from
Eqgns. (35)-(37) at k = 0 and k = 1 may be find the following

expressions for g, < ¢;,.

"2 N h;

0 0 0 0
_V| 1‘1\1_v|\1‘|1+vl 1,j-1 THl‘j _T| 1j
-y +

0

+(A+u) Yo

+2U°, 21y, j

1 L 20 Ul u’ L —2u] +ul
u = (/1+2,u) Lo W

1 AT " AR
v, = 7 (/1 2)" it +/1 =g

hf h!
+(ﬂ,+ )uunm-l_uwol‘m_uﬁ1‘|1+u\01‘11 Tuiu _T"Um +
a anh, " on

2

+2V; + 21y, j

- T{g [T —aT 4T +Tiu’2T"Dl +T,f’“j7
ij c 0 hlz hzz
[ U, uim + Vim _VwJ‘H _V‘UM +V|(?H j+Tn
2th 2hz Y

(38)

(39)

(40)

So, finite-difference Eqgns. (33-34) present an explicit
scheme and can be solved using the recurrence relations (35-

40) with a following thermomechanical initial,

_ ij ij
u;; = 0, =0,
T
1 0
0 _q i Y
v =0, =0,
. X . Ty j
TH =Ty + Ty sin (—L) sin (—’),
J Iy I

The boundary conditions:



u’éj = Ofuzllej =0,uk =0, quz =0, temperature recei_ved by explicit and implicit schemes at time
v(’fj =0, UII\{/U' =0,v5 =0, ”isz =0, t=0.9 are shown in Tables 5-8 and they very close.

k k _ k _ k
Toj = 0,Tw;j = 0,Tio = 0, Tiy, = 0. 1=0.78*10%kg/sm? a = 0.05* 1075, u = 0.7

105kg/sm?2, p = 0.86 * 10* kg/m3, c, = 3.4 * 10*]/ (kg *
K), T, = 15°C, 4, = 0.06, i’ = 0.4 * 105kg/sm?, h, = 0.1,
h, =0.1,7=0.01,¢; =1,n;, =n, = 10.

The elastic-plastic thermo-mechanical constants were taking
as following values: The numerical results of the coupled
thermoelasticity problem (28-31) for displacement and

Table 5. Values of the function u(x,y,t) (explicit scheme) at t=0.9

x=0 x=0.1 x=0.2 x=0.3 x=04 x=05 x=0.6 x=0.7 x=0.8 x=0.9 x=1
y=0 0 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 O
y=0.1 0 -0.0513 -0.0185 -0.0082 -0.0040 0 0.0040 0.0082 0.0185 0.0513 O
y=0.2 0 -0.0610 -0.0270 -0.0142 -0.0071 0 0.0071 0.0142 0.0270 0.0610 0
y=0.3 0 -0.0687 -0.0340 -0.0192 -0.0098 0 0.0098 0.0192 0.0340 0.0687 0
y=0.4 0 -0.0732 -0.0384 -0.0225 -0.0115 0 0.0115 0.0225 0.0384 0.0732 0
y=0.5 0 -0.0747 -0.0399 -0.0236 -0.0121 0 0.0121 0.0236 0.0399 0.0747 0
y=06 0 -0.0732 -0.0384 -0.0225 -0.0115 0 0.0115 0.0225 0.0384 0.0732 0
y=0.7 0 -0.0687 -0.0340 -0.0192 -0.0098 0 0.0098 0.0192 0.0340 0.0687 O
y=08 0 -0.0610 -0.0270 -0.0142 -0.0071 0 0.0071 0.0142 0.0270 0.0610 O
y=09 0 -0.0513 -0.0185 -0.0082 -0.0040 0 0.0040 0.0082 0.0185 0.0513 O
y=1 0 0.0000  0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 O
Table 6. Values of the function u(x,y,t) (implicit scheme) at t=0.9
x=0 x=0.1 x=0.2 x=0.3 x=04 x=05 x=06 x=0.7 x=0.8 x=09 x=1
y=0 0 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 O
y=0.1 0 -0.0438 -0.0192 -0.0087 -0.0041 0 0.0041 0.0087 0.0192 0.0438 O
y=0.2 0 -0.0542 -0.0277 -0.0147 -0.0072 0 0.0072 0.0147 0.0277 0.0542 0
y=03 0 -0.0618 -0.0345 -0.0197 -0.0098 0 0.0098 0.0197 0.0345 0.0618 O
y=04 0 -0.0661 -0.0388 -0.0229 -0.0115 0 0.0115 0.0229 0.0388 0.0661 O
y=05 0 -0.0675 -0.0403 -0.0240 -0.0121 0 0.0121 0.0240 0.0403 0.0675 O
y=06 0 -0.0661 -0.0388 -0.0229 -0.0115 0 0.0115 0.0229 0.0388 0.0661 O
y=0.7 0 -0.0618 -0.0345 -0.0197 -0.0098 0 0.0098 0.0197 0.0345 0.0618 O
y=08 0 -0.0542 -0.0277 -0.0147 -0.0072 0 0.0072 0.0147 0.0277 0.0542 0
y=0.9 0 -0.0438 -0.0192 -0.0087 -0.0041 0 0.0041 0.0087 0.0192 0.0438 0
y=1 0 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 0
Table 7. Values of the function &, (explicit scheme) at t=0.9
x=0 x=0.1 x=02 x=03 x=04 x=05 x=06 x=0.7 x=08 x=0.9 x=1
y=0 0 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 O
y=0.1 0 03526 0.2494 0.1783 0.1565 0.1548 0.1565 0.1783 0.2494 0.3526 O
y=0.2 0 0.2494 0.1284 0.1219 0.1224 0.1186 0.1224 0.1219 0.1284 0.2494 0
y=0.3 0 0.1783 0.1219 0.0728 0.0616 0.0485 0.0616 0.0728 0.1219 0.1783 0
y=0.4 0 0.1565 0.1224 0.0616 0.0485 0.0479 0.0485 0.0616 0.1224 0.1565 0
y=0.5 0 0.1548 0.1186 0.0578 0.0479 0.0492 0.0479 0.0578 0.1186 0.1548 0
y=0.6 0 0.1565 0.1224 0.0616 0.0485 0.0479 0.0485 0.0616 0.1224 0.1565 0
y=0.7 0 0.1783 0.1219 0.0728 0.0616 0.0485 0.0616 0.0728 0.1219 0.1783 O
y=0.8 0 0.2494 0.1284 0.1219 0.1224 0.1186 0.1224 0.1219 0.1284 0.2494 0
y=09 0 03526 0.2494 0.1783 0.1565 0.1548 0.1565 0.1783 0.2494 0.3526 O
y=1 0 0.0000 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000 O
Table 8. Values of the function &, (implicit scheme) at t=0.9
x=0 x=0.1 x=02 x=03 x=04 x=05 x=06 x=0.7 x=08 x=09 x=1
y=0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 O
y=0.1 0 03178 0.2339 0.1785 0.1579 0.1553 0.1579 0.1785 0.2339 0.3178 O
y=02 0 02342 0.1189 0.1048 0.0995 0.0575 0.0995 0.1048 0.1189 0.2342 O
y=0.3 0 0.1785 0.1046 0.0722 0.0611 0.0575 0.0611 0.0722 0.1046 0.1785 0
y=0.4 0 0.1577 0.0994 0.0610 0.0495 0.0486 0.0495 0.0610 0.0994 0.1577 0
y=0.5 0 0.0000 0.1550 0.0950 0.0573 0.0486 0.0495 0.0486 0.0573 0.1550 0
y=0.6 0 0.1577 0.0994 0.0610 0.0495 0.0486 0.0495 0.0610 0.0994 0.1577 0
y=0.7 0 0.1785 0.1046 0.0722 0.0611 0.0575 0.0611 0.0722 0.1046 0.1785 O
y=08 0 02342 0.1189 0.1048 0.0995 0.0575 0.0995 0.1048 0.1189 0.2342 O
y=09 0 03178 0.2339 0.1785 0.1579 0.1553 0.1579 0.1785 0.2339 0.3178 O
0 0

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

N
x
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Figure 3. Distribution of the displacement u(x,y,t) (explicit
scheme) at t=0.9 and ¢=0.001
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Figure 4. Distribution of the displacement u(x,y,t) (implicit
scheme) at t=0.9 and ¢=0.001
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Figure 5. Displacement changings u(x,y,t) along the axis OZ
at the nodal point (x=0.5, y=0.7)

In Figures 3 and 4 the distribution of displacements u(x,y,t)
received by the implicit and explicit schemes is compared. In
Figure 5 the coincidence of the curves received implicit and
explicit schemes are shown.

5. CONCLUSION

The coupled dynamic thermoelasticity and thermoplasticity
boundary value problems are formulated. The coupled
thermoplasticity problem is based on deformation theory of
plasticity. The thermo-elastic-plastic boundary value problems
for rectangle in different initial and boundary conditions are
considered. Discrete equations are compiled by the finite-
differential method in the form of explicit and implicit
schemes. The solution of the explicit schemes is reduced to the
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recurrence relations regarding the displacement components
and temperature. Implicit schemes are solved using the
elimination method along the corresponding directions.

Effective numerical algorithm and corresponding software
for solving two-dimensional thermo-elasto-plastic boundary
value problems have been developed. A number of thermo-
elasto-plastic problems on clamped from all sides rectangle
with a given temperature field, have been solved. The obtained
numerical results by different methods are compared and
received a close coincidence. The influence of the temperature
field on the displacement distribution and, as well as on the
appearance of plastic zones in a rectangle, has been
investigated.
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