
Recognition and Classification of Concrete Cracks under Strong Interference Based on

Convolutional Neural Network

Ningyu Zhao1,2, Yang Jiang2*, Yi Song2

1 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing 400074, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Corresponding Author Email: jiangyang829@163.com

https://doi.org/10.18280/ts.380338 ABSTRACT

Received: 5 February 2021

Accepted: 30 April 2021

This paper proposes the UmNet model based on convolutional neutral network (CNN),

aiming to improve the ability to recognize and classify concrete cracks in a background

complicated by construction seams and seepage traces. The model was derived from the

famous CNN AlexNet. Without changing the receptive field, large convolutional kernels

were replaced with small ones to reduce the parameters, deepen the network, and increase

nonlinear transforms. Next, convolutional block attention module (CBAM) was introduced

to highlight the key information in images and focus on high-weight channels. Finally,

Bayesian network (BN) layer and L2 regularization were added, and the number of nodes in

fully connected layer were reduced. A series of comparative experiments were carried out

on three datasets D, P, and W. The results show that the proposed UmNet surpassed AlexNet

in the recognition accuracy on D, P, and W by 3.74%, 3.17%, and 5.74%, respectively, and

reduced the number of parameters by 75.04%. Therefore, our model is an effective means

to recognize and classify of concrete cracks under strong interference.

Keywords:

concrete cracks, image classification,

convolutional neural network (CNN), block

attention module

1. INTRODUCTION

Cracking is one of the most common diseases of concrete

during long-term use. The manual detection of concrete cracks

has several defects: long time consumption, lack of objectivity,

and high risks. These defects can be overcome by applying

image recognition techniques to identify the cracks in concrete

images.

In recent years, many researchers adopted convolutional

neural network (CNN) to recognize concrete crack images. For

instance, Zhang et al. [1] built and trained the first CNN model,

and proved that deep learning outperforms traditional image

recognition algorithms in crack detection. Cha et al. [2]

improved their CNNs with sliding windows, so that the models

can detect any crack image surpassing the training resolution.

Li et al. [3] enhanced datasets with deep convolutional

generative adversarial network (GAN), and presented an

algorithm that effectively detects complex road scenes.

Referring to SegNet, Chen et al. [4] proposed an encoder-

decoder structural model with a fully CNN, namely, PCSN,

and verified its feasibility in crack detection. Lei et al. [5]

developed an image recognition method for concrete crack

detection, and demonstrated that the method can identify

cracks in stained and moss-covered concretes. Deng et al. [6]

employed region-based CNN (R-CNN) to detect bridge crack

images containing handwritten traces, and observed that R-

CNN can automatically recognize the cracks in original

images. Li et al. [7] put forward a deep neural network based

on attention mechanism and feature fusion, which effectively

enhances the detection accuracy of narrow cracks on airfield

pavement images with complex background and low contrast.

Laudable progress has been achieved on the image

recognition of concrete cracks based on deep learning.

However, most studies only deal with images with simple

background and disturbances. Not many researchers have

studied the recognition of concrete cracks with complex

background involving pot holes, construction seams, and

seepage traces. There is not yet a sufficiently precise model to

recognize these cracks. To solve the problem, this paper

acquires concrete crack image datasets with complex

background, and derives an improved CNN model from

AlexNet. In addition, the convolutional block attention

module (CBAM) was improved from the attention mechanism,

based on the existing channels and spaces. Then, CBAM was

introduced to the improved CNN model, such that the latter

focuses more on cracking and extract more details from

images. Further, small convolutional kernels and nonlinear

activation functions were adopted to reduce the number of

parameters, while enhancing the learning of network features.

In this way, the proposed model can accurately recognize and

classify the surface cracks in concrete crack image datasets

with complex background.

2. METHODOLOGY

2.1 CNN

With the development of computing technology, CNN has

been extensively applied to image recognition [8-11]. This

feedforward neural network [12] consists of input layer,

convolutional layer, pooling layer, fully connected layer, and

other supporting layers, as well as connection weights.

2.1.1 Convolution

Lying at the core of CNN, convolution layers aim to

Traitement du Signal
Vol. 38, No. 3, June, 2021, pp. 911-917

Journal homepage: http://iieta.org/journals/ts

911

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.380338&domain=pdf

perceive the local information of the input image through

convolution. Each convolution layer contains multiple filters

that learn the features from the input image. Convolution

kernels of different sizes extract different types of features.

Low-level kernels can extract simple features like edges and

curves, while high-level kernels can obtain more abstract

features. The convolution operation can be expressed as:

𝑎𝑖,𝑗 = ∑ ∑ 𝑤𝑚,𝑛𝑥𝑖+𝑚,𝑗+𝑛 + 𝑤𝑏

2

𝑛=0

2

𝑚=0

 (1)

where, xi,j is the element in the i-th row and j-th column of the

image; wm,n is the weight of the filter in the m-th row and n-th

column; wb is the bias of filter; 𝑎𝑖,𝑗 is the element in the i-th

row and j-th column of the feature map.

The convolution operation is explained in Figure 1.

Addition and multiplication are carried out in turn on the value

of a kernel and the value at the corresponding value in the

sample, producing a numerical value containing image

information. Then, a top-down sliding calculation is

performed from left to right with a fixed step length. The

outputs constitute the image feature corresponding to the

kernel.

To expand the receptive field and extract more global

features from the input image, AlexNet adopts large kernels of

the size 11×11, and 5×5. The large size brings a huge number

of parameters and a huge computing load. For an input image

of 28×28, the size of the feature map will be (28-5)/1+1=24, if

ten large kernels (5×5) are arranged with the stride of 1 and

padding of 0; the size of the feature maps will be (28-

3)/1+1=26, and (26-3)/1+1=24, if three small kernels (3×3) are

arranged with the same stride and padding. Since the feature

maps are of the same size, our model replaces the large kernels

in AlexNet with multiple 3×3 small kernels, without changing

the receptive field. In the above example, the convolution layer

has 10×5×5+10=260 parameters in the presence of large

kernels, and (10×3×3+10)×2=200 parameters in the presence

of two small kernels. After the kernel replacement, both the

number of parameters and computing load are reduced, and the

network is deepened. In addition, the multiple small kernels

lead to more nonlinear activation layers, which contribute to

the overall recognition ability for concrete cracks under

disturbance.

2.1.2 Pooling

Pooling is a down-sampling process that reduces the

dimensionality of features. The input feature map is down-

sampled step by step to reduce the map dimensionality, the

number of parameters, and computing load. This process

enhances the fault tolerance of the model, and lowers the risk

of overfitting. Pooling is typically arranged right after

convolution. The common pooling strategies include max

pooling and average pooling (Figure 1). Our model adopts

max pooling, because it is the best strategy for image

recognition [13, 14].

Figure 1. Illustration of convolution and pooling

2.1.3 Fully connected layers

Figure 2. Illustration of fully connected layer

Fully connected layer is an ordinary layer of the neutral

network. It is connected to all the nodes in the previous layer.

As a classifier of the CNN, each fully connected layer

encapsulates the previous local features into a weight matrix,

and maps the learned distributed features to the sample

labeling space. In this way, the local information of

convolution and pooling layers can be integrated effectively.

Coupled with the nonlinear mapping of activation functions,

fully connected layer can theoretically simulate any nonlinear

transform. This layer is illustrated in Figure 2.

During the design of our model, the number of nodes in the

first and second fully connected layers of AlexNet was

changed from 4,096 per layer to 1,024, and that in the last fully

connected layer was set to 2 according to the classification task

of the model. Due to parameter redundancy, fully connected

layer contributes the most parameters to the network model.

Therefore, the modified fully connected layers in our model

greatly reduce the total number of parameters. To prevent the

common problem of overfitting in neural network training,

Dropout technology was adopted in the fully connected layers

of our model. Thus, the nodes are discarded at a certain

probability. For stochastic gradient descent (SGD), a different

network is trained in each batch, because the nodes are

discarded randomly. Therefore, the risk of overfitting could be

minimized.

912

2.1.4 Activation functions

The essential task of our neural network model is function

fitting. The activation functions are normally nonlinear.

Adding these functions introduces nonlinearity to the model,

such that it could theoretically approximate any function.

Common activation functions include sigmoid, rectified linear

unit (ReLU), tanh, and Leaky ReLU. The curves of these

functions are displayed in Figure 3. ReLU is a nonlinear

activation function introduced by Nair and Hinton [15]. The

value of ReLU either equals 1 or 0. The function achieves a

fast speed and converges much faster than sigmoid and tanh,

because it only needs to judge whether the input is greater than

zero. If the input to ReLU is negative, however, the nodes will

be unable to update parameters. To solve the problem, a Leaky

value is introduced to the negative half of the interval of ReLU,

which to a certain extent improves the function performance.

Hence, our model adopts both ReLU and Leaky ReLU as

activation functions:

𝑓(𝑥) = max(0, 𝑥) = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

 (2)

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0
𝑎𝑥, 𝑥 < 0

 (3)

Figure 3. Nonlinear activation functions

2.1.5 Softmax layer

The feature map matrix generated through the above

convolution, pooling, and fully connected layers can be

applied to classify concrete cracks. The most common

classification layer is softmax layer, whose principle can be

explained by:

𝑃(𝑦(𝑖) = 𝑛丨𝑥(𝑖);𝑊) =

[

 𝑃(𝑦(𝑖) = 1 丨𝑥(𝑖);𝑊)

𝑃(𝑦(𝑖) = 2 丨𝑥(𝑖);𝑊)

⋮

𝑃(𝑦(𝑖) = 𝑛丨𝑥(𝑖);𝑊)]

=
1

∑ 𝑒𝑤𝑗
𝑇

𝑛
𝑗=1

[

 𝑝

𝑤1
𝑇
𝑥(𝑖)

𝑝𝑤2
𝑇
𝑥(𝑖)

⋮

𝑝𝑤𝑛
𝑇
𝑥(𝑖)]

(4)

where, i=1…m; P(y(i)=n|x(i); W) is the probability of the m-th

training sample belonging to class n with weight W; 𝑝𝑤𝑛
𝑇
𝑥(𝑖)

is the input of softmax layer, i.e., the feature map outputted

from the previous pooling layer. For the i-th input, the sum on

the right side always equals 1. Since the function values obey

the normal distribution, the probability of each input belonging

to each class will be returned.

2.2 AlexNet

The CNN AlexNet is the winner of the image classification

competition ILSVRC (ImageNet Large Scale Visual

Recognition Competition) 2012. It is 10% more accurate than

the winner of ILSVRC 2011. The network operates in the

following manner: the first and second layers perform

convolution, pooling, and normalization, in turn; the third and

fourth layers only perform convolution; the fifth layer perform

convolution and pooling; the eighth layer (fully connected

layer) performs classification with softmax. Local response

normalization (LRN), ReLU, and Dropout are adopted by the

network.

2.3 CBAM

CBAM is an important mechanism to enhance CNN

performance. Hu et al. [16] proposed the squeeze-and-

excitation (SE) network (SENet), the first effective

mechanism with channel attention. SENet establishes the

spatial correlations between features, and effectively improves

CNN performance. Later, CBAM was extended based on

SENet [17]. The extended mechanism contains a channel

attention module and a spatial attention module:

𝐹′ = 𝑀𝑐(𝐹)⨂𝐹 (5)

𝐹′′ = 𝑀𝑠(𝐹
′)⨂𝐹′ (6)

where, F is the feature map; F' is the feature map of the channel

attention module; F'' is the feature map of the spatial attention

module; ⨂ is element-wise multiplication; Mc and Ms are the

weight coefficients of channel attention module and spatial

attention module, respectively.

The channel attention module carries out global average

pooling and max pooling of the feature map outputted from

convolution operation. The pooled feature map is then

imported to a two-layer neural network. The obtained features

are processed by sigmoid activation function, producing a

weight coefficient Mc. The product between Mc and the

original feature F is a new feature F'. After that, the new

feature is passed through the spatial attention module, and

weighted into the final feature map. The spatial attention

module carries out average pooling and max pooling of F'. The

pooled results are stitched, convoluted, and processed by

sigmoid to obtain a weight coefficient Ms. The product

between Ms and F' is a new feature F''.

In this paper, CBAM is added between convolution layers.

The addition of the module makes feature learning focus more

on cracks, and suppresses the effect of disturbances. In this

way, the recognition model can acquire more details about

cracks, and identify concrete cracks more effectively.

2.4 UmNet structure

Figure 4 illustrates the structure of our improved model

UmNet. In our model, batch normalization (BN) replaces the

original LRN. Bayesian network (BN) and ReLU are added

913

behind each convolution layer. After the first convolution

layer, ReLU is replaced with Leaky ReLU. The original large

kernels (11×11; 5×5) are changed into small kernels (3×3). L2

regularization is adopted to regularize the network, and max

pooling is selected for implementing pooling operations.

Figure 4. UmNet structure

Table 1. Sizes of model training data

Layer Height Width Depth

Input 227 227 1

L1 27 27 96

L2 13 13 256

L3 13 13 384

L4 13 13 384

L5 6 6 256

L6 1 1 1,024

L7 1 1 1,024

L8 1 1 2

Table 2. Parameters of each convolution layer and pooling

layer

Operation Height Width Depth Step length Padding Output

C1 3 3 96 4 0 96

C2 3 3 96 1 0 96

P1 3 3 - 2 0 -

C3 3 3 256 1 1 256

C4 3 3 256 1 1 256

P2 3 3 - 2 0 -

C5 3 3 384 1 1 384

P3 3 3 - 2 0 -

C6 3 3 384 1 1 384

C7 3 3 256 1 1 256

In the improved model, the first and second convolution

layers perform convolution, BN, and pooling, in turn. The

third to fifth layers perform convolution and BN. The fifth

layer performs max pooling. Channel attention module and

spatial attention module are introduced between every pair of

convolution layers. The six and seventh layers (fully

connected layers) perform Dropout. The eighth layer (fully

connected layer) outputs class labels with softmax function.

Table 1 presents the sizes of model training data. Table 2 lists

the parameters of each convolution layer and pooling layer in

the model.

3. CONCRETE CRACK DATASETS WITH COMPLEX

BACKGROUND

3.1 Dataset acquisition

(a) Crack images of D, P, and W (from top to bottom)

(b) Non-crack images of D, P, and W (from top to bottom)

Figure 5. Datasets D, P, and W

Our experiments adopt the concrete crack image dataset

SDNET2018 published by Sattar Dorafshan et al. The dataset

consists of three parts: Bridge deck (D), Wall (W), and

Pavement (P). Dataset D contains 13,620 images, including

2,025 crack images and 11,595 non-crack images; Dataset W

contains 18,138 images, including 3,851 crack images and

14,287 non-crack images; Dataset P contains 24,334 images,

including 2,608 crack images, and 20,826 non-crack images.

As shown in Figure 5, the selected database has complex

background disturbances (pot holes, construction seams,

seepage traces, and shadows). There are fewer crack images

than non-crack images in the dataset. In the presence of

914

disturbances, the non-crack images should cover as many

disturbed backgrounds as possible. Considering the

performance of graphics processing unit (GPU), the authors

did not adjust the situation that the dataset contains more non-

crack images than crack images.

3.2 Image preprocessing and dataset construction

SDNET2018 provides color images of the resolution

256×256. According to the needs of our model, the original

images should be cropped into color images of the resolution

227×227. Grayscale processing can accelerate image training,

and save lots of memory. Therefore, the color images were

subject to grayscale processing through the conversion from

RGB to YUV:

g=0.299R+0.587G+0.114B (7)

where, R, G and B are the brightness of red, yellow, and blue,

respectively; g is the synthetic brightness. Figure 6 shows the

grayscale image.

→

Figure 6. Grayscale processing of concrete crack images

Table 3. Training set, verification set, and test set of each

dataset

 Dataset Type
Crack

images

Non-crack

images

Total

number

Grayscale

D

Training set 1619 9275 10894

Verification set 203 1160 1363

Test set 203 1160 1363

W

Training set 3081 11431 14512

Verification set 385 1428 1813

Test set 385 1428 1813

P

Training set 2086 10332 12418

Verification set 261 1291 1552

Test set 261 1291 1552

The color images in datasets D, W, and P were preprocessed

through cropping and grayscale processing. After that, the

preprocessed images of each dataset were divided into a

training set, a verification set, and a test set by 8: 1: 1. To

ensure the uniform distribution of crack and non-crack images

across datasets, the ratio of crack images to non-crack images

was kept the same as that in D, W, and P. The crack and non-

crack images were randomly selected from each dataset by a

Python program. Finally, one-hot coding was performed on

the crack and non-crack images (10 for each crack image, and

01 for each non-crack image). Table 3 shows the training set,

verification set, and test set.

4. CLASSIFICATION EXPERIMENTS

4.1 Experimental environment

In terms of software, the operating system is Windows 10

(64bit), the programming language is Python, the deep

learning framework is TensorFlow 2.2. The dependencies

mainly include CUDA 10.1 and CuDNN. In terms of hardware,

our experiments adopt an Intel Core i7-10700 processor (eight

cores), and a Nvidia GTX1660Ti (6G) GPU.

4.2 Hyperparameter setting

Our improved CNN model was trained through SGD. The

loss function is categorical crossentropy. The learning rate was

set to 0.01, the momentum to 0.9, the weight attenuation

coefficient to 0.0001, the Dropout rate to 0.5, the number of

iterations (epoch) to 50, the batch size to 32, and the size of

input image to 227×227×1.

4.3 Experimental procedure and results

Our CNN model was constructed under the deep learning

framework of TensorFlow 2.2, and applied to recognize the

surface cracks of concrete members. The model was trained

and tested by the above-mentioned datasets divided from D, P,

and W. The following experiments were conducted to verify

the effectiveness of each module of our model in the

recognition and classification of concrete cracks.

4.3.1 Effectiveness of small kernels

The first experiment intends to compare the influence of

large and small kernels on the classification of concrete cracks.

The original AlexNet was defined as Model A. Then, the

original large kernels (11×11; 5×5) in the first and second

convolution layers were changed into small kernels (3×3), and

the resulting model was defined as Model A1. After that,

Model A and Model A1 (small kernels) were trained

separately on D, P, and W. Table 4 records the test accuracies

and losses.

Table 4. Test accuracies and losses of Models A and A1

Dataset Model Accuracy % Loss

D
A 87.31 0.5047

A1 89.35 0.3497

P
A 89.69 0.4049

A1 91.07 0.2647

W
A 85.33 0.4328

A1 88.29 0.3672

As shown in Table 4, the original AlexNet, after being

trained by D, P, and W, achieved an accuracy of 87.31%,

89.69%, and 85.33% on the test sets, respectively. Model A1

improved the test accuracy to 89.35%, 91.07%, and 88.29%,

respectively. Thus, small kernels can effectively enhance the

recognition and classification performance of the model on

datasets D, P, and W. The possible reasons for the

enhancement are as follows: The replacement of large kernels

with small kernels does not change the receptive field, but

increases the depth of the network, which contributes to the

network performance. Besides, small kernels bring more

nonlinear transforms to convolution layers (nonlinear

activation functions), further enhancing the generalization

ability of the model.

4.3.2 Effectiveness of CBAM

The next experiment investigates the influence of CBAM

on the recognition and classification of the network model.

CBAM was added between convolution layers of AlexNet,

915

and the modified model was defined as Model A2. Then,

Model A2 was trained by D, P, and W, respectively. Table 5

records the test accuracies and losses of Models A and A2.

Table 5. Test accuracies and losses of Models A and A2

Dataset Model Accuracy % Loss

D
A 87.31 0.5047

A2 88.41 0.3898

P
A 89.69 0.4049

A2 91.17 0.3668

W
A 85.33 0.4328

A2 86.93 0.3928

As shown in Table 5, the original AlexNet, after being

trained by D, P, and W, achieved an accuracy of 87.31%,

89.69%, and 85.33% on the test sets, respectively. Model A2

improved the test accuracy to 88.41%, 91.17%, and 86.93%,

respectively. Thus, CBAM can effectively enhance the

recognition and classification performance of the model on

datasets D, P, and W. The possible reasons for the

enhancement are as follows: CBAM includes a channel

attention module and a spatial attention module. The former

learns the weight of each channel, and assigns a high weight

to key channels. The latter identifies the regions of interest in

images through training, enhancing the focusing ability of the

model.

4.3.3 Effectiveness of UmNet

The third experiment tries to verify the effectiveness of the

proposed network model. For this purpose, the UmNet model

was constructed by introducing small kernels, CBAM, BN

layer, and L2 regularization to the original AlexNet, and

changing the number of nodes in the first and second fully

connected layers to 1,024. Specifically, a BN layer was added

behind each convolution layer, and supported with L2

regularization. Then, UmNet was trained on D, P, and W. The

test accuracies, losses, and number of parameters are recorded

in Table 6. The accuracy curves of Model A and UmNet are

compared in Figure 7.

As shown in Table 6 and Figure 7, the recognition and

classification accuracies of UmNet on D, P, and W were

3.74%, 3.17%, and 5.74% higher than those of original

AlexNet. The most prominent improvement was realized on

W. From the data volume of training sets, it can be learned that

W provides more crack images than D and P, and has a more

balanced ratio between crack images and non-crack images

(background images). By reducing the number of nodes in

fully connected layers, UmNet had 75.04% fewer training

parameters than AlexNet. The experimental results fully

demonstrate the effectiveness of the proposed UmNet model.

Table 6. Test accuracies, losses, and number of parameters

of Model A and UmNet

Dataset Model Accuracy % Loss
Number of

parameters

D
A 87.31 0.5047 58,267,714

UmNet 91.05 0.4142 14,545,652

P
A 89.69 0.4049 58,267,714

UmNet 92.85 0.3659 14,542,652

W
A 85.33 0.4328 58,267,714

UmNet 91.07 0.3815 14,542,652

(a) Test accuracy on dataset D

(b) Test accuracy on dataset P

(c) Test accuracy on dataset W

Figure 7. Test accuracy curves

5. CONCLUSIONS

Based on AlexNet, this paper puts forward a CNN model

called UmNet for recognizing and classifying concrete cracks

in complex backgrounds (including pot holes, construction

seams, and seepage traces).

(1) Small convolution kernels were adopted to deep the

network, reduce parameters, and increase nonlinear transforms

(nonlinear activation functions), without changing the

receptive field. The effectiveness of small kernels was proved

by an experiment on Model A1, which improved the test

accuracies on D, P, and W by 2.04%, 1.38%, and 2.96%,

respectively.

(2) CBAM was introduced between convolution layers. The

channel attention module of CBAM assigns a high weight to

key channels, while the spatial attention module identifies the

regions of interest in images. The effectiveness of CBAM was

proved by an experiment on Model A2, which improved the

test accuracies on D, P, and W by 1.1%, 1.48%, and 1.6%,

respectively.

(3) The proposed UmNet model combines multiple modules,

including small kernels, CBAM, BN layer, and L2

regularization, and reduces the number of nodes in fully

connected layers. Experimental results show that the UmNet

916

improved the test accuracies on D, P, and W by 3.74%, 3.17%,

and 5.74%, respectively, and reduced 75.04% of parameters.

Therefore, the proposed UmNet model outshines the original

AlexNet in classification and parameter volume.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science

Foundation of China (Grant No.: 51608081) and the Scientific

and Technological Research Program of the Chongqing

Municipal Education Commission (No. KJQN201800743)

and Graduate Education Innovation Fund of Chongqing

Jiaotong University (Grant No.: 2020S0020).

REFERENCES

[1] Zhang, L., Yang, F., Zhang, Y.D., Zhu, Y.J. (2016). Road

crack detection using deep convolutional neural network.

In 2016 IEEE International Conference on Image

Processing (ICIP), pp. 3708-3712.

https://doi.org/10.1109/ICIP.2016.7533052

[2] Cha, Y.J., Choi, W., Büyüköztürk, O. (2017). Deep

learning‐based crack damage detection using

convolutional neural networks. Computer‐Aided Civil

and Infrastructure Engineering, 32(5): 361-378.

https://doi.org/10.1111/mice.12263

[3] Li, L., Shao, R., Progress, O. (2019). Bridge crack

detection algorithm based on image processing under

complex background. Laser & Optoelectronics Progress,

56(6): 112-122.

[4] Chen, T., Cai, Z., Zhao, X., Chen, C., Liang, X., Zou, T.,

Wang, P. (2020). Pavement crack detection and

recognition using the architecture of segNet. Journal of

Industrial Information Integration, 18: 100144.

https://doi.org/10.1016/j.jii.2020.100144

[5] Lei, S.D., Cao, H.Y., Kang, J.T. (2020). Concrete surface

crack recognition in complex scenario based on deep

learning. Journal of Highway and Transportation

Research and Development (English Edition), 14(4): 48-

58. https://doi.org/10.1061/JHTRCQ.0000754

[6] Deng, J., Lu, Y., Lee, V.C.S. (2020). Concrete crack

detection with handwriting script interferences using

faster region‐based convolutional neural network.

Computer‐Aided Civil and Infrastructure Engineering,

35(4): 373-388. https://doi.org/10.1111/mice.12497

[7] Li, H.F., Wu, Z.L., Nie, J. (2020). An automatic fine

crack recognition algorithm for airport pavement under

significant noises. Computer Engineering and Science,

42(11): 2020-2029.

[8] Barat, C., Ducottet, C. (2016). String representations and

distances in deep convolutional neural networks for

image classification. Pattern Recognition, 54: 104-115.

https://doi.org/10.1016/j.patcog.2016.01.007

[9] Shi, B., Bai, X., Yao, C. (2016). Script identification in

the wild via discriminative convolutional neural network.

Pattern Recognition, 52: 448-458.

https://doi.org/10.1016/j.patcog.2015.11.005

[10] Leng, B., Guo, S., Zhang, X., Xiong, Z. (2015). 3D object

retrieval with stacked local convolutional autoencoder.

Signal Processing, 112: 119-128.

https://doi.org/10.1016/j.sigpro.2014.09.005

[11] Xu, J., Luo, X., Wang, G., Gilmore, H., Madabhushi, A.

(2016). A deep convolutional neural network for

segmenting and classifying epithelial and stromal regions

in histopathological images. Neurocomputing, 191: 214-

223. https://doi.org/10.1016/j.neucom.2016.01.034

[12] Simonyan, K., Zisserman, A. (2014). Two-stream

convolutional networks for action recognition in videos.

arXiv preprint arXiv:1406.2199.

[13] Scherer, D., Müller, A., Behnke, S. (2010). Evaluation of

pooling operations in convolutional architectures for

object recognition. In International Conference on

Artificial Neural Networks, pp. 92-101.

https://doi.org/10.1007/978-3-642-15825-4_10

[14] Boureau, Y.L., Ponce, J., LeCun, Y. (2010). A theoretical

analysis of feature pooling in visual recognition. In

Proceedings of the 27th International Conference on

Machine Learning (ICML-10), pp. 111-118.

[15] Nair, V., Hinton, G.E. (2010). Rectified linear units

improve restricted Boltzmann machines. In Icml.

[16] Hu, J., Shen, L., Sun, G. (2018). Squeeze-and-excitation

networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 7132-

7141.

[17] Woo, S., Park, J., Lee, J.Y., Kweon, I.S. (2018). Cbam:

Convolutional block attention module. In Proceedings of

the European Conference on Computer Vision (ECCV),

pp. 3-19.

917

https://doi.org/10.1109/ICIP.2016.7533052
https://doi.org/10.1111/mice.12263
https://doi.org/10.1016/j.jii.2020.100144
https://doi.org/10.1016/j.patcog.2016.01.007
https://doi.org/10.1016/j.patcog.2015.11.005
https://doi.org/10.1016/j.sigpro.2014.09.005
https://doi.org/10.1016/j.neucom.2016.01.034

