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Every year the interest of theorists and practitioners in optimisation problems is 

growing, and extreme problems are found in all branches of science. Local optimisation 

problems are well studied and there are constructive methods for their solution. 

However, global optimisation problems do not meet the requirements in practice; 

therefore, the search for the global minimum remains one of the major challenges for 

computational and applied mathematics. This study discusses the search for the global 

minimum of multidimensional and multiextremal problems with high precision. 

Mechanical quadrature formulas, that is, the formulas for approximate integration were 

applied to calculate the integrals. Of all the approximate integration formulas, the 

Sobolev lattice cubature formulas with a regular boundary layer were chosen. In 

multidimensional examples, the Sobolev formulas are optimal. Computational 

experiments were carried out in the most popular C++ programming language. Based 

on the computational experiments, a new algorithm was proposed. In three-dimensional 

space, the calculations of the global minimum have been described using specific 

examples. Computational experiments show that the proposed algorithm works for 

multiextremal problems with the same amount of time as for convex ones. 
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1. INTRODUCTION

Nowadays, global optimisation algorithms are widely used 

in various fields of science and technology, in particular, in 

those situations when it is required to obtain the best result of 

the objective function that evaluates the quality of the decision 

being made. Due to the importance of the problem, a great 

number of algorithms and methods for solving the problem of 

multiextremal optimisation have been developed. Today, the 

development of global optimisation methods is stimulated by 

the development of electronic computing facilities and is 

largely associated with the availability of high-performance 

parallel computer systems. A large number of different 

approaches to parallelising global optimisation algorithms 

have appeared. However, in publications devoted to this topic, 

the problem of overcoming the “curse of dimensionality” in 

the problem of multidimensional global optimisation is rarely 

discussed [1]. 

The search and definition of the algorithm for calculating 

the global minimum of a smooth function of many variables 

suggests the need to solve one of the most common problems 

in applied mathematics, namely, the problem of the 

multiextremal nature of the behaviour of objective functions. 

Interest in solving such problems is determined both by a 

significant number of extreme problems that require timely 

resolution, and by the accelerated development of computing 

power that can provide timely and high-quality resolution of 

such problems. 

In this context, the objective functions with constraints 

imposed on them are presented in the form of closed systems, 

are difficult to differentiate and are too complex to compute. 

In addition, the constraints imposed on the objective function 

are often also a significant problem; in particular, this concerns 

the constraints that define the allowable region of a complex 

shape or a narrow region in the form of a bundle. For this 

reason, the development of effective algorithms for finding the 

global minimum of a function of many variables and their 

software implementations is an urgent area in modern 

scientific research [2]. 

In general, a lot of studies are devoted to the problems of 

finding the extreme values of functions of one and many 

variables, in which various theoretical and applied aspects of 

the issues under consideration are presented [3]. This scientific 

study proposes a method for calculating the global minimum 

of a smooth function of many variables. The method consists 

of two stages: the first is to find the value of the global 

minimum point, and the second is to determine the coordinates 

of the global minimum [4, 5]. A complex combination of 

sequences of actions within these two stages provides the 

desired result. The results of this study can find wide practical 

use in various fields of science and technology, where an 

accurate calculation of the global minimum of a function of 

many variables is required to solve a variety of practical 

problems. 

2. MATERIALS AND METHODS

In modern mathematics, various methods for finding the 

global minimum have been proposed. If the function is given 

on the grid of nodes {𝜀𝑘|𝑘 ∈ 𝑍𝑛}, then it would be possible to

enumerate the values of the function at these nodes. But for 
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small 𝜀 errors and large n dimensions of the arguments, such 

an enumeration requires at least 𝜀−𝑛 operations and therefore 

is impossible; 𝜀  – calculation accuracy. For example, 𝜀 =
10−8, n=5 leads to a computation volume of the order of 1040, 

which is impossible on any existing multiprocessor systems [6, 

7]. If the function is convex, then it is sufficient to apply the 

well-known steepest descent method. But here are also certain 

difficulties. If the step is chosen small (to ensure convergence), 

then the method converges slowly. Increasing the step (to 

accelerate the convergence) can lead to the divergence of the 

method. A constructive algorithm operating in a more general 

case is shown in works [8, 9]. 

The algorithm calculates multiple integrals [10]. Since 

ancient times, the formula of rectangles, the formula of 

trapeziums, and the Simpson formula have been used to 

calculate integrals. The above formulas give a good 

approximation of integrals of smooth functions with bounded 

derivatives of the 2nd or 4th order. More complex formulas: 

Gregory, Gauss, Chebyshev – use the boundedness of higher 

order derivatives to obtain a more accurate result. For large 

numerical calculations, it becomes useful to optimise the 

process of approximate calculation of the integral, if the 

calculation is performed using approximate integration 

formulas, then to optimise the formulas themselves. This 

problem is especially important for functions of several 

variables, where each decrease in the lattice spacing increases 

the number of nodes used [11, 12]. 

Next, the study formulates the global optimisation problem. 

Assume 𝑓:𝑄 → 𝑅 continuously differentiable function (1): 

 

𝑓(𝑥) = 𝑓(𝑥1, … , 𝑥𝑛) 

𝑥 ∈ 𝑄 = {𝑥 ∈ 𝑅𝑛|𝑎𝑗 ≤ 𝑥𝑗 ≤ 𝑏𝑗 , 1 ≤ 𝑗 ≤ 𝑛}, 
(1) 

 

The set of feasible solutions 𝑄 – n-dimensional cube. It is 

required to find the coordinates and value of the global 

minimum point (�̂�; �̂�). Assume that (2-3): 

 

�̂�  = 𝑔𝑙𝑜𝑏𝑚𝑖𝑛𝑓(𝑥), (2) 

 

�̂� = 𝑎𝑟𝑔𝑔𝑙𝑜𝑏𝑚𝑖𝑛𝑥∈𝑄𝑓(𝑥) = 𝑎𝑟𝑔�̂�, (3) 

 

The algorithm for finding the global minimum point 

consists of two stages. The first stage consists in finding the 

value of the global minimum point (2), and the second – in 

finding the coordinates of the global minimum (3). To find the 

point of the global minimum, an indicator (defining) function 

is constructed (4): 

 

𝑔 ,)])(()([)(  −−−=
Q

m dxxfxf   𝑔 ∈ 𝑊𝑝
𝑚 

(4) 

 

that is: 

 

𝑔(𝛼) = ∫ . . . ∫ [|𝑓(𝑥1, … , 𝑥𝑛) − 𝛼| −
𝑏𝑛
𝑎𝑛

𝑏1
𝑎1

(𝑓(𝑥1, … , 𝑥𝑛) − 𝛼)]
𝑚 𝑑𝑥1. . . 𝑑𝑥𝑛, 

(5) 

 

Eq. (5) defines the first tangency of the hyperplane 𝑦 = 𝛼 

with a given function 𝑓(𝑥) = 𝑓(𝑥1, … , 𝑥𝑛) from below. The 

point of the first contact of the plane with this function is the 

minimum value of the function. For clarity, note �̂� ≈ �̂� . 

Depending on the value of 𝛼, the indicator function takes on a 

positive value or zero: −|𝑓(𝑥) − 𝛼| ≤ 𝑓(𝑥) − 𝛼 ≤ |𝑓(𝑥) −

𝛼| , −∫ |𝑓(𝑥) − 𝛼|
𝑏

𝑎
𝑑𝑥 ≤ ∫ (𝑓(𝑥) − 𝛼)𝑑𝑥

𝑏

𝑎
≤ ∫ |𝑓(𝑥) −

𝑏

𝑎

𝛼|𝑑𝑥. To each part of the inequality add −∫ (𝑓(𝑥) − 𝛼)𝑑𝑥
𝑏

𝑎
: 

−∫ |𝑓(𝑥) − 𝛼|
𝑏

𝑎
𝑑𝑥 − ∫ (𝑓(𝑥) − 𝛼)𝑑𝑥

𝑏

𝑎
≤ ∫ (𝑓(𝑥) − 𝛼)𝑑𝑥

𝑏

𝑎
−

∫ (𝑓(𝑥) − 𝛼)𝑑𝑥
𝑏

𝑎
≤ ∫ |𝑓(𝑥) − 𝛼|𝑑𝑥

𝑏

𝑎
− ∫ (𝑓(𝑥) − 𝛼)𝑑𝑥

𝑏

𝑎
, 0 ≤

∫ |𝑓(𝑥) − 𝛼|𝑑𝑥
𝑏

𝑎
− ∫ (𝑓(𝑥) − 𝛼)𝑑𝑥

𝑏

𝑎
. Hence the function (4) 

takes on a positive value or zero depending on 𝛼. Indicator 

function (4) takes a positive value if 𝑓(𝑥) ≤ 𝛼 . Indicator 

function (4) takes zero if 𝑓(𝑥) > 𝛼. 

 

 

3. RESULTS AND DISCUSSION 

 

For clarity, study analyses the operation of the indicator 

function using the single variable function graph (Figure 1). 

The objective function graph 𝑦 = 𝑓(𝑥)  is shown in red. 

Choosing the values of 𝛼, it is necessary to find the tangent at 

the point of the global minimum (Figure 1). 

 

 
 

Figure 1. Single variable function graph 

 

Initial values 𝛼1  and 𝛼2  were arbitrarily chosen such that 

𝑔(𝛼1) = 0 and 𝑔(𝛼2) > 0. Therefore, �̂� ∈ [𝛼1; 𝛼2]. 
If the indicator function takes the value of zero 𝑔(𝛼1) = 0, 

then the blue line 𝑦 = 𝛼1 passes below the given function or 

relates to it from below. Indeed, in Eq. (5), the modulus is 

expanded with a positive sign, the expression becomes zero. If 

the indicator function takes a positive value 𝑔(𝛼2) > 0, then 

the green line 𝑦 = 𝛼2 intersects the given function or passes 

above the given function. The next new value 𝛼 is chosen as 

the arithmetic mean of the numbers 𝛼1 and 𝛼2 (6): 

 

𝛼3 =
𝛼1+𝛼2

2
, (6) 

 

𝑔(𝛼3) > 0, then the purple line 𝑦 = 𝛼3 intersects the given 

function. Further, value �̂� is sought from the interval [𝛼1; 𝛼3]. 
Thus, a search for the value of 𝛼 from the interval [𝛼𝑘; 𝛼𝑘+1] 
continues, where 𝑔(𝛼𝑘) = 0 and 𝑔(𝛼𝑘+1) > 0. This iteration 

continues as long as (7) is executed: 

 

𝜀𝑓 ≥ 𝛼𝑘+1 − 𝛼𝑘, (7) 

 

Then, the right end of the interval (8) is taken as the value 

of the global minimum (8): 

 

�̂� = 𝛼𝑘+1 ≈ �̂�, (8) 

 

The first part of the task was completed: the value of the 

global minimum point was found. We proceed to the second 

part, where we need to find the coordinates 𝑥1, … , 𝑥𝑛  of the 

point at which the value of the global minimum �̂� is taken. 
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For function 𝑓(𝑥) = 𝑓(𝑥1, … , 𝑥𝑛) coordinates are sought in 

the n-dimensional cube 𝑄. Divide 𝑄 into 2𝑛 parts, that is, in 

half for each coordinate. 2𝑛 𝑛-dimensional cubes are obtained. 

Coordinates of the global minimum are also sought using the 

indicator function. Only the integral is calculated already in 

the small cubes obtained using the partition 𝑄. At least in one 

of the cubes, the modified indicator function will be positive 

for 𝛼 = �̂� . This cube will be taken as a basis with the 

application of the algorithm described above. Next, study finds 

a smaller cube with a face equal to 𝜀𝑥 (9): 

 

𝜀𝑥 ≥ 𝑥𝑘+1 − 𝑥𝑘, (9) 

 

The centre of this little cube will be the coordinates of the 

global minimum (10): 

 

�̂� ≈
𝑥𝑘+1+𝑥𝑘

2
, (10) 

 

The value and coordinates of the global minimum have been 

found. Next, the study calculates how much operation is 

needed for this. To find the values of the global minimum on 

the interval [𝛼1; 𝛼2] according to the described algorithm, k-

calculations of the indicator function are required, where (11): 

 

𝑘𝑓 ≈ [𝑙𝑜𝑔2 (
𝛼2−𝛼1

𝜀𝑓
)] + 2, (11) 

 

The number of calculations grows logarithmically with 
1

𝜀
. 

Such an increase in the number of calculations is much less 

than in the enumeration method. To calculate the value of the 

global minimum on the segment [0; 1] with accuracy 𝜀 ≥
10−6 and with two variables, it is enough to calculate 𝑔(𝛼) 22 

times to reach the answer with the required accuracy. To find 

the coordinates of the global minimum with accuracy in the n-

dimensional cube 𝑄 according to the described algorithm, the 

following Eq. (12) is required to calculate the indicator 

function: 

 

𝑘𝑥 ≈ 2
𝑛 ∙ 𝑙𝑜𝑔2(

𝑏−𝑎

𝜀�̅�
), (12) 

 

Thus, the number of calculations grows logarithmically 

with increasing 
1

𝜀
. Figure 2 illustrates the growth in the number 

of calculations in the enumeration method (blue graph) 𝜀−𝑛 

and the growth in the number of calculations in the proposed 

method (red graph) (13) with respect to the growth of 
1

𝜀
 for 

functions of two variables. 

 

𝑘 = 𝑘𝑓 + 𝑘𝑥 ≈ 𝑙𝑜𝑔2 (
𝛼2−𝛼1

𝜀𝑓
) + 2 + 2𝑛 ∙ 𝑙𝑜𝑔2(

𝑏−𝑎

𝜀�̅�
), (13) 

 

Here 𝜀𝑓 = 𝜀�̅� ≥ 10−6. Such an increase in the number of 

calculations is much less than in the enumeration method. In 

the enumeration method, the more variables, the faster the 

number of calculations tends to infinity. 

In optimisation theory, there are test functions that serve as 

an artificial landscape [1]. They are useful for evaluating the 

performance of optimisation algorithms. The new 

optimisation method was tested with dozens of test functions. 

The performed computational experiments show high 

precision in fewer iterations. Thus, the study considers three 

of them, and the reference values are compared with the results 

of computational experiments. Figure 3 shows a graph of the 

multiextremal Ackley function [8] in three-dimensional space. 

Objective function (14): 

 

𝑓(𝑥, 𝑦) = −20𝑒−0.2√0.5(𝑥
2+𝑦2)

− 𝑒0.5(cos(2𝜋𝑥)+cos(2𝜋𝑦)) + 𝑒 + 20 

−5 ≤ 𝑥, 𝑦 ≤ 5, 

(14) 

 

It has one global minimum point. The reference value of the 

global minimum point of the Ackley function 𝑓(0; 0) = 0 

(Figure 3). 

 

 
 

Figure 2. An increase in the number of calculations in the 

enumeration method (blue graph) 𝜀−𝑛 and an increase in the 

number of calculations in the proposed method (red graph) 

 

 
 

Figure 3. Ackley function graph 

 

The computational experiments show the following results: 

𝑓 = 10−10 ≈ 0 ; �̂� ∈ [−0.0000000001; 0] , 

�̂� =  
−0.0000000001+0

2
= −0.0000000001 ≈ 0 ; �̂� ∈

[−0.0000000001; 0] , �̂� =
−0.0000000001+0

2
=

−0.0000000001 ≈ 0. 

The accuracy of the value of the global minimum point 

reaches 𝜀𝑓 = 10−10 and the accuracy of the coordinates of the 

global minimum 𝜀𝑥 = 10−10 depends on the shape of the “pit” 

where the global minimum point is located. If the “pit” is 

narrow, then the coordinate accuracy is high. If it is wide, then 

the accuracy of the coordinates is lower. The study considers 

the following example, where the global minimum is in a wide, 

almost flat “hole”. 

The second test function is the Booth function (Figure 4). It 

has a global minimum, which is located almost on a flat 

surface, which complicates the search for a global minimum 

for some methods [13-17]. The proposed method finds the 

global minimum of such functions with a fairly good accuracy. 
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The Booth function equation [18] (15): 

𝑓(𝑥, 𝑦) = (𝑥 + 2𝑦 − 7)2 + (2𝑥 + 𝑦 − 5)2

−10 ≤ 𝑥, 𝑦 ≤ 10,
(15) 

The reference value of the global minimum point 𝑓(1; 3) =
0. 

Figure 4. Booth function graph 

The above method is used to find the following results: 𝑓 =
10−10 ≈ 0 ; �̂� ∈ [0.9999847413; 1.0000228883] , �̂� ≈
0.9999847413+1.0000228883

2
≈ 1.0000038148 ≈ 1 ; �̂� ∈

[2.9999923707; 3.0000305177] , �̂� ≈
2.9999923707+3,0000305177

2
≈ 3.0000114442 ≈ 3 . The 

accuracy of the value of the global minimum point reaches 

𝜀𝑓 = 10
−10, and the accuracy of the coordinates of the global

minimum 𝜀𝑥 = 10
−5. 𝜀𝑓 is higher than 𝜀𝑥, it depends on the

properties of the objective function in the vicinity of the 

minimum point. 

Next, the study considers the four-extremal function from 

Kuznetsov and Rubann [19] (16): 

𝑓(𝑥, 𝑦) = −3𝑒−3(|𝑥−3|
1.5+|𝑦|1.5)

− 5𝑒−2.5(|𝑥+3|
2.5+|𝑦|2.5)

− 7𝑒−(|𝑥|
1.2+|𝑦−3|1.2)

− 10𝑒−2(|𝑥|
2+|𝑦+3|2)

−4 ≤ 𝑥, 𝑦 ≤ 4,

(16) 

Kuznetsov and Ruban [19] search for a global minimum 

point by dividing the original region into subregions. Figure 5 

shows the spatial view of function (16). The function has four 

local minima: (−3; 0) , (0; 3) , (3; 0)  and (0;−3) . Of these 
(0; −3) is global. 

Figure 5. Function graph 

Next, the study finds the global minimum using the 

indicator function (5). The calculations show the following 

result: 𝑓 ≈ −10.0013071522832 �̂� ∈ [−0.0000610352; 0],

�̂� ≈
−0.0000610352+0

2
≈ −0.0000305176 ≈ 0 ; �̂� ∈

[−3;−2.9999389648] , �̂� ≈
−3+2.9999389648

2
≈

−2,9999694824 ≈ −3.

Indeed, when substituting the coordinates of the global

minimum 𝑓(0;−3) ≈ −10.001307152283 , into function 

(16), a value is obtained equal to the value calculated using the 

indicator function. This is another proof that the proposed 

method works with a sufficiently high precision. The global 

minimum value is calculated with high precision. 

The arguments of the global minimum are relatively less 

accurate, since the global minimum is determined by a 

parabolic surface [20-22]. In this algorithm, the main difficulty 

is the high-precision calculation of the indicator function (5). 

It is necessary to calculate the integral “in the best way”. To 

calculate )(g , the Sobolev lattice cubature formulas with a 

regular boundary layer [10] were applied. The approximate 

value of the integrals (17) of a function 𝑛 of real variables 𝑥 ∈
Ω∁𝑅𝑛 is usually given in the form of cubature formulas (𝑥 –

n-dimensional coordinate vector).

𝐼(𝑓) = ∫ 𝑑𝑥𝜑(𝑥)
Ω

, (17) 

The approximate value of integral (17) will be sought in the 

form of a linear combination of the values of the function 𝜑(𝑥) 
in 𝑁  points 𝑥(1), 𝑥(2), … , 𝑥(𝑁) , called nodes; 𝑁  – number of

intervals, into which each component of the vector �̅�  is 

supposed to be split within the limits of its variation (18): 

𝐾(𝜑) = ∑ 𝐶𝑘𝜑(𝑥
(𝑘))𝑁

𝑘=1 , (18) 

where: 𝑥(𝑘) – nodes of quadrature formulas, 𝐶𝑘 – coefficients

of quadrature formulas. 

The main task is to choose a law for determining the 

coefficients {𝐶𝑘}, that provides the fastest approximation of

the integral 𝐼(𝜑) by the cubature formula 𝐾𝑁(𝜑), at 𝑁 → ∞.

The coefficients of the Sobolev formulas are found by solving 

a linear algebraic system [9]. 

To do this, it is necessary to find a polynomial 𝑃(𝑥)  of 

degree not higher than 𝑚, which coincides with the function 

𝜑(𝑥) at given points (19): 

𝑃(𝑥(𝑘)) = 𝜑(𝑥(𝑘)), 𝑘 = 1,2, … , 𝑁, (19) 

The coefficients of the Sobolev formulas are found by 

solving the linear algebraic system (20): 

(𝑎1 … 𝑎𝑀) ∙ (

1 1
𝑥1 𝑥2

… 1
⋯ 𝑥𝑀

⋯ ⋯
𝑥1
𝑀−1 𝑥2

𝑀−1
⋯ ⋯
⋯ 𝑥𝑀

𝑀−1

) = 

(𝜑(𝑥1) 𝜑(𝑥2) ⋯ 𝜑(𝑥𝑀)),

(20) 

Determinant of integer matrix (21) is the Vandermonde 

determinant and is nonzero [2]: 

∆= |

1 1
𝑥1 𝑥2

… 1
⋯ 𝑥𝑀

⋯ ⋯
𝑥1
𝑀−1 𝑥2

𝑀−1
⋯ ⋯
⋯ 𝑥𝑀

𝑀−1

| = ∏ (𝑥𝑖 − 𝑥𝑗)𝑖>𝑗 , (21) 
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This matrix is poorly conditioned, so the 6 × 6 matrix was 

settled in the calculations, when bad conditioning does not 

greatly affect the calculations (22): 

(1
1

2

1

3

1

4

1

5

1

6
)

= (𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6) ∙

(

1  1  1
1  2  3
1 4  9

1 1 1
4 5 6
16 25 36

1 8 27
1 16 81
1 32 243

64 125 216
256 625 1296
1024 3125 7776)

, 

(22) 

From here we find the coefficients 𝑎𝑘 (23):

(𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6)

= (1
1

2

1

3

1

4

1

5

1

6
) ∙ 

(

1  1  1
1  2  3
1 4  9

1 1 1
4 5 6
16 25 36

1 8 27
1 16 81
1 32 243

64 125 216
256 625 1296
1024 3125 7776)

−1

, 

(23) 

To achieve good accuracy, it is necessary to find the inverse 

matrix (23) in a rational form. When searching for the inverse 

matrix using computer programmes, a matrix with decimal 

elements and truncated ends is obtained [23]. Therefore, the 

required matrix was calculated manually (24): 

𝑊−1 =

(

6 −
87

10

29

6

−15
 117

4
 −

461

24

20 −
127

3
 31

−
31

24

1

6
−

1

120
137

24
−
19

24

1

24

−
121

12

3

2
−

1

12

−15 33  −
307

12

6 −
27

2

65

6

−1
137

60
−
15

8

107

12
−
17

12

1

12

−
95

24

2

3
−

1

24
17

24
−
1

8
 
1

120 )

, 
(24) 

The coefficients of the cubature formula are equal to (25): 

{

𝐶1 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 = 1

𝐶2 = 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 = −
2838

1440

𝐶3 = 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 =
5085

1440

𝐶4 = 𝑎4 + 𝑎5 + 𝑎6 = −
4896

1440

𝐶5 = 𝑎5 + 𝑎6 =
2402

1440

𝐶6 = 𝑎6 = −
475

1440

, (25) 

In this case, the equation for calculating the defining smooth 

function of several variables will have the form (26): 

 = )*()( khfChdxxF k

n
. (26) 

A computational experiment shows that the calculation of 

𝑔(𝛼) using the Sobolev formulas gives good accuracy. All 

computational experiments were carried out in the C++ 

programming language [24]. The above method is very 

economical and calculates with high precision. Efficiency of 

algorithms and high precision of calculations are of decisive 

importance in the issues of their use in solving problems of 

global optimisation of functions of many variables. The 

algorithms presented in this study are distinguished by their 

comparative simplicity in implementation, high precision 

characteristics and high performance with multi-extremity of 

the objective function. In addition, this method is easy to use 

by different specialists in their respective fields of activity. A 

promising direction for the further development of the 

considered method is the modification of cubature formulas. 

4. CONCLUSIONS

Study on the creation of an algorithm for calculating the 

global minimum of a smooth function of many variables has 

led to the following conclusions. The problem of developing 

effective algorithms for solving the problem of global 

optimisation of functions of many variables is of particular 

importance for science and technology. Considerable 

experience has been accumulated in this area and a large 

number of algorithms and methods for solving multiextremal 

optimisation problems have been developed. At the same time, 

overcoming the fundamental difficulty of global optimisation 

problems associated with the rapid growth of the number of 

calculations depending on the dimension of the optimised 

function. 

The findings of this study are qualitative in terms of the 

effectiveness of the global optimisation method. The proposed 

method avoids the problem of dimensionality growth and 

multiextremality. The experiments conducted clearly show 

that the algorithm overcomes these problems.  
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