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Diagnosing chronic obstructive pulmonary disease (COPD) from lung sounds is time 

consuming, onerous, and subjective to the expertise of pulmonologists. The preliminary 

diagnosis of COPD is often based on adventitious lung sounds (ALS). This paper proposes 

to objectively analyze the lung sound signals associated with COPD. Specifically, empirical 

mode decomposition (EMD), a data adaptive signal decomposition technique suitable for 

analyzing non-stationary signals, was adopted to decompose non-stationary lung sound 

signals. The use of EMD on lung sound signal results in intrinsic mode functions (IMFs), 

which are symmetric and band limited. The analytic IMFs were then computed through the 

Hilbert transform, which reveals the instantaneous frequency content of each IMF. The 

Hilbert transformed signal is analytic, and has a complex representation containing real and 

imaginary parts. Next, the central tendency measure (CTM) was introduced to quantify the 

circular shape of the analytical IMF plot. The result was taken as a useful feature to 

distinguish normal lung sound signal with ALS. Simulation results show that the CTM of 

analytic IMFs has a strong ability to distinguish between normal lung sound signals and 

ALS. 
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1. INTRODUCTION

Chronic respiratory diseases (CRDs) are lung and airway 

disorders [1]. The most common lung diseases include chronic 

obstructive pulmonary disease (COPD), asthma, occupational 

lung diseases, and pulmonary hypertension [2]. Among them, 

COPD is characterized by the chronic obstruction of lung 

airflow, which interferes with normal breathing and is not fully 

reversible [3]. COPD and other CRDs can be marked by the 

corresponding adventitious lung sound signals (ALS) [3]. 

The sound signals from the human lungs are very complex 

and highly nonlinear [4]. The parameters extracted from 

human lung sound signals play a critical role in ALS-based 

diagnosis. Time-domain parameters, including statistical 

features, have been used to analyze ALS [4, 5]. Assuming that 

lung sounds are stationary, some researchers computed 

spectral features through Fourier transform, and applied them 

to analyze and classify human lung sound signals [6, 7]. 

Past research reveals that the frequency components in lung 

sounds change over time, suggesting that the lung sound 

signals are non-stationary [8]. Considering this evidence, 

many multi-resolution methods have been proposed to detect 

ALS, ranging from short-time Fourier transform [9-11] and 

wavelet spectral analysis [12-14]. The fractal dimension has 

been adopted to divide ALS in multiclass classification [15, 

16]. 

To analyze and classify lung sound signals, several methods 

inspired by automatic speech recognition have been explored, 

namely, the mel-frequency cepstral coefficients (MFCCs) 

classification [17-21]. There are also reports on the 

classification of lung sound signals based on empirical mode 

decomposition (EMD) [22, 23]. EMD-based analysis on 

electroencephalogram (EEG) signals is a hotspot. For instance, 

Pachori et al. [24] extracted the parameters from the respective 

intrinsic mode functions (IMFs), and relied on them to 

differentiate the EEG signals of epileptic seizure from normal 

EEG signals. 

Drawing on previous EMD-based nonlinear signal analyses, 

this paper decides to analyze human lung sound signals 

through EMD and Hilbert-Huang transform (HHT) [25]. The 

Hilbert transform was applied on the IMFs of lung sound 

signals to obtain analytical IMFs. The IMF plots in the 

complex plane are circular, with each IMF reflecting its 

rotational frequency [26]. Therefore, circular plots have been 

taken as features for analyzing postural stability [27]. In this 

paper, the area of each circle obtained from analytic IMFs is 

used as a feature to distinguish between normal lung sound 

signals and ALS. 

2. METHODOLOGY

2.1 Dataset 

This paper adopts the online database of International 

Conference on Brain and Health Informatics (ICBHI) 2017 

[28]. This contains four sets of human lung sound signals in 

both normal and adventitious classes. The first set contains 

crackles, the second contains wheezes, the third contains both 

crackles and wheezes, and the fourth contains normal lung 

sound signals. All these sounds were recorded from 126 

subjects, and labeled by respiratory experts. The recording 

procedures and protocols are detailed by Rocha et al. [28]. The 

first to third sets were combined into the class of ALS, while 
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the fourth set was treated as the normal class. 

 

2.2 EMD 

 

Through EMD, any time-domain signal can be broken down 

into a finite number of amplitude-frequency (AM-FM) 

modulated oscillating components called intrinsic mode 

functions (IMFs) [25]. The decomposition is signal dependent, 

without needing any prior assumption about the stationarity 

and linearity of signals. For the EMD of a signal x(t), the 

resultant band limited IMFs must satisfy two necessary 

conditions: (1) the number of extrema and zero-crossings in 

the complete data must be the same or vary by a maximum of 

one; (2) in any case, the mean of the boundary specified by the 

extrema must be zero. The first and second conditions fulfill 

the narrowband requirement and elimination of redundant 

fluctuations due to asymmetric waveforms, respectively [25]. 

 

Algorithm 1 EMD algorithm of the signal x(t) 

1: Define 𝑔1(𝑡) = 𝑥(𝑡). 

2: Compute all extrema of 𝑥(𝑡). 

3: Get the upper envelop 𝑒𝑚(𝑡) and lower envelop 𝑒𝑙(𝑡), 

   by joining extrema through cubic spline interpolation. 

4: Calculate the local mean as 𝑚(𝑡) = [𝑒𝑚(𝑡) + 𝑒𝑙(𝑡)]/2. 

5: Make the local mean zero by subtracting 𝑚(𝑡) from 

𝑥(𝑡) and denoting it as 𝑑(𝑡). 

6: Apply the two necessary conditions to test whether 𝑑(𝑡) 

is an IMF. 

7: Iterate on 𝑑(𝑡) and its residual. 

 

After calculating the first IMF, define 𝐷1(𝑡) = 𝑔1(𝑡) , 

where 𝐷1(𝑡)  is the minuscule temporal scale in 𝑥(𝑡) . To 

derive the remaining IMFs, compute the residual signal 𝑟1(𝑡) 

by subtracting 𝐷1(𝑡) from the signal as 𝑟1(𝑡) = 𝑥(𝑡) − 𝐷1(𝑡). 

Repeat this process until the final residue becomes monotonic, 

and exists as a constant or a signal with only single minima 

and maxima, from which it is impossible to derive further 

IMFs. The extraction of IMFs and residues can be expressed 

as: 

 

𝑟1(𝑡) − 𝐷2(𝑡) = 𝑟2(𝑡), … , 𝑟𝑀−1(𝑡) − 𝐷𝑀(𝑡) = 𝑟𝑀(𝑡) (1) 

 

where, 𝑟𝑀(𝑡) is the last residue. The signal 𝑥(𝑡) outputted by 

the decomposition can be expressed as:  

 

𝑥(𝑡) = ∑ 𝐷𝑚(𝑡) + 𝑟𝑀(𝑡)

𝑀

𝑚=1

 (2) 

 

where, 𝑀  is the number of IMFs; Every IMF is deemed to 

provide a significant local frequency, and different IMFs differ 

in frequency. Then, formula (2) can be written as: 

 

𝑥(𝑡) = ∑ 𝐴𝑚(𝑡) cos(∅𝑚(𝑡))

𝑀

𝑚=1

 (3) 

 

Figure 1 provides an example of the EMD on lung sound 

signals in two breath cycles. 

 

 

 

 

 
Figure 1. IMFs of normal lung sound signals obtained through EMD 
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2.3 Hilbert transform and central tendency measure 

 

For a real signal x(t), the Hilbert transform can be defined 

as: 

 

𝑦(𝑡) = 𝑥(𝑡) ∗
1

𝜋𝑡
=  

1

𝜋
𝑝. 𝑣. ∫

𝑥(𝜏)

𝑡 − 𝜏

∞

−∞

 𝑑𝜏 (4) 

 

Through Fourier transform, we have 

 

𝑌(𝜔)  = −𝑗𝑠𝑔𝑛(𝜔)𝑋(𝜔) (5) 

 

where, 𝑝. 𝑣. is the Cauchy principal value; 𝑋(𝜔) is the Fourier 

transform of signal x(t) [26]. Then, the analytic representation 

of the signal x(t) can be obtained as: 

 

𝑧(𝑡) = 𝑥(𝑡) + 𝑗𝑦(𝑡) (6) 

 

The analytic signal can be further expressed as: 

 

𝑧(𝑡) = 𝐴(𝑡)𝑒−𝑗𝜙(𝑡) (7) 

 

where, 𝐴(𝑡) = √𝑥2(𝑡) + 𝑦2(𝑡) is the modulus (or amplitude) 

of 𝑧(𝑡)  and 𝜙(𝑡) = tan−1(
𝑦(𝑡)

𝑥(𝑡)
)  is the instantaneous phase. 

Differentiating instantaneous phase will result in 

instantaneous frequency 𝜔(𝑡) as: 

 

𝜔(𝑡) =
𝑑𝜙(𝑡)

𝑑𝑡
=

𝑥(𝑡)𝑦(𝑡) − 𝑥(𝑡)𝑦(𝑡)

𝐴2(𝑡)
 (8) 

 

where, 𝜔(𝑡),  is an instantaneous frequency reflecting the 

rotation rate of the analytic signal in the complex plane. 

Considering the local symmetry of IMFs, localized 

instantaneous frequency can be obtained in the spectro-

temporal domain, revealing the essential features of the signal 

[25]. From formula (3), each IMF 𝐷𝑚(𝑡) = 𝐴𝑚(𝑡) cos 𝜙𝑚 can 

be represented analytically as: 

 

𝑧𝑚(𝑡) = 𝐴𝑚𝑒−𝑗𝜙𝑚(𝑡) (9) 

 
Figures 2 and 3 provide examples of analytic signal plots in 

a complex plane for the first four IMFs. In nature, these plots 

are similar to rotating curves with a proper structure and a 

unique center. Our research mainly attempts to discriminate 

between natural lung signals and ALS, using the circular shape 

of analytical IMFs in a complex plane. To accomplish this goal, 

the CTM was introduced to the computation of feature set. 

The CTM provides a way to summarize the visual 

information contained in the plots [29]. In previous studies, the 

CTM of second-order difference plots (SODPs) have been 

utilized to compute the degree of variability in EEG and the 

center of pressure signals [30, 31]. In this paper, the CTM is 

adopted to calculate the area parameter of each circular 

analytic IMF. Specifically, the radius was computed by 

including more than 95% traces of the CTM. The 𝑧(𝑛) was 

represented analytically by plotting the imaginary part of 𝑧(𝑛), 

i.e., 𝐴(𝑛) sin 𝜙(𝑛), with its real part, i.e., 𝐴(𝑛) cos 𝜙(𝑛). 

The analytic depiction of the signal meets two criteria: each 

plot rotates in a specific direction; each plot has a unique 

center. In case of non-stationary signals, these two criteria 

cannot be fulfilled, because a non-stationary signal rotates 

about multiple centers. The IMFs obtained through EMD 

define the complex non-stationary signal as the sum of unique 

proper rotations, thereby determining the area of analytical 

IMF in the complex plane. 

The CTM was computed by choosing a circular area of 

radius 𝑟 around the origin. Then, the number of points within 

the radius was counted, and divided by the sum of the total 

points [29]. Let 𝑁 be the sum of total points; 𝑟  be the 

corresponding radius. Then, the CTM of analytic signal 𝑧(𝑛) 

can be computed by: 

 

𝐶𝑇𝑀 =
∑ 𝛿(𝑑𝑛)𝑁

𝑛=1

𝑁
 (10) 

 
where, δ(dn) can be given as: 

 

𝛿(𝑑𝑛) = {
1, 𝑖𝑓 ([ℜ{𝑧[𝑛]}]2 + [ℑ{𝑧[𝑛]}]2) < 𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

 

𝛿(𝑑𝑛)  represents the 𝑛𝑡ℎ  point inside the radius 𝑟 . The 

radius r was chosen such that it covers 95% of the total points 

in the SODP plot. Further information about the CTM measure 

can be obtained in the study [29]. For each radius r, the 

corresponding CTM represents the fraction of a total number 

of points included in the circle. Figures 2 and 3 provide the 

CTM plots of the first two IMFs of normal lung sound signals 

and ALS, respectively. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 

Figure 2. Analytic signal representations on complex plane: 

(a) Normal lung sound signals (b) IMF1, (c) IMF2, (d) IMF3, 

and (e) IMF4 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 3. Analytic signal representations on complex plane: 

(a) ALS (b) IMF1, (c) IMF2, (d) IMF3, and (e) IMF4 

 

 

3. RESULTS AND DISCUSSION 

 

In this paper, EMD is implemented prior to Hilbert 

transform. This approach offers greater insight than the direct 

application of Hilbert transform on the entire signal. In this 

way, substantial variations were found in the surface area of 

normal lung sound signals and ALS. Figures 2(a) and 3(a) 

provide the analytic representation of normal lung sound 

signals and ALS. Significant difference can be observed 

between the two classes of signals. In addition, the analytic 

representation of IMFs of respective class shows a marked 

difference between normal lung sound signals and ALS. The 

upper and lower ranges of x and y axis can give the idea of 

amplitude variations. For example, the x and y ranges of 

normal lung sound signal were (-0.4, +0.4), while those of 

ALS were (-1, +1.5). Similar differences were observable for 

their IMFs as well. 

From Figures 2 and 3, it can be observed that the analytic 

representation of lung sound signals does not depict any 

specific pattern or geometry in the complex plane. 

Consequently, it is inconvenient to define the radius of a circle 

that includes more than 95% of the total data points. The 

multiple rotation centers in Figures 2(a) suggest the presence 

of several distinct frequency components in the lung sound 

signals. In contrast, the analytic signals obtained through EMD 

of IMF covered more than 95% of the data points in the 

complex plane that rests within a circle. Moreover, these forms 

of analytic traces differed between normal lung sound signals 

and ALS. Since each IMF is always circular (Figures 2(b)-(e) 

and Figures 3(b)-(e)), it is feasible to measure the surface area 

in the complex plane. In this paper, the estimated area of 

analytic IMFs is treated as a feature to discriminate between 

normal lung sound signals and ALS.  

As mentioned before, the first to third sets of the ICBHI 

database were combined into the class of ALS, and the fourth 
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set was used as the class of normal lung sound signals. For the 

said classes, the area parameters were determined using the 

analytical representation of IMFs for different window sizes 

(N=40,000, 50,000, 60,000, and 70,000 samples). Table 1 lists 

the area parameters [minimum(min), median(med), and 

maximum(max)] for each IMF class with different window 

sizes. The estimated maximum area of ALS was larger than 

that of normal lung sound signals. A possible reason is the 

relatively large amplitude and different frequency contents of 

all IMFs.  

Next, the class discriminating potential of the area feature 

was assessed by the Kruskal-Wallis statistical test. The area 

values were remarkably distinct between the two classes of 

signals (p=0.001).  

Figures 4-7 display the results of the first four IMFs of 

different window sizes. The results indicate the effectiveness 

of the surface area of analytic IMFs in discriminating normal 

lung sound from ALS. The utilization of EMD is justified as 

there was no specific geometry or unique center of rotation for 

the analytic representation of the complete signal. Through the 

EMD, the analytic IMFs were mapped into a complex plane 

with circular geometry and a unique center. This method 

resulted in viability in the area computation of analytic IMFs, 

which covers more than 95% of the total data points. In future 

research, the circle area threshold for discriminating normal 

lung sound signals and ALS can be suggested, using a larger 

out-of-sample dataset. 

 

Table 1. Analytic IMFs area for normal adventitious lung sound signals 
 

Subject Window Size IMF1 IMF2 IMF3 IMF4 

Min Med Max Min Med Max Min Med Max Min Med Max 

Normal 

Lung sound signals 

40000 0.00 0.00 0.01 0.00 0.01 0.03 0.00 0.03 0.10 0.00 0.06 0.16 

50000 0.00 0.00 0.01 0.00 0.01 0.03 0.00 0.02 0.09 0.00 0.05 0.16 

60000 0.00 0.00 0.01 0.00 0.01 0.02 0.00 0.02 0.09 0.00 0.06 0.16 

70000 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.02 0.08 0.00 0.05 0.16 

Adventitious Lung sound signals 40000 0.00 0.01 4.43 0.00 0.02 2.81 0.00 0.06 4.72 0.00 0.13 3.11 

50000 0.00 0.01 4.28 0.00 0.02 3.27 0.00 0.06 4.14 0.00 0.15 2.92 

60000 0.00 0.01 3.94 0.00 0.01 3.31 0.00 0.05 3.50 0.00 0.15 3.15 

70000 0.00 0.01 3.58 0.00 0.01 3.15 0.00 0.05 2.88 0.00 0.12 3.09 
 

 
 

Figure 4. Comparison of area parameters between IMF1 (p=0.001), IMF2 (p= 0.001), IMF3 (p= 0.001), and IMF4 (p= 0.001) of 

normal lung sound signals and ALS (window length= 40,000 samples) 
 

 
 

Figure 5. Comparison of area parameters between IMF1 (p<0.001), IMF2 (p<0.001), IMF3 (p<0.001), and IMF4 (p<0.001) of 

normal lung sound signals and ALS (window length= 50,000 samples) 
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Figure 6. Comparison of area parameters between IMF1 (p=0.001), IMF2 (p= 0.001), IMF3 (p= 0.001), and IMF4 (p= 0.001) of 

normal lung sound signals and ALS (window length= 60,000 samples) 

 

 
 

Figure 7. Comparison of area parameters between IMF1 (p=0.001), IMF2 (p= 0.001), IMF3 (p= 0.001), and IMF4 (p= 0.001) of 

normal lung sound signals and ALS (window length= 70,000 samples) 

 

 

4. CONCLUSIONS 

 
This paper investigates the ability of the analytic IMFs to 

discriminate normal lung sound signals and ALS. The 

application of EMD to decompose lung sound signals is an 

encouraging method that provides proper circular structures of 

analytical IMFs in a complex plane. A significant statistical 

difference was observed between normal lung sound signals 

and ALS. The latter had a much larger area of analytic IMF 

than normal lung sound signal. This is potentially due to the 

relatively high amplitude and variable frequency of ALS. 

Moreover, the EMD provided a unique center of rotation for 

each analytic IMF. The clinical diagnostic ability of the 

proposed method needs to be tested on out of sample dataset. 

One exciting area of future research could be examining the 

feasibility of the area measure of analytic IMFs in classifying 

normal, crackles, and wheezing lung sound signals. 
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